Properties

Label 297.2.n.b.64.9
Level $297$
Weight $2$
Character 297.64
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(37,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([10, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 64.9
Character \(\chi\) \(=\) 297.64
Dual form 297.2.n.b.181.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.27811 - 0.484227i) q^{2} +(3.12821 - 1.39277i) q^{4} +(-0.310092 - 0.0659121i) q^{5} +(0.148273 - 1.41072i) q^{7} +(2.68358 - 1.94973i) q^{8} -0.738340 q^{10} +(-1.02493 - 3.15429i) q^{11} +(2.80837 + 3.11901i) q^{13} +(-0.345328 - 3.28557i) q^{14} +(0.586822 - 0.651731i) q^{16} +(1.92957 + 5.93860i) q^{17} +(-2.50622 + 1.82087i) q^{19} +(-1.06183 + 0.225700i) q^{20} +(-3.86228 - 6.68951i) q^{22} +(-2.26025 + 3.91487i) q^{23} +(-4.47591 - 1.99281i) q^{25} +(7.90807 + 5.74555i) q^{26} +(-1.50098 - 4.61954i) q^{28} +(0.306106 - 2.91240i) q^{29} +(-6.38469 - 7.09091i) q^{31} +(-2.29583 + 3.97649i) q^{32} +(7.27140 + 12.5944i) q^{34} +(-0.138962 + 0.427681i) q^{35} +(-0.685637 - 0.498145i) q^{37} +(-4.82772 + 5.36173i) q^{38} +(-0.960667 + 0.427717i) q^{40} +(-0.404484 - 3.84841i) q^{41} +(-1.77651 - 3.07700i) q^{43} +(-7.59937 - 8.43978i) q^{44} +(-3.25341 + 10.0130i) q^{46} +(6.80683 + 3.03059i) q^{47} +(4.87888 + 1.03704i) q^{49} +(-11.1616 - 2.37247i) q^{50} +(13.1292 + 5.84550i) q^{52} +(-2.06517 + 6.35595i) q^{53} +(0.109916 + 1.04568i) q^{55} +(-2.35263 - 4.07487i) q^{56} +(-0.712921 - 6.78299i) q^{58} +(11.0309 - 4.91125i) q^{59} +(3.09160 - 3.43357i) q^{61} +(-17.9786 - 13.0622i) q^{62} +(-3.84663 + 11.8387i) q^{64} +(-0.665272 - 1.15229i) q^{65} +(-4.98385 + 8.63229i) q^{67} +(14.3072 + 15.8897i) q^{68} +(-0.109476 + 1.04159i) q^{70} +(-0.905630 - 2.78724i) q^{71} +(-3.43158 - 2.49319i) q^{73} +(-1.80317 - 0.802823i) q^{74} +(-5.30392 + 9.18665i) q^{76} +(-4.60179 + 0.978190i) q^{77} +(3.30808 - 0.703155i) q^{79} +(-0.224926 + 0.163418i) q^{80} +(-2.78496 - 8.57123i) q^{82} +(9.02488 - 10.0231i) q^{83} +(-0.206918 - 1.96870i) q^{85} +(-5.53705 - 6.14951i) q^{86} +(-8.90048 - 6.46644i) q^{88} -2.69745 q^{89} +(4.81645 - 3.49936i) q^{91} +(-1.61803 + 15.3945i) q^{92} +(16.9742 + 3.60797i) q^{94} +(0.897177 - 0.399449i) q^{95} +(5.14256 - 1.09308i) q^{97} +11.6168 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27811 0.484227i 1.61087 0.342400i 0.687459 0.726223i \(-0.258726\pi\)
0.923407 + 0.383823i \(0.125393\pi\)
\(3\) 0 0
\(4\) 3.12821 1.39277i 1.56410 0.696384i
\(5\) −0.310092 0.0659121i −0.138677 0.0294768i 0.138050 0.990425i \(-0.455917\pi\)
−0.276727 + 0.960948i \(0.589250\pi\)
\(6\) 0 0
\(7\) 0.148273 1.41072i 0.0560419 0.533203i −0.930101 0.367304i \(-0.880281\pi\)
0.986143 0.165899i \(-0.0530525\pi\)
\(8\) 2.68358 1.94973i 0.948787 0.689334i
\(9\) 0 0
\(10\) −0.738340 −0.233484
\(11\) −1.02493 3.15429i −0.309027 0.951053i
\(12\) 0 0
\(13\) 2.80837 + 3.11901i 0.778901 + 0.865057i 0.993754 0.111590i \(-0.0355942\pi\)
−0.214854 + 0.976646i \(0.568928\pi\)
\(14\) −0.345328 3.28557i −0.0922927 0.878107i
\(15\) 0 0
\(16\) 0.586822 0.651731i 0.146705 0.162933i
\(17\) 1.92957 + 5.93860i 0.467989 + 1.44032i 0.855184 + 0.518325i \(0.173444\pi\)
−0.387195 + 0.921998i \(0.626556\pi\)
\(18\) 0 0
\(19\) −2.50622 + 1.82087i −0.574966 + 0.417737i −0.836906 0.547347i \(-0.815638\pi\)
0.261940 + 0.965084i \(0.415638\pi\)
\(20\) −1.06183 + 0.225700i −0.237433 + 0.0504680i
\(21\) 0 0
\(22\) −3.86228 6.68951i −0.823441 1.42621i
\(23\) −2.26025 + 3.91487i −0.471295 + 0.816306i −0.999461 0.0328349i \(-0.989546\pi\)
0.528166 + 0.849141i \(0.322880\pi\)
\(24\) 0 0
\(25\) −4.47591 1.99281i −0.895183 0.398561i
\(26\) 7.90807 + 5.74555i 1.55090 + 1.12679i
\(27\) 0 0
\(28\) −1.50098 4.61954i −0.283659 0.873011i
\(29\) 0.306106 2.91240i 0.0568424 0.540820i −0.928633 0.371000i \(-0.879015\pi\)
0.985475 0.169819i \(-0.0543184\pi\)
\(30\) 0 0
\(31\) −6.38469 7.09091i −1.14672 1.27357i −0.956470 0.291830i \(-0.905736\pi\)
−0.190253 0.981735i \(-0.560931\pi\)
\(32\) −2.29583 + 3.97649i −0.405848 + 0.702950i
\(33\) 0 0
\(34\) 7.27140 + 12.5944i 1.24703 + 2.15993i
\(35\) −0.138962 + 0.427681i −0.0234889 + 0.0722913i
\(36\) 0 0
\(37\) −0.685637 0.498145i −0.112718 0.0818945i 0.529998 0.847999i \(-0.322193\pi\)
−0.642716 + 0.766104i \(0.722193\pi\)
\(38\) −4.82772 + 5.36173i −0.783159 + 0.869787i
\(39\) 0 0
\(40\) −0.960667 + 0.427717i −0.151895 + 0.0676279i
\(41\) −0.404484 3.84841i −0.0631698 0.601021i −0.979618 0.200868i \(-0.935624\pi\)
0.916448 0.400153i \(-0.131043\pi\)
\(42\) 0 0
\(43\) −1.77651 3.07700i −0.270915 0.469239i 0.698181 0.715921i \(-0.253993\pi\)
−0.969096 + 0.246682i \(0.920660\pi\)
\(44\) −7.59937 8.43978i −1.14565 1.27235i
\(45\) 0 0
\(46\) −3.25341 + 10.0130i −0.479689 + 1.47633i
\(47\) 6.80683 + 3.03059i 0.992878 + 0.442058i 0.837878 0.545857i \(-0.183796\pi\)
0.154999 + 0.987915i \(0.450462\pi\)
\(48\) 0 0
\(49\) 4.87888 + 1.03704i 0.696983 + 0.148148i
\(50\) −11.1616 2.37247i −1.57849 0.335518i
\(51\) 0 0
\(52\) 13.1292 + 5.84550i 1.82069 + 0.810625i
\(53\) −2.06517 + 6.35595i −0.283673 + 0.873057i 0.703120 + 0.711071i \(0.251790\pi\)
−0.986793 + 0.161986i \(0.948210\pi\)
\(54\) 0 0
\(55\) 0.109916 + 1.04568i 0.0148210 + 0.140999i
\(56\) −2.35263 4.07487i −0.314383 0.544528i
\(57\) 0 0
\(58\) −0.712921 6.78299i −0.0936111 0.890650i
\(59\) 11.0309 4.91125i 1.43609 0.639391i 0.466592 0.884473i \(-0.345482\pi\)
0.969502 + 0.245082i \(0.0788149\pi\)
\(60\) 0 0
\(61\) 3.09160 3.43357i 0.395838 0.439623i −0.511973 0.859001i \(-0.671085\pi\)
0.907812 + 0.419378i \(0.137752\pi\)
\(62\) −17.9786 13.0622i −2.28329 1.65890i
\(63\) 0 0
\(64\) −3.84663 + 11.8387i −0.480828 + 1.47984i
\(65\) −0.665272 1.15229i −0.0825169 0.142923i
\(66\) 0 0
\(67\) −4.98385 + 8.63229i −0.608875 + 1.05460i 0.382552 + 0.923934i \(0.375045\pi\)
−0.991426 + 0.130668i \(0.958288\pi\)
\(68\) 14.3072 + 15.8897i 1.73500 + 1.92691i
\(69\) 0 0
\(70\) −0.109476 + 1.04159i −0.0130849 + 0.124494i
\(71\) −0.905630 2.78724i −0.107479 0.330785i 0.882826 0.469701i \(-0.155638\pi\)
−0.990304 + 0.138916i \(0.955638\pi\)
\(72\) 0 0
\(73\) −3.43158 2.49319i −0.401636 0.291806i 0.368571 0.929600i \(-0.379847\pi\)
−0.770207 + 0.637794i \(0.779847\pi\)
\(74\) −1.80317 0.802823i −0.209614 0.0933263i
\(75\) 0 0
\(76\) −5.30392 + 9.18665i −0.608401 + 1.05378i
\(77\) −4.60179 + 0.978190i −0.524423 + 0.111475i
