Properties

Label 297.2.n.b.64.5
Level $297$
Weight $2$
Character 297.64
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(37,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 64.5
Character \(\chi\) \(=\) 297.64
Dual form 297.2.n.b.181.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.278917 - 0.0592857i) q^{2} +(-1.75281 + 0.780402i) q^{4} +(2.64954 + 0.563177i) q^{5} +(0.425779 - 4.05102i) q^{7} +(-0.904002 + 0.656796i) q^{8} +0.772391 q^{10} +(3.31056 + 0.200500i) q^{11} +(2.57679 + 2.86182i) q^{13} +(-0.121410 - 1.15514i) q^{14} +(2.35451 - 2.61494i) q^{16} +(1.33502 + 4.10876i) q^{17} +(1.31246 - 0.953561i) q^{19} +(-5.08365 + 1.08056i) q^{20} +(0.935259 - 0.140346i) q^{22} +(-0.932117 + 1.61447i) q^{23} +(2.13517 + 0.950641i) q^{25} +(0.888377 + 0.645443i) q^{26} +(2.41511 + 7.43295i) q^{28} +(0.371426 - 3.53388i) q^{29} +(-3.25505 - 3.61509i) q^{31} +(1.61909 - 2.80435i) q^{32} +(0.615950 + 1.06686i) q^{34} +(3.40956 - 10.4936i) q^{35} +(-6.26542 - 4.55210i) q^{37} +(0.309536 - 0.343775i) q^{38} +(-2.76508 + 1.23109i) q^{40} +(0.718335 + 6.83450i) q^{41} +(-0.492496 - 0.853027i) q^{43} +(-5.95925 + 2.23213i) q^{44} +(-0.164268 + 0.505566i) q^{46} +(-5.35918 - 2.38606i) q^{47} +(-9.38245 - 1.99430i) q^{49} +(0.651896 + 0.138565i) q^{50} +(-6.75000 - 3.00529i) q^{52} +(0.485721 - 1.49489i) q^{53} +(8.65855 + 2.39567i) q^{55} +(2.27579 + 3.94178i) q^{56} +(-0.105911 - 1.00768i) q^{58} +(-10.3802 + 4.62154i) q^{59} +(-5.75953 + 6.39660i) q^{61} +(-1.12221 - 0.815335i) q^{62} +(-1.88937 + 5.81490i) q^{64} +(5.21561 + 9.03370i) q^{65} +(0.870282 - 1.50737i) q^{67} +(-5.54651 - 6.16003i) q^{68} +(0.328868 - 3.12897i) q^{70} +(1.77418 + 5.46036i) q^{71} +(3.27379 + 2.37855i) q^{73} +(-2.01741 - 0.898208i) q^{74} +(-1.55634 + 2.69566i) q^{76} +(2.22180 - 13.3258i) q^{77} +(4.18662 - 0.889893i) q^{79} +(7.71104 - 5.60240i) q^{80} +(0.605544 + 1.86367i) q^{82} +(4.34947 - 4.83058i) q^{83} +(1.22322 + 11.6382i) q^{85} +(-0.187938 - 0.208726i) q^{86} +(-3.12444 + 1.99311i) q^{88} -9.26243 q^{89} +(12.6904 - 9.22014i) q^{91} +(0.373887 - 3.55729i) q^{92} +(-1.63623 - 0.347790i) q^{94} +(4.01445 - 1.78735i) q^{95} +(7.25070 - 1.54118i) q^{97} -2.73516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.278917 0.0592857i 0.197224 0.0419213i −0.108240 0.994125i \(-0.534522\pi\)
0.305465 + 0.952203i \(0.401188\pi\)
\(3\) 0 0
\(4\) −1.75281 + 0.780402i −0.876405 + 0.390201i
\(5\) 2.64954 + 0.563177i 1.18491 + 0.251861i 0.757891 0.652381i \(-0.226230\pi\)
0.427020 + 0.904242i \(0.359563\pi\)
\(6\) 0 0
\(7\) 0.425779 4.05102i 0.160930 1.53114i −0.554338 0.832291i \(-0.687029\pi\)
0.715268 0.698851i \(-0.246305\pi\)
\(8\) −0.904002 + 0.656796i −0.319613 + 0.232212i
