Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [297,2,Mod(32,297)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(297, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([5, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("297.32");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 297 = 3^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 297.o (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.37155694003\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −2.09243 | + | 1.75576i | −1.59250 | + | 0.681145i | 0.948290 | − | 5.37802i | −0.514806 | − | 1.41442i | 2.13626 | − | 4.22129i | 1.28107 | − | 0.225888i | 4.72680 | + | 8.18706i | 2.07208 | − | 2.16944i | 3.56058 | + | 2.05570i |
32.2 | −1.91980 | + | 1.61091i | −0.858067 | − | 1.50457i | 0.743329 | − | 4.21563i | 0.397283 | + | 1.09153i | 4.07103 | + | 1.50621i | −5.05912 | + | 0.892060i | 2.85781 | + | 4.94987i | −1.52744 | + | 2.58204i | −2.52105 | − | 1.45553i |
32.3 | −1.91450 | + | 1.60646i | 0.506021 | + | 1.65649i | 0.737314 | − | 4.18151i | 1.08239 | + | 2.97385i | −3.62985 | − | 2.35844i | 0.365561 | − | 0.0644583i | 2.80663 | + | 4.86123i | −2.48789 | + | 1.67643i | −6.84961 | − | 3.95463i |
32.4 | −1.87415 | + | 1.57260i | 0.781035 | − | 1.54596i | 0.692074 | − | 3.92495i | 0.806177 | + | 2.21495i | 0.967392 | + | 4.12561i | 3.52553 | − | 0.621646i | 2.42878 | + | 4.20678i | −1.77997 | − | 2.41489i | −4.99413 | − | 2.88336i |
32.5 | −1.76104 | + | 1.47768i | 1.05002 | + | 1.37748i | 0.570400 | − | 3.23490i | −1.18284 | − | 3.24983i | −3.88461 | − | 0.874191i | 0.136995 | − | 0.0241558i | 1.47679 | + | 2.55788i | −0.794905 | + | 2.89277i | 6.88525 | + | 3.97520i |
32.6 | −1.47684 | + | 1.23921i | 1.68551 | − | 0.398808i | 0.298101 | − | 1.69061i | −0.265754 | − | 0.730152i | −1.99502 | + | 2.67768i | 0.802991 | − | 0.141589i | −0.273090 | − | 0.473006i | 2.68191 | − | 1.34439i | 1.29729 | + | 0.748990i |
32.7 | −1.34667 | + | 1.12999i | 0.0420361 | − | 1.73154i | 0.189349 | − | 1.07385i | −1.03215 | − | 2.83581i | 1.90002 | + | 2.37932i | 0.573955 | − | 0.101204i | −0.799502 | − | 1.38478i | −2.99647 | − | 0.145575i | 4.59442 | + | 2.65259i |
32.8 | −1.31148 | + | 1.10046i | −0.659983 | + | 1.60138i | 0.161662 | − | 0.916831i | 0.164690 | + | 0.452483i | −0.896703 | − | 2.82646i | −1.83599 | + | 0.323735i | −0.915090 | − | 1.58498i | −2.12885 | − | 2.11377i | −0.713926 | − | 0.412186i |
32.9 | −1.23479 | + | 1.03611i | −1.70861 | − | 0.283968i | 0.103880 | − | 0.589132i | 1.27393 | + | 3.50009i | 2.40400 | − | 1.41967i | 3.32295 | − | 0.585925i | −1.12976 | − | 1.95681i | 2.83872 | + | 0.970383i | −5.19951 | − | 3.00194i |
32.10 | −1.19486 | + | 1.00261i | −1.71312 | + | 0.255401i | 0.0751763 | − | 0.426346i | −0.0532311 | − | 0.146251i | 1.79087 | − | 2.02276i | −2.48842 | + | 0.438776i | −1.22215 | − | 2.11683i | 2.86954 | − | 0.875063i | 0.210237 | + | 0.121380i |
32.11 | −0.710212 | + | 0.595938i | −1.04133 | + | 1.38406i | −0.198038 | + | 1.12313i | −1.33080 | − | 3.65633i | −0.0852474 | − | 1.60355i | 4.41264 | − | 0.778068i | −1.45578 | − | 2.52149i | −0.831248 | − | 2.88254i | 3.12410 | + | 1.80370i |