\(78\) 0 0
\(79\) 3.30808 0.703155i 0.372188 0.0791111i −0.0180200 0.999838i \(-0.505736\pi\)
0.390208 + 0.920727i \(0.372403\pi\)
\(80\) −0.224926 + 0.163418i −0.0251475 + 0.0182707i
\(81\) 0 0
\(82\) −2.78496 8.57123i −0.307548 0.946534i
\(83\) 9.02488 10.0231i 0.990609 1.10018i −0.00435860 0.999991i \(-0.501387\pi\)
0.994968 0.100193i \(-0.0319459\pi\)
\(84\) 0 0
\(85\) −0.206918 1.96870i −0.0224435 0.213535i
\(86\) −5.53705 6.14951i −0.597075 0.663119i
\(87\) 0 0
\(88\) −8.90048 6.46644i −0.948795 0.689325i
\(89\) −2.69745 −0.285929 −0.142965 0.989728i \(-0.545664\pi\)
−0.142965 + 0.989728i \(0.545664\pi\)
\(90\) 0 0
\(91\) 4.81645 3.49936i 0.504902 0.366833i
\(92\) −1.61803 + 15.3945i −0.168691 + 1.60499i
\(93\) 0 0
\(94\) 16.9742 + 3.60797i 1.75075 + 0.372134i
\(95\) 0.897177 0.399449i 0.0920484 0.0409826i
\(96\) 0 0
\(97\) 5.14256 1.09308i 0.522147 0.110986i 0.0607045 0.998156i \(-0.480665\pi\)
0.461443 + 0.887170i \(0.347332\pi\)
\(98\) 11.6168 1.17347
\(99\) 0 0
\(100\) −16.7771 −1.67771
\(101\) −9.32150 + 1.98135i −0.927524 + 0.197151i −0.646819 0.762643i \(-0.723901\pi\)
−0.280704 + 0.959794i \(0.590568\pi\)
\(102\) 0 0
\(103\) 8.71123 3.87849i 0.858343 0.382159i 0.0701126 0.997539i \(-0.477664\pi\)
0.788231 + 0.615380i \(0.210997\pi\)
\(104\) 13.6177 + 2.89453i 1.33532 + 0.283832i
\(105\) 0 0
\(106\) −1.62697 + 15.4796i −0.158025 + 1.50351i
\(107\) 4.18472 3.04038i 0.404552 0.293924i −0.366840 0.930284i \(-0.619560\pi\)
0.771393 + 0.636359i \(0.219560\pi\)
\(108\) 0 0
\(109\) 14.4767 1.38661 0.693307 0.720643i \(-0.256153\pi\)
0.693307 + 0.720643i \(0.256153\pi\)
\(110\) 0.756744 + 2.32894i 0.0721527 + 0.222055i
\(111\) 0 0
\(112\) −0.832402 0.924476i −0.0786546 0.0873548i
\(113\) −0.776815 7.39090i −0.0730766 0.695277i −0.968322 0.249704i \(-0.919667\pi\)
0.895246 0.445573i \(-0.147000\pi\)
\(114\) 0 0
\(115\) 0.958923 1.06499i 0.0894200 0.0993110i
\(116\) −3.09874 9.53694i −0.287711 0.885482i
\(117\) 0 0
\(118\) 22.7513 16.5298i 2.09443 1.52169i
\(119\) 8.66382 1.84155i 0.794211 0.168815i
\(120\) 0 0
\(121\) −8.89905 + 6.46582i −0.809005 + 0.587802i
\(122\) 5.38037 9.31907i 0.487116 0.843709i
\(123\) 0 0
\(124\) −29.8486 13.2895i −2.68049 1.19343i
\(125\) 2.53897 + 1.84467i 0.227092 + 0.164992i
\(126\) 0 0
\(127\) −4.08040 12.5582i −0.362077 1.11436i −0.951791 0.306746i \(-0.900760\pi\)
0.589715 0.807612i \(-0.299240\pi\)
\(128\) −2.07050 + 19.6995i −0.183008 + 1.74120i
\(129\) 0 0
\(130\) −2.07353 2.30289i −0.181861 0.201977i
\(131\) −3.65021 + 6.32236i −0.318921 + 0.552387i −0.980263 0.197697i \(-0.936654\pi\)
0.661342 + 0.750084i \(0.269987\pi\)
\(132\) 0 0
\(133\) 2.19714 + 3.80556i 0.190516 + 0.329984i
\(134\) −7.17377 + 22.0786i −0.619719 + 1.90730i
\(135\) 0 0
\(136\) 16.7568 + 12.1746i 1.43689 + 1.04396i
\(137\) −6.56239 + 7.28827i −0.560662 + 0.622679i −0.955114 0.296238i \(-0.904268\pi\)
0.394452 + 0.918917i \(0.370935\pi\)
\(138\) 0 0
\(139\) −8.65757 + 3.85460i −0.734326 + 0.326943i −0.739603 0.673043i \(-0.764987\pi\)
0.00527735 + 0.999986i \(0.498320\pi\)
\(140\) 0.160958 + 1.53142i 0.0136035 + 0.129428i
\(141\) 0 0
\(142\) −3.41278 5.91111i −0.286394 0.496049i
\(143\) 6.95987 12.0551i 0.582014 1.00810i
\(144\) 0 0
\(145\) −0.286884 + 0.882938i −0.0238244 + 0.0733240i
\(146\) −9.02479 4.01809i −0.746897 0.332540i
\(147\) 0 0
\(148\) −2.83862 0.603367i −0.233333 0.0495964i
\(149\) −4.03725 0.858145i −0.330745 0.0703020i 0.0395464 0.999218i \(-0.487409\pi\)
−0.370291 + 0.928916i \(0.620742\pi\)
\(150\) 0 0
\(151\) −16.2385 7.22985i −1.32147 0.588357i −0.379855 0.925046i \(-0.624026\pi\)
−0.941616 + 0.336689i \(0.890693\pi\)
\(152\) −3.17541 + 9.77291i −0.257560 + 0.792688i
\(153\) 0 0
\(154\) −10.0097 + 4.45673i −0.806605 + 0.359134i
\(155\) 1.51246 + 2.61967i 0.121484 + 0.210417i
\(156\) 0 0
\(157\) 0.210861 + 2.00621i 0.0168285 + 0.160113i 0.999709 0.0241329i \(-0.00768247\pi\)
−0.982880 + 0.184246i \(0.941016\pi\)
\(158\) 7.19568 3.20372i 0.572458 0.254875i
\(159\) 0 0
\(160\) 0.974017 1.08175i 0.0770028 0.0855202i
\(161\) 5.18765 + 3.76905i 0.408844 + 0.297043i
\(162\) 0 0
\(163\) −0.488377 + 1.50307i −0.0382526 + 0.117729i −0.968359 0.249560i \(-0.919714\pi\)
0.930107 + 0.367289i \(0.119714\pi\)
\(164\) −6.62526 11.4753i −0.517346 0.896069i
\(165\) 0 0
\(166\) 15.7062 27.2039i 1.21904 2.11143i
\(167\) −10.2522 11.3862i −0.793337 0.881090i 0.201817 0.979423i \(-0.435315\pi\)
−0.995154 + 0.0983335i \(0.968649\pi\)
\(168\) 0 0
\(169\) −0.482411 + 4.58984i −0.0371085 + 0.353064i
\(170\) −1.42468 4.38471i −0.109268 0.336292i
\(171\) 0 0
\(172\) −9.84284 7.15124i −0.750510 0.545277i
\(173\) 0.900792 + 0.401058i 0.0684859 + 0.0304919i 0.440694 0.897658i \(-0.354732\pi\)
−0.372208 + 0.928149i \(0.621399\pi\)
\(174\) 0 0
\(175\) −3.47495 + 6.01879i −0.262682 + 0.454978i
\(176\) −2.65720 1.18303i −0.200294 0.0891740i
\(177\) 0 0
\(178\) −6.14509 + 1.30618i −0.460594 + 0.0979023i
\(179\) −9.08186 + 6.59836i −0.678810 + 0.493185i −0.872963 0.487787i \(-0.837804\pi\)
0.194153 + 0.980971i \(0.437804\pi\)
\(180\) 0 0
\(181\) 5.53932 + 17.0483i 0.411735 + 1.26719i 0.915139 + 0.403138i \(0.132081\pi\)
−0.503405 + 0.864051i \(0.667919\pi\)
\(182\) 9.27792 10.3042i 0.687725 0.763796i
\(183\) 0 0
\(184\) 1.56739 + 14.9127i 0.115550 + 1.09938i
\(185\) 0.179777 + 0.199663i 0.0132175 + 0.0146795i
\(186\) 0 0
\(187\) 16.7544 12.1730i 1.22520 0.890181i
\(188\) 25.5141 1.86081
\(189\) 0 0
\(190\) 1.85044 1.34442i 0.134245 0.0975348i
\(191\) 1.34716 12.8173i 0.0974768 0.927430i −0.831058 0.556185i \(-0.812264\pi\)
0.928535 0.371245i \(-0.121069\pi\)
\(192\) 0 0
\(193\) 22.6451 + 4.81337i 1.63003 + 0.346474i 0.929978 0.367616i \(-0.119826\pi\)
0.700054 + 0.714090i \(0.253159\pi\)
\(194\) 11.1860 4.98033i 0.803108 0.357567i
\(195\) 0 0
\(196\) 16.7065 3.55108i 1.19332 0.253649i
\(197\) −1.07766 −0.0767801 −0.0383900 0.999263i \(-0.512223\pi\)
−0.0383900 + 0.999263i \(0.512223\pi\)
\(198\) 0 0
\(199\) 16.4307 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(200\) −15.8969 + 3.37899i −1.12408 + 0.238931i
\(201\) 0 0
\(202\) −20.2760 + 9.02744i −1.42661 + 0.635168i
\(203\) −4.06320 0.863660i −0.285181 0.0606171i
\(204\) 0 0
\(205\) −0.128230 + 1.22002i −0.00895594 + 0.0852101i
\(206\) 17.9671 13.0538i 1.25182 0.909503i
\(207\) 0 0
\(208\) 3.68076 0.255215
\(209\) 8.31225 + 6.03907i 0.574970 + 0.417731i