\(9\) 0 0
\(10\) 0.772391 0.244251
\(11\) 3.31056 + 0.200500i 0.998171 + 0.0604531i
\(12\) 0 0
\(13\) 2.57679 + 2.86182i 0.714674 + 0.793726i 0.985639 0.168863i \(-0.0540097\pi\)
−0.270966 + 0.962589i \(0.587343\pi\)
\(14\) −0.121410 1.15514i −0.0324483 0.308725i
\(15\) 0 0
\(16\) 2.35451 2.61494i 0.588626 0.653736i
\(17\) 1.33502 + 4.10876i 0.323789 + 0.996520i 0.971984 + 0.235046i \(0.0755241\pi\)
−0.648195 + 0.761474i \(0.724476\pi\)
\(18\) 0 0
\(19\) 1.31246 0.953561i 0.301100 0.218762i −0.426968 0.904267i \(-0.640418\pi\)
0.728068 + 0.685505i \(0.240418\pi\)
\(20\) −5.08365 + 1.08056i −1.13674 + 0.241621i
\(21\) 0 0
\(22\) 0.935259 0.140346i 0.199398 0.0299218i
\(23\) −0.932117 + 1.61447i −0.194360 + 0.336641i −0.946691 0.322145i \(-0.895596\pi\)
0.752331 + 0.658786i \(0.228930\pi\)
\(24\) 0 0
\(25\) 2.13517 + 0.950641i 0.427035 + 0.190128i
\(26\) 0.888377 + 0.645443i 0.174225 + 0.126582i
\(27\) 0 0
\(28\) 2.41511 + 7.43295i 0.456413 + 1.40470i
\(29\) 0.371426 3.53388i 0.0689720 0.656225i −0.904352 0.426788i \(-0.859645\pi\)
0.973324 0.229437i \(-0.0736884\pi\)
\(30\) 0 0
\(31\) −3.25505 3.61509i −0.584624 0.649290i 0.376171 0.926550i \(-0.377240\pi\)
−0.960795 + 0.277260i \(0.910574\pi\)
\(32\) 1.61909 2.80435i 0.286218 0.495744i
\(33\) 0 0
\(34\) 0.615950 + 1.06686i 0.105634 + 0.182964i
\(35\) 3.40956 10.4936i 0.576321 1.77374i
\(36\) 0 0
\(37\) −6.26542 4.55210i −1.03003 0.748360i −0.0617145 0.998094i \(-0.519657\pi\)
−0.968314 + 0.249734i \(0.919657\pi\)
\(38\) 0.309536 0.343775i 0.0502134 0.0557676i
\(39\) 0 0
\(40\) −2.76508 + 1.23109i −0.437198 + 0.194653i
\(41\) 0.718335 + 6.83450i 0.112185 + 1.06737i 0.895291 + 0.445481i \(0.146967\pi\)
−0.783106 + 0.621888i \(0.786366\pi\)
\(42\) 0 0
\(43\) −0.492496 0.853027i −0.0751049 0.130085i 0.826027 0.563631i \(-0.190596\pi\)
−0.901132 + 0.433545i \(0.857262\pi\)
\(44\) −5.95925 + 2.23213i −0.898391 + 0.336506i
\(45\) 0 0
\(46\) −0.164268 + 0.505566i −0.0242200 + 0.0745416i
\(47\) −5.35918 2.38606i −0.781716 0.348042i −0.0232288 0.999730i \(-0.507395\pi\)
−0.758487 + 0.651688i \(0.774061\pi\)
\(48\) 0 0
\(49\) −9.38245 1.99430i −1.34035 0.284900i
\(50\) 0.651896 + 0.138565i 0.0921920 + 0.0195960i
\(51\) 0 0
\(52\) −6.75000 3.00529i −0.936056 0.416759i
\(53\) 0.485721 1.49489i 0.0667189 0.205340i −0.912139 0.409881i \(-0.865570\pi\)
0.978858 + 0.204541i \(0.0655703\pi\)
\(54\) 0 0
\(55\) 8.65855 + 2.39567i 1.16752 + 0.323032i
\(56\) 2.27579 + 3.94178i 0.304115 + 0.526743i
\(57\) 0 0
\(58\) −0.105911 1.00768i −0.0139069 0.132315i
\(59\) −10.3802 + 4.62154i −1.35138 + 0.601674i −0.949427 0.313986i \(-0.898335\pi\)
−0.401954 + 0.915660i \(0.631669\pi\)
\(60\) 0 0