32.12 | −0.685774 | + | 0.575433i | 1.61836 | + | 0.617178i | −0.208133 | + | 1.18038i | 0.431823 | + | 1.18642i | −1.46498 | + | 0.508014i | 4.41551 | − | 0.778573i | −1.43171 | − | 2.47980i | 2.23818 | + | 1.99763i | −0.978841 | − | 0.565134i |
32.13 | −0.675289 | + | 0.566635i | −0.411537 | − | 1.68245i | −0.212356 | + | 1.20433i | 0.912254 | + | 2.50640i | 1.23124 | + | 0.902949i | −1.93778 | + | 0.341683i | −1.42054 | − | 2.46045i | −2.66128 | + | 1.38478i | −2.03625 | − | 1.17563i |
32.14 | −0.575682 | + | 0.483055i | 0.756929 | + | 1.55790i | −0.249228 | + | 1.41344i | −0.213646 | − | 0.586988i | −1.18830 | − | 0.531218i | −2.12623 | + | 0.374911i | −1.29079 | − | 2.23572i | −1.85412 | + | 2.35844i | 0.406540 | + | 0.234716i |
32.15 | −0.558704 | + | 0.468808i | 1.05330 | − | 1.37498i | −0.254928 | + | 1.44577i | −0.813006 | − | 2.23371i | 0.0561209 | + | 1.26200i | −3.18953 | + | 0.562400i | −1.26469 | − | 2.19051i | −0.781135 | − | 2.89652i | 1.50141 | + | 0.866841i |
32.16 | −0.230822 | + | 0.193682i | −1.44776 | − | 0.950785i | −0.331531 | + | 1.88020i | −0.569924 | − | 1.56585i | 0.518325 | − | 0.0609437i | 2.33309 | − | 0.411387i | −0.588954 | − | 1.02010i | 1.19202 | + | 2.75302i | 0.434829 | + | 0.251049i |
32.17 | 0.230822 | − | 0.193682i | −1.44776 | − | 0.950785i | −0.331531 | + | 1.88020i | −0.569924 | − | 1.56585i | −0.518325 | + | 0.0609437i | −2.33309 | + | 0.411387i | 0.588954 | + | 1.02010i | 1.19202 | + | 2.75302i | −0.434829 | − | 0.251049i |
32.18 | 0.558704 | − | 0.468808i | 1.05330 | − | 1.37498i | −0.254928 | + | 1.44577i | −0.813006 | − | 2.23371i | −0.0561209 | − | 1.26200i | 3.18953 | − | 0.562400i | 1.26469 | + | 2.19051i | −0.781135 | − | 2.89652i | −1.50141 | − | 0.866841i |
32.19 | 0.575682 | − | 0.483055i | 0.756929 | + | 1.55790i | −0.249228 | + | 1.41344i | −0.213646 | − | 0.586988i | 1.18830 | + | 0.531218i | 2.12623 | − | 0.374911i | 1.29079 | + | 2.23572i | −1.85412 | + | 2.35844i | −0.406540 | − | 0.234716i |
32.20 | 0.675289 | − | 0.566635i | −0.411537 | − | 1.68245i | −0.212356 | + | 1.20433i | 0.912254 | + | 2.50640i | −1.23124 | − | 0.902949i | 1.93778 | − | 0.341683i | 1.42054 | + | 2.46045i | −2.66128 | + | 1.38478i | 2.03625 | + | 1.17563i |
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
27.f | odd | 18 | 1 | inner |
297.o | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 297.2.o.b | ✓ | 192 |
3.b | odd | 2 | 1 | 891.2.o.b | 192 | ||
11.b | odd | 2 | 1 | inner | 297.2.o.b | ✓ | 192 |
27.e | even | 9 | 1 | 891.2.o.b | 192 | ||
27.f | odd | 18 | 1 | inner | 297.2.o.b | ✓ | 192 |
33.d | even | 2 | 1 | 891.2.o.b | 192 | ||
297.o | even | 18 | 1 | inner | 297.2.o.b | ✓ | 192 |
297.q | odd | 18 | 1 | 891.2.o.b | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
297.2.o.b | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
297.2.o.b | ✓ | 192 | 11.b | odd | 2 | 1 | inner |
297.2.o.b | ✓ | 192 | 27.f | odd | 18 | 1 | inner |
297.2.o.b | ✓ | 192 | 297.o | even | 18 | 1 | inner |
891.2.o.b | 192 | 3.b | odd | 2 | 1 | ||
891.2.o.b | 192 | 27.e | even | 9 | 1 | ||
891.2.o.b | 192 | 33.d | even | 2 | 1 | ||
891.2.o.b | 192 | 297.q | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{192} + 6 T_{2}^{190} + 9 T_{2}^{188} + 1389 T_{2}^{186} + 7974 T_{2}^{184} + \cdots + 48\!\cdots\!01 \)
acting on \(S_{2}^{\mathrm{new}}(297, [\chi])\).