\(210\) 0 0
\(211\) −10.0034 11.1099i −0.688660 0.764834i 0.292868 0.956153i \(-0.405390\pi\)
−0.981528 + 0.191319i \(0.938724\pi\)
\(212\) 2.39207 + 22.7590i 0.164288 + 1.56310i
\(213\) 0 0
\(214\) 8.06101 8.95266i 0.551040 0.611991i
\(215\) 0.348070 + 1.07125i 0.0237382 + 0.0730585i
\(216\) 0 0
\(217\) −10.9500 + 7.95563i −0.743333 + 0.540063i
\(218\) 32.9794 7.00999i 2.23365 0.474776i
\(219\) 0 0
\(220\) 1.80022 + 3.11800i 0.121371 + 0.210216i
\(221\) −13.1036 + 22.6961i −0.881444 + 1.52671i
\(222\) 0 0
\(223\) 1.75974 + 0.783488i 0.117841 + 0.0524662i 0.464810 0.885410i \(-0.346123\pi\)
−0.346969 + 0.937877i \(0.612789\pi\)
\(224\) 5.26931 + 3.82838i 0.352070 + 0.255794i
\(225\) 0 0
\(226\) −5.34854 16.4611i −0.355779 1.09498i
\(227\) −1.67361 + 15.9234i −0.111082 + 1.05687i 0.786973 + 0.616988i \(0.211647\pi\)
−0.898055 + 0.439884i \(0.855020\pi\)
\(228\) 0 0
\(229\) −0.349905 0.388609i −0.0231224 0.0256800i 0.731473 0.681871i \(-0.238833\pi\)
−0.754595 + 0.656191i \(0.772167\pi\)
\(230\) 1.66883 2.89050i 0.110040 0.190594i
\(231\) 0 0
\(232\) −4.85695 8.41248i −0.318874 0.552306i
\(233\) 3.16820 9.75073i 0.207556 0.638792i −0.792043 0.610466i \(-0.790982\pi\)
0.999599 0.0283260i \(-0.00901764\pi\)
\(234\) 0 0
\(235\) −1.91099 1.38842i −0.124659 0.0905703i
\(236\) 27.6666 30.7268i 1.80094 2.00015i
\(237\) 0 0
\(238\) 18.8454 8.39051i 1.22157 0.543876i
\(239\) −1.00776 9.58823i −0.0651868 0.620211i −0.977532 0.210788i \(-0.932397\pi\)
0.912345 0.409423i \(-0.134270\pi\)
\(240\) 0 0
\(241\) 0.139366 + 0.241388i 0.00897733 + 0.0155492i 0.870479 0.492205i \(-0.163809\pi\)
−0.861502 + 0.507754i \(0.830476\pi\)
\(242\) −17.1421 + 19.0390i −1.10193 + 1.22387i
\(243\) 0 0
\(244\) 4.88900 15.0468i 0.312986 0.963272i
\(245\) −1.44455 0.643155i −0.0922889 0.0410897i
\(246\) 0 0
\(247\) −12.7177 2.70323i −0.809207 0.172002i
\(248\) −30.9592 6.58057i −1.96591 0.417867i
\(249\) 0 0
\(250\) 6.67728 + 2.97292i 0.422308 + 0.188024i
\(251\) −1.36753 + 4.20881i −0.0863175 + 0.265658i −0.984894 0.173159i \(-0.944602\pi\)
0.898576 + 0.438817i \(0.144602\pi\)
\(252\) 0 0
\(253\) 14.6652 + 3.11703i 0.921993 + 0.195966i
\(254\) −15.3766 26.6330i −0.964813 1.67111i
\(255\) 0 0
\(256\) 2.21987 + 21.1206i 0.138742 + 1.32004i
\(257\) −3.33857 + 1.48643i −0.208254 + 0.0927209i −0.508213 0.861231i \(-0.669694\pi\)
0.299959 + 0.953952i \(0.403027\pi\)
\(258\) 0 0
\(259\) −0.804405 + 0.893382i −0.0499833 + 0.0555121i
\(260\) −3.68598 2.67802i −0.228595 0.166084i
\(261\) 0 0
\(262\) −5.25413 + 16.1705i −0.324601 + 0.999019i
\(263\) −7.22621 12.5162i −0.445587 0.771780i 0.552506 0.833509i \(-0.313672\pi\)
−0.998093 + 0.0617294i \(0.980338\pi\)
\(264\) 0 0
\(265\) 1.05933 1.83481i 0.0650741 0.112712i
\(266\) 6.84808 + 7.60557i 0.419883 + 0.466327i
\(267\) 0 0
\(268\) −3.56776 + 33.9450i −0.217936 + 2.07352i
\(269\) −0.283600 0.872830i −0.0172914 0.0532174i 0.942039 0.335505i \(-0.108907\pi\)
−0.959330 + 0.282287i \(0.908907\pi\)
\(270\) 0 0
\(271\) 2.13921 + 1.55422i 0.129948 + 0.0944124i 0.650860 0.759197i \(-0.274408\pi\)
−0.520913 + 0.853610i \(0.674408\pi\)
\(272\) 5.00269 + 2.22734i 0.303332 + 0.135052i
\(273\) 0 0
\(274\) −11.4206 + 19.7811i −0.689947 + 1.19502i
\(275\) −1.69840 + 16.1608i −0.102417 + 0.974533i
\(276\) 0 0
\(277\) −28.2729 + 6.00958i −1.69875 + 0.361081i −0.952490 0.304571i \(-0.901487\pi\)
−0.746262 + 0.665652i \(0.768153\pi\)
\(278\) −17.8564 + 12.9734i −1.07095 + 0.778094i
\(279\) 0 0
\(280\) 0.460948 + 1.41865i 0.0275469 + 0.0847807i
\(281\) −5.84992 + 6.49700i −0.348977 + 0.387578i −0.891921 0.452190i \(-0.850643\pi\)
0.542944 + 0.839769i \(0.317309\pi\)
\(282\) 0 0
\(283\) 2.42686 + 23.0901i 0.144262 + 1.37256i 0.791917 + 0.610629i \(0.209083\pi\)
−0.647655 + 0.761934i \(0.724250\pi\)
\(284\) −6.71498 7.45775i −0.398461 0.442536i
\(285\) 0 0
\(286\) 10.0179 30.8331i 0.592372 1.82320i
\(287\) −5.48901 −0.324006
\(288\) 0 0
\(289\) −17.7905 + 12.9255i −1.04650 + 0.760326i
\(290\) −0.226010 + 2.15034i −0.0132718 + 0.126273i
\(291\) 0 0
\(292\) −14.2071 3.01982i −0.831410 0.176722i
\(293\) 19.1620 8.53146i 1.11945 0.498413i 0.238276 0.971197i \(-0.423418\pi\)
0.881178 + 0.472784i \(0.156751\pi\)
\(294\) 0 0
\(295\) −3.74429 + 0.795874i −0.218001 + 0.0463376i
\(296\) −2.81121 −0.163398
\(297\) 0 0
\(298\) −9.61284 −0.556857
\(299\) −18.5581 + 3.94465i −1.07324 + 0.228125i
\(300\) 0 0
\(301\) −4.60420 + 2.04992i −0.265382 + 0.118156i
\(302\) −40.4940 8.60726i −2.33017 0.495292i
\(303\) 0 0
\(304\) −0.283982 + 2.70191i −0.0162875 + 0.154965i
\(305\) −1.18499 + 0.860949i −0.0678526 + 0.0492978i
\(306\) 0 0
\(307\) 23.1324 1.32024 0.660118 0.751162i \(-0.270506\pi\)
0.660118 + 0.751162i \(0.270506\pi\)
\(308\) −13.0330 + 9.46921i −0.742622 + 0.539558i
\(309\) 0 0
\(310\) 4.71407 + 5.23550i 0.267741 + 0.297357i
\(311\) 2.13393 + 20.3030i 0.121004 + 1.15128i 0.871498 + 0.490399i \(0.163149\pi\)
−0.750494 + 0.660877i \(0.770184\pi\)
\(312\) 0 0
\(313\) −22.7768 + 25.2962i −1.28742 + 1.42982i −0.440816 + 0.897597i \(0.645311\pi\)
−0.846602 + 0.532226i \(0.821356\pi\)
\(314\) 1.45182 + 4.46825i 0.0819311 + 0.252158i
\(315\) 0 0
\(316\) 9.36904 6.80701i 0.527050 0.382924i
\(317\) −26.8212 + 5.70102i −1.50643 + 0.320201i −0.885861 0.463951i \(-0.846431\pi\)
−0.620568 + 0.784152i \(0.713098\pi\)
\(318\) 0 0
\(319\) −9.50029 + 2.01945i −0.531914 + 0.113068i
\(320\) 1.97312 3.41755i 0.110301 0.191047i
\(321\) 0 0
\(322\) 13.6431 + 6.07430i 0.760301 + 0.338508i
\(323\) −15.6494 11.3699i −0.870754 0.632640i
\(324\) 0 0
\(325\) −6.35443 19.5569i −0.352480 1.08482i
\(326\) −0.384748 + 3.66064i −0.0213092 + 0.202744i
\(327\) 0 0
\(328\) −8.58884 9.53887i −0.474239 0.526696i
\(329\) 5.28459 9.15318i 0.291349 0.504631i
\(330\) 0 0
\(331\) 8.98622 + 15.5646i 0.493927 + 0.855507i 0.999976 0.00699827i \(-0.00222764\pi\)
−0.506048 + 0.862505i \(0.668894\pi\)
\(332\) 14.2718 43.9241i 0.783266 2.41065i
\(333\) 0 0
\(334\) −28.8690 20.9746i −1.57964 1.14768i
\(335\) 2.11443 2.34831i 0.115524 0.128302i
\(336\) 0 0
\(337\) 10.0236 4.46277i 0.546018 0.243103i −0.115141 0.993349i \(-0.536732\pi\)
0.661158 + 0.750246i \(0.270065\pi\)
\(338\) 1.12354 + 10.6897i 0.0611123 + 0.581445i
\(339\) 0 0
\(340\) −3.38922 5.87031i −0.183806 0.318362i
\(341\) −15.8229 + 27.4068i −0.856860 + 1.48416i
\(342\) 0 0
\(343\) 5.25475 16.1724i 0.283730 0.873230i