\(61\) −5.75953 + 6.39660i −0.737432 + 0.819001i −0.988856 0.148876i \(-0.952434\pi\)
0.251424 + 0.967877i \(0.419101\pi\)
\(62\) −1.12221 0.815335i −0.142521 0.103548i
\(63\) 0 0
\(64\) −1.88937 + 5.81490i −0.236172 + 0.726862i
\(65\) 5.21561 + 9.03370i 0.646916 + 1.12049i
\(66\) 0 0
\(67\) 0.870282 1.50737i 0.106322 0.184155i −0.807956 0.589243i \(-0.799426\pi\)
0.914277 + 0.405088i \(0.132759\pi\)
\(68\) −5.54651 6.16003i −0.672614 0.747013i
\(69\) 0 0
\(70\) 0.328868 3.12897i 0.0393073 0.373984i
\(71\) 1.77418 + 5.46036i 0.210556 + 0.648026i 0.999439 + 0.0334822i \(0.0106597\pi\)
−0.788883 + 0.614543i \(0.789340\pi\)
\(72\) 0 0
\(73\) 3.27379 + 2.37855i 0.383168 + 0.278388i 0.762650 0.646811i \(-0.223898\pi\)
−0.379482 + 0.925199i \(0.623898\pi\)
\(74\) −2.01741 0.898208i −0.234519 0.104415i
\(75\) 0 0
\(76\) −1.55634 + 2.69566i −0.178524 + 0.309213i
\(77\) 2.22180 13.3258i 0.253198 1.51861i
\(78\) 0 0
\(79\) 4.18662 0.889893i 0.471031 0.100121i 0.0337205 0.999431i \(-0.489264\pi\)
0.437311 + 0.899311i \(0.355931\pi\)
\(80\) 7.71104 5.60240i 0.862120 0.626367i
\(81\) 0 0
\(82\) 0.605544 + 1.86367i 0.0668711 + 0.205808i
\(83\) 4.34947 4.83058i 0.477417 0.530225i −0.455539 0.890216i \(-0.650554\pi\)
0.932956 + 0.359991i \(0.117220\pi\)
\(84\) 0 0
\(85\) 1.22322 + 11.6382i 0.132677 + 1.26234i
\(86\) −0.187938 0.208726i −0.0202659 0.0225075i
\(87\) 0 0
\(88\) −3.12444 + 1.99311i −0.333066 + 0.212466i
\(89\) −9.26243 −0.981816 −0.490908 0.871211i \(-0.663335\pi\)
−0.490908 + 0.871211i \(0.663335\pi\)
\(90\) 0 0
\(91\) 12.6904 9.22014i 1.33032 0.966533i
\(92\) 0.373887 3.55729i 0.0389804 0.370874i
\(93\) 0 0
\(94\) −1.63623 0.347790i −0.168764 0.0358718i
\(95\) 4.01445 1.78735i 0.411874 0.183378i
\(96\) 0 0
\(97\) 7.25070 1.54118i 0.736197 0.156483i 0.175470 0.984485i \(-0.443855\pi\)
0.560726 + 0.828001i \(0.310522\pi\)
\(98\) −2.73516 −0.276293
\(99\) 0 0
\(100\) −4.48444 −0.448444
\(101\) −13.4178 + 2.85205i −1.33513 + 0.283790i −0.819527 0.573041i \(-0.805764\pi\)
−0.515598 + 0.856830i \(0.672430\pi\)
\(102\) 0 0
\(103\) 4.63647 2.06429i 0.456845 0.203400i −0.165395 0.986227i \(-0.552890\pi\)
0.622239 + 0.782827i \(0.286223\pi\)
\(104\) −4.20906 0.894663i −0.412732 0.0877289i
\(105\) 0 0
\(106\) 0.0468500 0.445748i 0.00455048 0.0432949i
\(107\) −2.24824 + 1.63344i −0.217346 + 0.157911i −0.691131 0.722730i \(-0.742887\pi\)
0.473785 + 0.880640i \(0.342887\pi\)
\(108\) 0 0
\(109\) −17.3573 −1.66253 −0.831263 0.555879i \(-0.812382\pi\)
−0.831263 + 0.555879i \(0.812382\pi\)
\(110\) 2.55705 + 0.154865i 0.243805 + 0.0147658i
\(111\) 0 0
\(112\) −9.59069 10.6515i −0.906235 1.00648i
\(113\) 0.0986387 + 0.938485i 0.00927915 + 0.0882852i 0.998181 0.0602828i \(-0.0192003\pi\)