\(344\) −10.7667 4.79366i −0.580503 0.258457i
\(345\) 0 0
\(346\) 2.24630 + 0.477467i 0.120762 + 0.0256688i
\(347\) 21.6159 + 4.59460i 1.16040 + 0.246651i 0.747587 0.664164i \(-0.231212\pi\)
0.412815 + 0.910815i \(0.364546\pi\)
\(348\) 0 0
\(349\) −16.8126 7.48547i −0.899960 0.400688i −0.0960068 0.995381i \(-0.530607\pi\)
−0.803953 + 0.594693i \(0.797274\pi\)
\(350\) −5.00185 + 15.3941i −0.267360 + 0.822850i
\(351\) 0 0
\(352\) 14.8960 + 3.16609i 0.793961 + 0.168753i
\(353\) 16.5354 + 28.6401i 0.880089 + 1.52436i 0.851241 + 0.524776i \(0.175851\pi\)
0.0288486 + 0.999584i \(0.490816\pi\)
\(354\) 0 0
\(355\) 0.0971158 + 0.923995i 0.00515437 + 0.0490405i
\(356\) −8.43820 + 3.75693i −0.447224 + 0.199117i
\(357\) 0 0
\(358\) −17.4944 + 19.4295i −0.924606 + 1.02688i
\(359\) 2.42595 + 1.76256i 0.128037 + 0.0930242i 0.649960 0.759968i \(-0.274785\pi\)
−0.521924 + 0.852992i \(0.674785\pi\)
\(360\) 0 0
\(361\) −2.90578 + 8.94306i −0.152936 + 0.470687i
\(362\) 20.8744 + 36.1555i 1.09713 + 1.90029i
\(363\) 0 0
\(364\) 10.1931 17.6549i 0.534262 0.925370i
\(365\) 0.899776 + 0.999302i 0.0470964 + 0.0523059i
\(366\) 0 0
\(367\) −0.173774 + 1.65335i −0.00907095 + 0.0863043i −0.998121 0.0612779i \(-0.980482\pi\)
0.989050 + 0.147582i \(0.0471491\pi\)
\(368\) 1.22508 + 3.77040i 0.0638616 + 0.196546i
\(369\) 0 0
\(370\) 0.506234 + 0.367800i 0.0263178 + 0.0191210i
\(371\) 8.66027 + 3.85580i 0.449619 + 0.200183i
\(372\) 0 0
\(373\) 10.7543 18.6271i 0.556839 0.964473i −0.440919 0.897547i \(-0.645348\pi\)
0.997758 0.0669259i \(-0.0213191\pi\)
\(374\) 32.2738 35.8444i 1.66884 1.85347i
\(375\) 0 0
\(376\) 24.1755 5.13866i 1.24676 0.265006i
\(377\) 9.94346 7.22435i 0.512114 0.372073i
\(378\) 0 0
\(379\) 3.83779 + 11.8115i 0.197134 + 0.606715i 0.999945 + 0.0104822i \(0.00333665\pi\)
−0.802811 + 0.596233i \(0.796663\pi\)
\(380\) 2.25022 2.49912i 0.115434 0.128202i
\(381\) 0 0
\(382\) −3.13753 29.8516i −0.160530 1.52734i
\(383\) −0.535088 0.594276i −0.0273417 0.0303661i 0.729319 0.684174i \(-0.239837\pi\)
−0.756661 + 0.653808i \(0.773170\pi\)
\(384\) 0 0
\(385\) 1.49145 1.54122e-5i 0.0760116 7.85476e-7i
\(386\) 53.9188 2.74439
\(387\) 0 0
\(388\) 14.5646 10.5818i 0.739404 0.537209i
\(389\) −0.181533 + 1.72717i −0.00920409 + 0.0875711i −0.998160 0.0606416i \(-0.980685\pi\)
0.988956 + 0.148213i \(0.0473520\pi\)
\(390\) 0 0
\(391\) −27.6101 5.86872i −1.39631 0.296794i
\(392\) 15.1148 6.72954i 0.763413 0.339893i
\(393\) 0 0
\(394\) −2.45502 + 0.521832i −0.123682 + 0.0262895i
\(395\) −1.07216 −0.0539461
\(396\) 0 0
\(397\) −24.7599 −1.24267 −0.621333 0.783547i \(-0.713409\pi\)
−0.621333 + 0.783547i \(0.713409\pi\)
\(398\) 37.4309 7.95619i 1.87624 0.398808i
\(399\) 0 0
\(400\) −3.92534 + 1.74767i −0.196267 + 0.0873836i
\(401\) 21.3748 + 4.54336i 1.06741 + 0.226884i 0.707939 0.706273i \(-0.249625\pi\)
0.359468 + 0.933158i \(0.382958\pi\)
\(402\) 0 0
\(403\) 4.18606 39.8277i 0.208523 1.98396i
\(404\) −26.4000 + 19.1807i −1.31345 + 0.954278i
\(405\) 0 0
\(406\) −9.67462 −0.480143
\(407\) −0.868564 + 2.67326i −0.0430531 + 0.132509i
\(408\) 0 0
\(409\) 5.37631 + 5.97100i 0.265842 + 0.295247i 0.861256 0.508172i \(-0.169679\pi\)
−0.595414 + 0.803419i \(0.703012\pi\)
\(410\) 0.298647 + 2.84144i 0.0147491 + 0.140329i
\(411\) 0 0
\(412\) 21.8487 24.2655i 1.07641 1.19547i
\(413\) −5.29283 16.2897i −0.260443 0.801562i
\(414\) 0 0
\(415\) −3.45919 + 2.51325i −0.169805 + 0.123371i
\(416\) −18.8502 + 4.00673i −0.924207 + 0.196446i
\(417\) 0 0
\(418\) 21.8605 + 9.73264i 1.06923 + 0.476039i
\(419\) −2.79840 + 4.84698i −0.136711 + 0.236790i −0.926250 0.376910i \(-0.876986\pi\)
0.789539 + 0.613701i \(0.210320\pi\)
\(420\) 0 0
\(421\) 34.5817 + 15.3968i 1.68541 + 0.750392i 0.999747 + 0.0224717i \(0.00715355\pi\)
0.685661 + 0.727921i \(0.259513\pi\)
\(422\) −28.1684 20.4656i −1.37122 0.996248i
\(423\) 0 0
\(424\) 6.85035 + 21.0832i 0.332682 + 1.02389i
\(425\) 3.19789 30.4259i 0.155121 1.47587i
\(426\) 0 0
\(427\) −4.38541 4.87049i −0.212225 0.235699i
\(428\) 8.85614 15.3393i 0.428078 0.741452i
\(429\) 0 0
\(430\) 1.31167 + 2.27187i 0.0632542 + 0.109560i
\(431\) 9.20389 28.3267i 0.443336 1.36445i −0.440963 0.897525i \(-0.645363\pi\)
0.884299 0.466922i \(-0.154637\pi\)
\(432\) 0 0
\(433\) 0.225935 + 0.164152i 0.0108578 + 0.00788862i 0.593201 0.805054i \(-0.297864\pi\)
−0.582343 + 0.812943i \(0.697864\pi\)
\(434\) −21.0929 + 23.4260i −1.01249 + 1.12449i
\(435\) 0 0
\(436\) 45.2860 20.1626i 2.16881 0.965615i
\(437\) −1.46380 13.9271i −0.0700231 0.666225i
\(438\) 0 0
\(439\) −7.49827 12.9874i −0.357873 0.619854i 0.629732 0.776812i \(-0.283165\pi\)
−0.987605 + 0.156958i \(0.949831\pi\)
\(440\) 2.33375 + 2.59184i 0.111257 + 0.123561i
\(441\) 0 0
\(442\) −18.8614 + 58.0493i −0.897143 + 2.76112i
\(443\) −13.2462 5.89760i −0.629348 0.280204i 0.0671719 0.997741i \(-0.478602\pi\)
−0.696520 + 0.717538i \(0.745269\pi\)
\(444\) 0 0
\(445\) 0.836459 + 0.177795i 0.0396520 + 0.00842829i
\(446\) 4.38827 + 0.932755i 0.207791 + 0.0441672i
\(447\) 0 0
\(448\) 16.1308 + 7.18188i 0.762107 + 0.339312i
\(449\) 6.55787 20.1830i 0.309485 0.952497i −0.668481 0.743730i \(-0.733055\pi\)
0.977965 0.208767i \(-0.0669450\pi\)
\(450\) 0 0
\(451\) −11.7244 + 5.22020i −0.552082 + 0.245809i
\(452\) −12.7238 22.0383i −0.598479 1.03660i
\(453\) 0 0
\(454\) 3.89785 + 37.0856i 0.182935 + 1.74051i
\(455\) −1.72420 + 0.767661i −0.0808315 + 0.0359885i
\(456\) 0 0
\(457\) −2.14758 + 2.38512i −0.100459 + 0.111571i −0.791278 0.611457i \(-0.790584\pi\)
0.690818 + 0.723028i \(0.257250\pi\)
\(458\) −0.985297 0.715860i −0.0460399 0.0334499i
\(459\) 0 0
\(460\) 1.51642 4.66707i 0.0707037 0.217603i
\(461\) 13.1628 + 22.7986i 0.613052 + 1.06184i 0.990723 + 0.135897i \(0.0433918\pi\)
−0.377671 + 0.925940i \(0.623275\pi\)
\(462\) 0 0
\(463\) −1.81412 + 3.14215i −0.0843093 + 0.146028i −0.905097 0.425206i \(-0.860202\pi\)
0.820787 + 0.571234i \(0.193535\pi\)
\(464\) −1.71847 1.90856i −0.0797782 0.0886027i
\(465\) 0 0
\(466\) 2.49595 23.7473i 0.115622 1.10007i
\(467\) 5.71532 + 17.5899i 0.264473 + 0.813965i 0.991814 + 0.127689i \(0.0407559\pi\)
−0.727341 + 0.686276i \(0.759244\pi\)
\(468\) 0 0
\(469\) 11.4388 + 8.31077i 0.528194 + 0.383756i
\(470\) −5.02575 2.23761i −0.231821 0.103213i
\(471\) 0 0
\(472\) 20.0265 34.6869i 0.921795 1.59660i
\(473\) −7.88496 + 8.75732i −0.362551 + 0.402662i
\(474\) 0 0
\(475\) 14.8463 3.15567i 0.681193 0.144792i
\(476\) 24.5374 17.8275i 1.12467 0.817120i
\(477\) 0 0
\(478\) −6.93867 21.3550i −0.317367 0.976756i
\(479\) 0.105052 0.116672i 0.00479996 0.00533090i −0.740740 0.671792i \(-0.765525\pi\)
0.745540 + 0.666461i \(0.232192\pi\)
\(480\) 0 0
\(481\) −0.371804 3.53748i −0.0169528 0.161295i
\(482\) 0.434376 + 0.482424i 0.0197853 + 0.0219738i
\(483\) 0 0
\(484\) −18.8327 + 32.6208i −0.856032 + 1.48276i
\(485\) −1.66671 −0.0756816
\(486\) 0 0
\(487\) −14.5028 + 10.5369i −0.657187 + 0.477474i −0.865712 0.500543i \(-0.833134\pi\)
0.208525 + 0.978017i \(0.433134\pi\)
\(488\) 1.60200 15.2420i 0.0725192 0.689974i
\(489\) 0 0
\(490\) −3.60227 0.765687i −0.162734 0.0345902i
\(491\) 6.07322 2.70397i 0.274081 0.122029i −0.265094 0.964223i \(-0.585403\pi\)
0.539175 + 0.842194i \(0.318736\pi\)
\(492\) 0 0
\(493\) 17.8863 3.80184i 0.805557 0.171226i
\(494\) −30.2813 −1.36242
\(495\) 0 0
\(496\) −8.36804 −0.375736
\(497\) −4.06631 + 0.864320i −0.182399 + 0.0387701i
\(498\) 0 0
\(499\) 31.0124 13.8076i 1.38831 0.618114i 0.429733 0.902956i \(-0.358608\pi\)
0.958575 + 0.284842i \(0.0919411\pi\)
\(500\) 10.5116 + 2.23431i 0.470094 + 0.0999216i
\(501\) 0 0
\(502\) −1.07735 + 10.2503i −0.0480846 + 0.457494i
\(503\) 2.53812 1.84405i 0.113169 0.0822222i −0.529761 0.848147i \(-0.677718\pi\)
0.642930 + 0.765925i \(0.277718\pi\)
\(504\) 0 0
\(505\) 3.02112 0.134438
\(506\) 34.9183 0.000360833i 1.55231 1.60410e-5i
\(507\) 0 0
\(508\) −30.2550 33.6015i −1.34235 1.49083i
\(509\) 2.38361 + 22.6786i 0.105652 + 1.00521i 0.910999 + 0.412407i \(0.135312\pi\)
−0.805348 + 0.592803i \(0.798021\pi\)
\(510\) 0 0
\(511\) −4.02601 + 4.47134i −0.178100 + 0.197800i
\(512\) 3.04225 + 9.36310i 0.134450 + 0.413794i
\(513\) 0 0
\(514\) −6.88586 + 5.00287i −0.303722 + 0.220667i
\(515\) −2.95693 + 0.628514i −0.130298 + 0.0276956i
\(516\) 0 0
\(517\) 2.58287 24.5768i 0.113595 1.08089i
\(518\) −1.39992 + 2.42474i −0.0615090 + 0.106537i
\(519\) 0 0
\(520\) −4.03196 1.79514i −0.176813 0.0787222i
\(521\) 4.26200 + 3.09653i 0.186722 + 0.135661i 0.677219 0.735781i \(-0.263185\pi\)
−0.490497 + 0.871443i \(0.663185\pi\)
\(522\) 0 0
\(523\) 3.67595 + 11.3134i 0.160738 + 0.494701i 0.998697 0.0510325i \(-0.0162512\pi\)
−0.837959 + 0.545733i \(0.816251\pi\)
\(524\) −2.61305 + 24.8616i −0.114152 + 1.08608i
\(525\) 0 0
\(526\) −22.5227 25.0140i −0.982038 1.09066i
\(527\) 29.7904 51.5985i 1.29769 2.24767i
\(528\) 0 0
\(529\) 1.28255 + 2.22144i 0.0557629 + 0.0965843i
\(530\) 1.52480 4.69285i 0.0662331 0.203845i
\(531\) 0 0
\(532\) 12.1734 + 8.84448i 0.527783 + 0.383457i
\(533\) 10.8673 12.0693i 0.470714 0.522781i
\(534\) 0 0
\(535\) −1.49805 + 0.666974i −0.0647663 + 0.0288358i
\(536\) 3.45610 + 32.8826i 0.149281 + 1.42031i
\(537\) 0 0
\(538\) −1.06872 1.85108i −0.0460757 0.0798055i
\(539\) −1.72938 16.4523i −0.0744895 0.708650i
\(540\) 0 0
\(541\) 12.5401 38.5945i 0.539142 1.65931i −0.195383 0.980727i \(-0.562595\pi\)
0.734525 0.678581i \(-0.237405\pi\)
\(542\) 5.62594 + 2.50483i 0.241655 + 0.107592i
\(543\) 0 0
\(544\) −28.0447 5.96109i −1.20241 0.255580i
\(545\) −4.48910 0.954188i −0.192292 0.0408729i
\(546\) 0 0
\(547\) 21.4997 + 9.57226i 0.919259 + 0.409280i 0.811136 0.584857i \(-0.198849\pi\)
0.108123 + 0.994138i \(0.465516\pi\)
\(548\) −10.3776 + 31.9391i −0.443311 + 1.36437i
\(549\) 0 0
\(550\) 3.95635 + 37.6384i 0.168699 + 1.60491i
\(551\) 4.53595 + 7.85650i 0.193238 + 0.334698i
\(552\) 0 0
\(553\) −0.501457 4.77104i −0.0213241 0.202885i
\(554\) −61.4986 + 27.3810i −2.61283 + 1.16331i
\(555\) 0 0
\(556\) −21.7141 + 24.1160i −0.920884 + 1.02275i
\(557\) −5.08590 3.69513i −0.215497 0.156568i 0.474800 0.880093i \(-0.342520\pi\)
−0.690297 + 0.723526i \(0.742520\pi\)
\(558\) 0 0
\(559\) 4.60811 14.1823i 0.194902 0.599847i
\(560\) 0.197187 + 0.341538i 0.00833268 + 0.0144326i
\(561\) 0 0
\(562\) −10.1807 + 17.6335i −0.429448 + 0.743826i
\(563\) 11.3527 + 12.6085i 0.478461 + 0.531385i 0.933256 0.359211i \(-0.116954\pi\)
−0.454795 + 0.890596i \(0.650288\pi\)
\(564\) 0 0
\(565\) −0.246266 + 2.34306i −0.0103605 + 0.0985734i
\(566\) 16.7095 + 51.4265i 0.702352 + 2.16162i
\(567\) 0 0
\(568\) −7.86471 5.71404i −0.329996 0.239756i
\(569\) −20.3268 9.05009i −0.852146 0.379400i −0.0662831 0.997801i \(-0.521114\pi\)
−0.785863 + 0.618401i \(0.787781\pi\)
\(570\) 0 0
\(571\) −17.6576 + 30.5838i −0.738947 + 1.27989i 0.214023 + 0.976829i \(0.431343\pi\)
−0.952970 + 0.303065i \(0.901990\pi\)
\(572\) 4.98192 47.4045i 0.208304 1.98208i
\(573\) 0 0
\(574\) −12.5046 + 2.65793i −0.521930 + 0.110940i
\(575\) 17.9182 13.0184i 0.747243 0.542904i
\(576\) 0 0
\(577\) −11.8156 36.3646i −0.491889 1.51388i −0.821749 0.569850i \(-0.807001\pi\)
0.329859 0.944030i \(-0.392999\pi\)
\(578\) −34.2697 + 38.0604i −1.42543 + 1.58310i
\(579\) 0 0
\(580\) 0.332295 + 3.16158i 0.0137978 + 0.131277i
\(581\) −12.8017 14.2178i −0.531105 0.589852i
\(582\) 0 0
\(583\) 22.1651 0.000229047i 0.917986 9.48614e-6i
\(584\) −14.0700 −0.582219
\(585\) 0 0
\(586\) 39.5219 28.7143i 1.63263 1.18618i
\(587\) −1.29507 + 12.3218i −0.0534533 + 0.508574i 0.934737 + 0.355341i \(0.115635\pi\)
−0.988190 + 0.153233i \(0.951031\pi\)
\(588\) 0 0
\(589\) 28.9131 + 6.14566i 1.19134 + 0.253228i
\(590\) −8.14452 + 3.62617i −0.335305 + 0.149287i
\(591\) 0 0
\(592\) −0.727003 + 0.154529i −0.0298797 + 0.00635112i
\(593\) −4.18039 −0.171668 −0.0858340 0.996309i \(-0.527355\pi\)
−0.0858340 + 0.996309i \(0.527355\pi\)
\(594\) 0 0
\(595\) −2.80796 −0.115115
\(596\) −13.8246 + 2.93850i −0.566276 + 0.120366i
\(597\) 0 0
\(598\) −40.3672 + 17.9727i −1.65074 + 0.734957i
\(599\) −43.1155 9.16449i −1.76165 0.374451i −0.790417 0.612570i \(-0.790136\pi\)
−0.971236 + 0.238119i \(0.923469\pi\)
\(600\) 0 0
\(601\) 0.183062 1.74172i 0.00746727 0.0710463i −0.990154 0.139985i \(-0.955295\pi\)
0.997621 + 0.0689386i \(0.0219613\pi\)
\(602\) −9.49624 + 6.89943i −0.387038 + 0.281200i
\(603\) 0 0
\(604\) −60.8670 −2.47664
\(605\) 3.18570 1.41845i 0.129517 0.0576680i
\(606\) 0 0
\(607\) −7.27288 8.07735i −0.295197 0.327850i 0.577241 0.816574i \(-0.304129\pi\)
−0.872438 + 0.488724i \(0.837462\pi\)
\(608\) −1.48684 14.1464i −0.0602994 0.573710i
\(609\) 0 0
\(610\) −2.28265 + 2.53514i −0.0924218 + 0.102645i
\(611\) 9.66362 + 29.7416i 0.390948 + 1.20321i
\(612\) 0 0
\(613\) −14.3951 + 10.4586i −0.581412 + 0.422421i −0.839233 0.543772i \(-0.816996\pi\)
0.257821 + 0.966193i \(0.416996\pi\)
\(614\) 52.6981 11.2013i 2.12672 0.452049i
\(615\) 0 0
\(616\) −10.4420 + 11.5973i −0.420722 + 0.467269i
\(617\) 1.99805 3.46073i 0.0804386 0.139324i −0.823000 0.568042i \(-0.807701\pi\)
0.903438 + 0.428718i \(0.141035\pi\)
\(618\) 0 0
\(619\) −10.0265 4.46409i −0.403000 0.179427i 0.195220 0.980760i \(-0.437458\pi\)
−0.598219 + 0.801333i \(0.704125\pi\)
\(620\) 8.37989 + 6.08835i 0.336544 + 0.244514i
\(621\) 0 0
\(622\) 14.6926 + 45.2191i 0.589118 + 1.81312i
\(623\) −0.399959 + 3.80536i −0.0160240 + 0.152458i
\(624\) 0 0
\(625\) 15.7263 + 17.4658i 0.629052 + 0.698633i
\(626\) −39.6388 + 68.6565i −1.58429 + 2.74407i
\(627\) 0 0
\(628\) 3.45380 + 5.98216i 0.137822 + 0.238714i
\(629\) 1.63530 5.03293i 0.0652037 0.200676i
\(630\) 0 0
\(631\) −6.99735 5.08388i −0.278560 0.202386i 0.439729 0.898131i \(-0.355075\pi\)
−0.718289 + 0.695745i \(0.755075\pi\)
\(632\) 7.50653 8.33685i 0.298594 0.331622i
\(633\) 0 0
\(634\) −58.3410 + 25.9751i −2.31702 + 1.03160i
\(635\) 0.437564 + 4.16314i 0.0173642 + 0.165209i
\(636\) 0 0
\(637\) 10.4672 + 18.1296i 0.414724 + 0.718323i
\(638\) −20.6648 + 9.20082i −0.818128 + 0.364264i
\(639\) 0 0
\(640\) 1.94048 5.97219i 0.0767042 0.236071i
\(641\) −33.8812 15.0849i −1.33823 0.595817i −0.392193 0.919883i \(-0.628283\pi\)
−0.946035 + 0.324066i \(0.894950\pi\)
\(642\) 0 0
\(643\) 39.8425 + 8.46878i 1.57123 + 0.333976i 0.909481 0.415746i \(-0.136479\pi\)
0.661753 + 0.749722i \(0.269813\pi\)
\(644\) 21.4775 + 4.56518i 0.846331 + 0.179893i
\(645\) 0 0
\(646\) −41.1566 18.3241i −1.61928 0.720952i
\(647\) 0.175813 0.541098i 0.00691193 0.0212727i −0.947541 0.319634i \(-0.896440\pi\)
0.954453 + 0.298361i \(0.0964400\pi\)
\(648\) 0 0
\(649\) −26.7973 29.7608i −1.05189 1.16821i
\(650\) −23.9461 41.4758i −0.939242 1.62682i
\(651\) 0 0
\(652\) 0.565682 + 5.38211i 0.0221538 + 0.210780i
\(653\) 33.3696 14.8571i 1.30585 0.581404i 0.368450 0.929648i \(-0.379889\pi\)
0.937404 + 0.348244i \(0.113222\pi\)
\(654\) 0 0
\(655\) 1.54862 1.71992i 0.0605097 0.0672029i
\(656\) −2.74549 1.99472i −0.107193 0.0778806i
\(657\) 0 0
\(658\) 7.60666 23.4109i 0.296538 0.912651i
\(659\) −12.0035 20.7907i −0.467590 0.809889i 0.531725 0.846917i \(-0.321544\pi\)
−0.999314 + 0.0370284i \(0.988211\pi\)
\(660\) 0 0
\(661\) −6.49165 + 11.2439i −0.252496 + 0.437336i −0.964212 0.265131i \(-0.914585\pi\)
0.711717 + 0.702467i \(0.247918\pi\)
\(662\) 28.0084 + 31.1064i 1.08858 + 1.20899i
\(663\) 0 0
\(664\) 4.67651 44.4940i 0.181484 1.72670i
\(665\) −0.430484 1.32489i −0.0166935 0.0513772i
\(666\) 0 0
\(667\) 10.7098 + 7.78112i 0.414685 + 0.301286i
\(668\) −47.9293 21.3395i −1.85444 0.825649i
\(669\) 0 0
\(670\) 3.67978 6.37356i 0.142162 0.246232i
\(671\) −13.9991 6.23263i −0.540430 0.240608i
\(672\) 0 0
\(673\) −16.6536 + 3.53983i −0.641949 + 0.136451i −0.517374 0.855760i \(-0.673090\pi\)
−0.124576 + 0.992210i \(0.539757\pi\)
\(674\) 20.6737 15.0204i 0.796323 0.578562i
\(675\) 0 0
\(676\) 4.88349 + 15.0298i 0.187827 + 0.578071i
\(677\) 23.7084 26.3308i 0.911187 1.01198i −0.0886859 0.996060i \(-0.528267\pi\)
0.999873 0.0159165i \(-0.00506658\pi\)
\(678\) 0 0
\(679\) −0.779536 7.41679i −0.0299158 0.284630i
\(680\) −4.39371 4.87971i −0.168491 0.187128i
\(681\) 0 0
\(682\) −22.7753 + 70.0975i −0.872110 + 2.68417i
\(683\) −23.8967 −0.914381 −0.457191 0.889369i \(-0.651144\pi\)
−0.457191 + 0.889369i \(0.651144\pi\)
\(684\) 0 0
\(685\) 2.51533 1.82749i 0.0961058 0.0698250i
\(686\) 4.13975 39.3871i 0.158056 1.50381i
\(687\) 0 0
\(688\) −3.04787 0.647845i −0.116199 0.0246989i
\(689\) −25.6240 + 11.4085i −0.976197 + 0.434631i
\(690\) 0 0
\(691\) 0.579665 0.123212i 0.0220515 0.00468719i −0.196873 0.980429i \(-0.563079\pi\)
0.218924 + 0.975742i \(0.429745\pi\)
\(692\) 3.37645 0.128353
\(693\) 0 0
\(694\) 51.4682 1.95371
\(695\) 2.93871 0.624643i 0.111472 0.0236940i
\(696\) 0 0
\(697\) 22.0737 9.82785i 0.836101 0.372256i
\(698\) −41.9257 8.91158i −1.58691 0.337308i
\(699\) 0 0
\(700\) −2.48759 + 23.6678i −0.0940221 + 0.894560i
\(701\) −20.5701 + 14.9451i −0.776922 + 0.564467i −0.904054 0.427419i \(-0.859423\pi\)
0.127131 + 0.991886i \(0.459423\pi\)
\(702\) 0 0
\(703\) 2.62542 0.0990194
\(704\) 41.2852 0.000426626i 1.55599 1.60791e-5i
\(705\) 0 0
\(706\) 51.5377 + 57.2384i 1.93965 + 2.15420i
\(707\) 1.41300 + 13.4438i 0.0531414 + 0.505607i
\(708\) 0 0
\(709\) 10.1070 11.2250i 0.379576 0.421562i −0.522838 0.852432i \(-0.675127\pi\)
0.902414 + 0.430870i \(0.141793\pi\)
\(710\) 0.668663 + 2.05793i 0.0250945 + 0.0772329i
\(711\) 0 0
\(712\) −7.23882 + 5.25931i −0.271286 + 0.197101i
\(713\) 42.1909 8.96796i 1.58006 0.335853i
\(714\) 0 0
\(715\) −2.95278 + 3.27947i −0.110428 + 0.122645i
\(716\) −19.2200 + 33.2900i −0.718284 + 1.24410i
\(717\) 0 0
\(718\) 6.38005 + 2.84058i 0.238101 + 0.106010i
\(719\) 9.74281 + 7.07857i 0.363345 + 0.263986i 0.754446 0.656362i \(-0.227906\pi\)
−0.391101 + 0.920348i \(0.627906\pi\)
\(720\) 0 0
\(721\) −4.17983 12.8642i −0.155665 0.479088i
\(722\) −2.28920 + 21.7803i −0.0851953 + 0.810579i
\(723\) 0 0
\(724\) 41.0725 + 45.6156i 1.52645 + 1.69529i
\(725\) −7.17396 + 12.4257i −0.266434 + 0.461477i
\(726\) 0 0
\(727\) −24.7966 42.9489i −0.919654 1.59289i −0.799940 0.600079i \(-0.795136\pi\)
−0.119714 0.992808i \(-0.538198\pi\)
\(728\) 6.10251 18.7816i 0.226174 0.696092i
\(729\) 0 0
\(730\) 2.53368 + 1.84082i 0.0937755 + 0.0681319i
\(731\) 14.8452 16.4873i 0.549070 0.609804i
\(732\) 0 0
\(733\) −29.4759 + 13.1235i −1.08872 + 0.484728i −0.871000 0.491284i \(-0.836528\pi\)
−0.217717 + 0.976012i \(0.569861\pi\)
\(734\) 0.404721 + 3.85066i 0.0149385 + 0.142131i
\(735\) 0 0
\(736\) −10.3783 17.9757i −0.382548 0.662593i
\(737\) 32.3368 + 6.87305i 1.19114 + 0.253172i
\(738\) 0 0
\(739\) −0.968005 + 2.97921i −0.0356086 + 0.109592i −0.967281 0.253708i \(-0.918350\pi\)
0.931672 + 0.363300i \(0.118350\pi\)
\(740\) 0.840464 + 0.374199i 0.0308961 + 0.0137558i
\(741\) 0 0
\(742\) 21.5961 + 4.59040i 0.792818 + 0.168519i
\(743\) 7.61856 + 1.61938i 0.279498 + 0.0594091i 0.345528 0.938409i \(-0.387700\pi\)
−0.0660298 + 0.997818i \(0.521033\pi\)
\(744\) 0 0
\(745\) 1.19536 + 0.532208i 0.0437946 + 0.0194986i
\(746\) 15.4798 47.6420i 0.566756 1.74430i
\(747\) 0 0
\(748\) 35.4570 61.4148i 1.29644 2.24555i
\(749\) −3.66865 6.35428i −0.134049 0.232180i
\(750\) 0 0
\(751\) −5.19392 49.4168i −0.189529 1.80325i −0.514467 0.857510i \(-0.672010\pi\)
0.324938 0.945735i \(-0.394656\pi\)
\(752\) 5.96953 2.65780i 0.217686 0.0969201i
\(753\) 0 0
\(754\) 19.1541 21.2727i 0.697549 0.774707i
\(755\) 4.55890 + 3.31224i 0.165915 + 0.120545i
\(756\) 0 0
\(757\) −8.35296 + 25.7078i −0.303594 + 0.934365i 0.676605 + 0.736346i \(0.263451\pi\)
−0.980198 + 0.198018i \(0.936549\pi\)
\(758\) 14.4623 + 25.0495i 0.525295 + 0.909838i
\(759\) 0 0
\(760\) 1.62882 2.82121i 0.0590836 0.102336i
\(761\) −29.7834 33.0778i −1.07965 1.19907i −0.978939 0.204153i \(-0.934556\pi\)
−0.100707 0.994916i \(-0.532111\pi\)
\(762\) 0 0
\(763\) 2.14650 20.4226i 0.0777084 0.739346i
\(764\) −13.6374 41.9716i −0.493384 1.51848i
\(765\) 0 0
\(766\) −1.50675 1.09472i −0.0544412 0.0395538i
\(767\) 46.2969 + 20.6127i 1.67168 + 0.744282i
\(768\) 0 0
\(769\) 1.65952 2.87438i 0.0598440 0.103653i −0.834551 0.550930i \(-0.814273\pi\)
0.894395 + 0.447277i \(0.147606\pi\)
\(770\) 3.39769 0.722237i 0.122444 0.0260276i
\(771\) 0 0
\(772\) 77.5426 16.4822i 2.79082 0.593207i
\(773\) 23.0471 16.7447i 0.828946 0.602264i −0.0903152 0.995913i \(-0.528787\pi\)
0.919261 + 0.393649i \(0.128787\pi\)
\(774\) 0 0
\(775\) 14.4465 + 44.4617i 0.518934 + 1.59711i
\(776\) 11.6692 12.9600i 0.418901 0.465236i
\(777\) 0 0
\(778\) 0.422791 + 4.02259i 0.0151578 + 0.144217i
\(779\) 8.02120 + 8.90844i 0.287389 + 0.319178i
\(780\) 0 0
\(781\) −7.86356 + 5.71334i −0.281380 + 0.204439i
\(782\) −65.7407 −2.35088
\(783\) 0 0
\(784\) 3.53890 2.57116i 0.126389 0.0918273i
\(785\) 0.0668471 0.636008i 0.00238588 0.0227001i
\(786\) 0 0
\(787\) −12.7636 2.71298i −0.454972 0.0967072i −0.0252751 0.999681i \(-0.508046\pi\)
−0.429697 + 0.902973i \(0.641379\pi\)
\(788\) −3.37114 + 1.50093i −0.120092 + 0.0534684i
\(789\) 0 0
\(790\) −2.44249 + 0.519167i −0.0868999 + 0.0184711i
\(791\) −10.5417 −0.374819
\(792\) 0 0
\(793\) 19.3917 0.688618
\(794\) −56.4058 + 11.9894i −2.00177 + 0.425489i
\(795\) 0 0
\(796\) 51.3987 22.8842i 1.82178 0.811108i
\(797\) 49.0769 + 10.4316i 1.73839 + 0.369507i 0.964556 0.263877i \(-0.0850012\pi\)
0.773838 + 0.633384i \(0.218334\pi\)
\(798\) 0 0
\(799\) −4.86326 + 46.2708i −0.172050 + 1.63694i
\(800\) 18.2003 13.2233i 0.643477 0.467514i
\(801\) 0 0
\(802\) 50.8941 1.79713
\(803\) −4.34712 + 13.3795i −0.153407 + 0.472154i
\(804\) 0 0
\(805\) −1.36023 1.51068i −0.0479416 0.0532446i
\(806\) −9.74935 92.7589i −0.343406 3.26729i
\(807\) 0 0
\(808\) −21.1519 + 23.4915i −0.744120 + 0.826429i
\(809\) 10.8621 + 33.4301i 0.381892 + 1.17534i 0.938710 + 0.344707i \(0.112022\pi\)
−0.556819 + 0.830634i \(0.687978\pi\)
\(810\) 0 0
\(811\) −17.8837 + 12.9933i −0.627981 + 0.456255i −0.855700 0.517472i \(-0.826873\pi\)
0.227719 + 0.973727i \(0.426873\pi\)
\(812\) −13.9134 + 2.95739i −0.488266 + 0.103784i
\(813\) 0 0
\(814\) −0.684219 + 6.51055i −0.0239819 + 0.228195i
\(815\) 0.250512 0.433900i 0.00877506 0.0151989i
\(816\) 0 0
\(817\) 10.0552 + 4.47684i 0.351785 + 0.156625i
\(818\) 15.1391 + 10.9992i 0.529327 + 0.384579i
\(819\) 0 0
\(820\) 1.29808 + 3.99508i 0.0453309 + 0.139514i
\(821\) 0.265209 2.52330i 0.00925587 0.0880637i −0.988919 0.148458i \(-0.952569\pi\)
0.998175 + 0.0603941i \(0.0192357\pi\)
\(822\) 0 0
\(823\) −6.94069 7.70841i −0.241937 0.268698i 0.609931 0.792454i \(-0.291197\pi\)
−0.851868 + 0.523756i \(0.824530\pi\)
\(824\) 15.8152 27.3928i 0.550950 0.954273i
\(825\) 0 0
\(826\) −19.9455 34.5467i −0.693994 1.20203i
\(827\) −16.2925 + 50.1431i −0.566546 + 1.74365i 0.0967683 + 0.995307i \(0.469149\pi\)
−0.663314 + 0.748341i \(0.730851\pi\)
\(828\) 0 0
\(829\) −30.6163 22.2440i −1.06335 0.772566i −0.0886419 0.996064i \(-0.528253\pi\)
−0.974705 + 0.223497i \(0.928253\pi\)
\(830\) −6.66343 + 7.40049i −0.231291 + 0.256875i
\(831\) 0 0
\(832\) −47.7277 + 21.2497i −1.65466 + 0.736703i
\(833\) 3.25558 + 30.9748i 0.112799 + 1.07321i
\(834\) 0 0
\(835\) 2.42863 + 4.20651i 0.0840462 + 0.145572i
\(836\) 34.4135 + 7.31444i 1.19021 + 0.252975i
\(837\) 0 0
\(838\) −4.02803 + 12.3970i −0.139146 + 0.428247i
\(839\) 18.3765 + 8.18173i 0.634426 + 0.282465i 0.698642 0.715471i \(-0.253788\pi\)
−0.0642158 + 0.997936i \(0.520455\pi\)
\(840\) 0 0
\(841\) 19.9779 + 4.24643i 0.688893 + 0.146429i
\(842\) 86.2364 + 18.3301i 2.97190 + 0.631697i
\(843\) 0 0
\(844\) −46.7660 20.8216i −1.60975 0.716709i
\(845\) 0.452118 1.39148i 0.0155533 0.0478682i
\(846\) 0 0
\(847\) 7.80199 + 13.5128i 0.268079 + 0.464305i
\(848\) 2.93048 + 5.07575i 0.100633 + 0.174302i
\(849\) 0 0
\(850\) −7.44790 70.8621i −0.255461 2.43055i
\(851\) 3.49988 1.55825i 0.119974 0.0534160i
\(852\) 0 0
\(853\) 6.10260 6.77762i 0.208949 0.232061i −0.629556 0.776955i \(-0.716763\pi\)
0.838505 + 0.544894i \(0.183430\pi\)
\(854\) −12.3489 8.97197i −0.422569 0.307014i
\(855\) 0 0
\(856\) 5.30210 16.3182i 0.181222 0.557744i
\(857\) −0.922678 1.59813i −0.0315181 0.0545909i 0.849836 0.527047i \(-0.176701\pi\)
−0.881354 + 0.472456i \(0.843368\pi\)
\(858\) 0 0
\(859\) −14.2555 + 24.6913i −0.486392 + 0.842456i −0.999878 0.0156422i \(-0.995021\pi\)
0.513485 + 0.858098i \(0.328354\pi\)
\(860\) 2.58084 + 2.86631i 0.0880058 + 0.0977403i
\(861\) 0 0
\(862\) 7.25093 68.9880i 0.246968 2.34974i
\(863\) 3.30628 + 10.1757i 0.112547 + 0.346385i 0.991428 0.130658i \(-0.0417089\pi\)
−0.878880 + 0.477042i \(0.841709\pi\)
\(864\) 0 0
\(865\) −0.252894 0.183738i −0.00859865 0.00624729i
\(866\) 0.594192 + 0.264551i 0.0201915 + 0.00898981i
\(867\) 0 0
\(868\) −23.1735 + 40.1376i −0.786559 + 1.36236i
\(869\) −5.60849 9.71396i −0.190255 0.329524i
\(870\) 0 0
\(871\) −40.9206 + 8.69795i −1.38654 + 0.294719i
\(872\) 38.8492 28.2256i 1.31560 0.955840i
\(873\) 0 0
\(874\) −10.0786 31.0187i −0.340913 1.04922i
\(875\) 2.97878 3.30826i 0.100701 0.111840i
\(876\) 0 0
\(877\) −4.26813 40.6086i −0.144125 1.37125i −0.792472 0.609909i \(-0.791206\pi\)
0.648347 0.761345i \(-0.275461\pi\)
\(878\) −23.3707 25.9558i −0.788723 0.875966i
\(879\) 0 0
\(880\) 0.746000 + 0.541989i 0.0251477 + 0.0182705i
\(881\) −21.0458 −0.709050 −0.354525 0.935047i \(-0.615357\pi\)
−0.354525 + 0.935047i \(0.615357\pi\)
\(882\) 0 0
\(883\) −10.2973 + 7.48145i −0.346533 + 0.251771i −0.747413 0.664360i \(-0.768704\pi\)
0.400880 + 0.916130i \(0.368704\pi\)
\(884\) −9.38039 + 89.2484i −0.315497 + 3.00175i
\(885\) 0 0
\(886\) −33.0321 7.02120i −1.10974 0.235882i
\(887\) −9.79776 + 4.36224i −0.328977 + 0.146470i −0.564578 0.825380i \(-0.690961\pi\)
0.235601 + 0.971850i \(0.424294\pi\)
\(888\) 0 0
\(889\) −18.3211 + 3.89427i −0.614470 + 0.130610i
\(890\) 1.99164 0.0667599
\(891\) 0 0
\(892\) 6.59606 0.220852
\(893\) −22.5777 + 4.79904i −0.755535 + 0.160594i
\(894\) 0 0
\(895\) 3.25113 1.44750i 0.108673 0.0483844i
\(896\) 27.4835 + 5.84180i 0.918159 + 0.195161i
\(897\) 0 0
\(898\) 5.16636 49.1546i 0.172404 1.64031i
\(899\) −22.6060 + 16.4242i −0.753952 + 0.547778i
\(900\) 0 0
\(901\) −41.7304 −1.39024
\(902\) −24.1817 + 17.5695i −0.805164 + 0.584999i
\(903\) 0 0
\(904\) −16.4949 18.3195i −0.548613 0.609296i
\(905\) −0.594012 5.65165i −0.0197456 0.187867i
\(906\) 0 0
\(907\) −8.86302 + 9.84338i −0.294292 + 0.326844i −0.872099 0.489329i \(-0.837242\pi\)
0.577807 + 0.816173i \(0.303908\pi\)
\(908\) 16.9422 + 52.1426i 0.562245 + 1.73041i
\(909\) 0 0
\(910\) −3.55618 + 2.58372i −0.117886 + 0.0856494i
\(911\) −55.8762 + 11.8768i −1.85126 + 0.393497i −0.992840 0.119451i \(-0.961887\pi\)
−0.858420 + 0.512948i \(0.828553\pi\)
\(912\) 0 0
\(913\) −40.8657 18.1941i −1.35246 0.602136i
\(914\) −3.73747 + 6.47348i −0.123624 + 0.214124i
\(915\) 0 0
\(916\) −1.63582 0.728314i −0.0540490 0.0240642i
\(917\) 8.37786 + 6.08687i 0.276661 + 0.201006i
\(918\) 0 0
\(919\) 5.12287 + 15.7666i 0.168988 + 0.520091i 0.999308 0.0371955i \(-0.0118424\pi\)
−0.830320 + 0.557287i \(0.811842\pi\)
\(920\) 0.496894 4.72763i 0.0163821 0.155865i
\(921\) 0 0
\(922\) 41.0259 + 45.5639i 1.35112 + 1.50057i
\(923\) 6.15009 10.6523i 0.202433 0.350624i
\(924\) 0 0
\(925\) 2.07615 + 3.59600i 0.0682634 + 0.118236i
\(926\) −2.61125 + 8.03660i −0.0858109 + 0.264099i
\(927\) 0 0
\(928\) 10.8784 + 7.90359i 0.357100 + 0.259448i
\(929\) 4.92734 5.47236i 0.161661 0.179542i −0.656872 0.754002i \(-0.728121\pi\)
0.818533 + 0.574459i \(0.194788\pi\)
\(930\) 0 0
\(931\) −14.1159 + 6.28478i −0.462629 + 0.205976i
\(932\) −3.66970 34.9149i −0.120205 1.14368i
\(933\) 0 0
\(934\) 21.5376 + 37.3043i 0.704733 + 1.22063i
\(935\) −5.99776 + 2.67045i −0.196148 + 0.0873330i
\(936\) 0 0
\(937\) 14.6033 44.9444i 0.477069 1.46827i −0.366077 0.930584i \(-0.619299\pi\)
0.843147 0.537684i \(-0.180701\pi\)
\(938\) 30.0831 + 13.3939i 0.982248 + 0.437325i
\(939\) 0 0
\(940\) −7.91172 1.68169i −0.258052 0.0548506i
\(941\) −54.9022 11.6698i −1.78976 0.380425i −0.810937 0.585134i \(-0.801042\pi\)
−0.978823 + 0.204709i \(0.934375\pi\)
\(942\) 0 0
\(943\) 15.9803 + 7.11487i 0.520389 + 0.231692i
\(944\) 3.27233 10.0712i 0.106505 0.327789i
\(945\) 0 0
\(946\) −13.7223 + 23.7682i −0.446149 + 0.772772i
\(947\) −6.39323 11.0734i −0.207752 0.359837i 0.743254 0.669009i \(-0.233281\pi\)
−0.951006 + 0.309172i \(0.899948\pi\)
\(948\) 0 0
\(949\) −1.86086 17.7049i −0.0604061 0.574726i
\(950\) 32.2933 14.3779i 1.04773 0.466481i
\(951\) 0 0
\(952\) 19.6595 21.8341i 0.637168 0.707646i
\(953\) −18.8480 13.6939i −0.610547 0.443588i 0.239060 0.971005i \(-0.423161\pi\)
−0.849607 + 0.527417i \(0.823161\pi\)
\(954\) 0 0
\(955\) −1.26256 + 3.88576i −0.0408555 + 0.125740i
\(956\) −16.5067 28.5904i −0.533864 0.924680i
\(957\) 0 0
\(958\) 0.182825 0.316662i 0.00590680 0.0102309i
\(959\) 9.30870 + 10.3384i 0.300593 + 0.333843i
\(960\) 0 0
\(961\) −6.27644 + 59.7163i −0.202466 + 1.92633i
\(962\) −2.55995 7.87872i −0.0825362 0.254020i
\(963\) 0 0
\(964\) 0.772163 + 0.561009i 0.0248697 + 0.0180689i
\(965\) −6.70482 2.98518i −0.215836 0.0960962i
\(966\) 0 0
\(967\) 27.7586 48.0794i 0.892657 1.54613i 0.0559798 0.998432i \(-0.482172\pi\)
0.836677 0.547696i \(-0.184495\pi\)
\(968\) −11.2747 + 34.7023i −0.362382 + 1.11537i
\(969\) 0 0
\(970\) −3.79695 + 0.807068i −0.121913 + 0.0259134i
\(971\) −3.65698 + 2.65695i −0.117358 + 0.0852656i −0.644916 0.764253i \(-0.723108\pi\)
0.527558 + 0.849519i \(0.323108\pi\)
\(972\) 0 0
\(973\) 4.15409 + 12.7850i 0.133174 + 0.409867i
\(974\) −27.9368 + 31.0269i −0.895152 + 0.994167i
\(975\) 0 0
\(976\) −0.423547 4.02978i −0.0135574 0.128990i
\(977\) 18.0928 + 20.0941i 0.578840 + 0.642867i 0.959453 0.281867i \(-0.0909537\pi\)
−0.380613 + 0.924734i \(0.624287\pi\)
\(978\) 0 0
\(979\) 2.76469 + 8.50854i 0.0883599 + 0.271934i
\(980\) −5.41462 −0.172964
\(981\) 0 0
\(982\) 12.5261 9.10076i 0.399725 0.290417i
\(983\) 1.11193 10.5793i 0.0354651 0.337428i −0.962374 0.271727i \(-0.912405\pi\)
0.997839 0.0657006i \(-0.0209282\pi\)
\(984\) 0 0
\(985\) 0.334174 + 0.0710309i 0.0106477 + 0.00226323i
\(986\) 38.9059 17.3220i 1.23902 0.551645i
\(987\) 0 0
\(988\) −43.5486 + 9.25653i −1.38546 + 0.294490i
\(989\) 16.0614 0.510723
\(990\) 0 0
\(991\) −18.7938 −0.597005 −0.298502 0.954409i \(-0.596487\pi\)
−0.298502 + 0.954409i \(0.596487\pi\)
\(992\) 42.8550 9.10912i 1.36065 0.289215i
\(993\) 0 0
\(994\) −8.84496 + 3.93803i −0.280545 + 0.124907i
\(995\) −5.09504 1.08298i −0.161524 0.0343329i
\(996\) 0 0
\(997\) 2.73106 25.9843i 0.0864935 0.822931i −0.862165 0.506628i \(-0.830892\pi\)
0.948658 0.316303i \(-0.102442\pi\)
\(998\) 63.9637 46.4723i 2.02473 1.47106i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.64.9 72
3.2 odd 2 99.2.m.b.31.1 yes 72
9.2 odd 6 99.2.m.b.97.9 yes 72
9.4 even 3 891.2.f.e.163.1 36
9.5 odd 6 891.2.f.f.163.9 36
9.7 even 3 inner 297.2.n.b.262.1 72
11.5 even 5 inner 297.2.n.b.280.1 72
33.5 odd 10 99.2.m.b.49.9 yes 72
33.26 odd 10 1089.2.e.p.364.1 36
33.29 even 10 1089.2.e.o.364.18 36
99.4 even 15 9801.2.a.cp.1.1 18
99.5 odd 30 891.2.f.f.82.9 36
99.16 even 15 inner 297.2.n.b.181.9 72
99.29 even 30 1089.2.e.o.727.18 36
99.38 odd 30 99.2.m.b.16.1 72
99.40 odd 30 9801.2.a.cn.1.18 18
99.49 even 15 891.2.f.e.82.1 36
99.59 odd 30 9801.2.a.cm.1.18 18
99.92 odd 30 1089.2.e.p.727.1 36
99.95 even 30 9801.2.a.co.1.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.1 72 99.38 odd 30
99.2.m.b.31.1 yes 72 3.2 odd 2
99.2.m.b.49.9 yes 72 33.5 odd 10
99.2.m.b.97.9 yes 72 9.2 odd 6
297.2.n.b.64.9 72 1.1 even 1 trivial
297.2.n.b.181.9 72 99.16 even 15 inner
297.2.n.b.262.1 72 9.7 even 3 inner
297.2.n.b.280.1 72 11.5 even 5 inner
891.2.f.e.82.1 36 99.49 even 15
891.2.f.e.163.1 36 9.4 even 3
891.2.f.f.82.9 36 99.5 odd 30
891.2.f.f.163.9 36 9.5 odd 6
1089.2.e.o.364.18 36 33.29 even 10
1089.2.e.o.727.18 36 99.29 even 30
1089.2.e.p.364.1 36 33.26 odd 10
1089.2.e.p.727.1 36 99.92 odd 30
9801.2.a.cm.1.18 18 99.59 odd 30
9801.2.a.cn.1.18 18 99.40 odd 30
9801.2.a.co.1.1 18 99.95 even 30
9801.2.a.cp.1.1 18 99.4 even 15