−0.988902 + 0.148568i \(0.952534\pi\)
\(114\) 0 0
\(115\) −3.37892 + 3.75267i −0.315086 + 0.349938i
\(116\) 2.10681 + 6.48408i 0.195612 + 0.602032i
\(117\) 0 0
\(118\) −2.62121 + 1.90442i −0.241302 + 0.175316i
\(119\) 17.2131 3.65876i 1.57792 0.335398i
\(120\) 0 0
\(121\) 10.9196 + 1.32754i 0.992691 + 0.120685i
\(122\) −1.22720 + 2.12558i −0.111106 + 0.192441i
\(123\) 0 0
\(124\) 8.52671 + 3.79633i 0.765721 + 0.340921i
\(125\) −5.83521 4.23953i −0.521917 0.379195i
\(126\) 0 0
\(127\) 0.757216 + 2.33047i 0.0671920 + 0.206796i 0.979015 0.203787i \(-0.0653251\pi\)
−0.911823 + 0.410583i \(0.865325\pi\)
\(128\) −0.859204 + 8.17478i −0.0759436 + 0.722555i
\(129\) 0 0
\(130\) 1.99029 + 2.21044i 0.174560 + 0.193869i
\(131\) 1.99869 3.46183i 0.174626 0.302461i −0.765406 0.643548i \(-0.777462\pi\)
0.940032 + 0.341087i \(0.110795\pi\)
\(132\) 0 0
\(133\) −3.30407 5.72282i −0.286500 0.496232i
\(134\) 0.153371 0.472027i 0.0132492 0.0407769i
\(135\) 0 0
\(136\) −3.90547 2.83749i −0.334892 0.243313i
\(137\) −0.728855 + 0.809475i −0.0622703 + 0.0691581i −0.773475 0.633827i \(-0.781483\pi\)
0.711205 + 0.702985i \(0.248150\pi\)
\(138\) 0 0
\(139\) 2.63551 1.17340i 0.223541 0.0995269i −0.291910 0.956446i \(-0.594291\pi\)
0.515451 + 0.856919i \(0.327624\pi\)
\(140\) 2.21287 + 21.0541i 0.187022 + 1.77939i
\(141\) 0 0
\(142\) 0.818570 + 1.41780i 0.0686929 + 0.118980i
\(143\) 7.95683 + 9.99087i 0.665383 + 0.835478i
\(144\) 0 0
\(145\) 2.97431 9.15398i 0.247003 0.760197i
\(146\) 1.05413 + 0.469329i 0.0872404 + 0.0388419i
\(147\) 0 0
\(148\) 14.5346 + 3.08942i 1.19473 + 0.253948i
\(149\) 19.7339 + 4.19458i 1.61667 + 0.343633i 0.925408 0.378973i \(-0.123723\pi\)
0.691260 + 0.722606i \(0.257056\pi\)
\(150\) 0 0
\(151\) −10.1206 4.50597i −0.823601 0.366691i −0.0487316 0.998812i \(-0.515518\pi\)
−0.774870 + 0.632121i \(0.782185\pi\)
\(152\) −0.560175 + 1.72404i −0.0454362 + 0.139838i
\(153\) 0 0
\(154\) −0.170330 3.84851i −0.0137255 0.310122i
\(155\) −6.58844 11.4115i −0.529196 0.916595i
\(156\) 0 0
\(157\) −0.0347854 0.330961i −0.00277618 0.0264136i 0.993046 0.117726i \(-0.0375605\pi\)
−0.995822 + 0.0913125i \(0.970894\pi\)
\(158\) 1.11496 0.496413i 0.0887016 0.0394925i
\(159\) 0 0
\(160\) 5.86920 6.51840i 0.464001 0.515325i
\(161\) 6.14339 + 4.46344i 0.484167 + 0.351768i
\(162\) 0 0
\(163\) 4.12168 12.6852i 0.322835 0.993584i −0.649574 0.760299i \(-0.725053\pi\)
0.972408 0.233285i \(-0.0749475\pi\)
\(164\) −6.59276 11.4190i −0.514808 0.891674i
\(165\) 0 0
\(166\) 0.926759 1.60519i 0.0719304 0.124587i
\(167\) 12.6567 + 14.0567i 0.979405 + 1.08774i 0.996131 + 0.0878797i \(0.0280091\pi\)
−0.0167258 + 0.999860i \(0.505324\pi\)
\(168\) 0 0
\(169\) −0.191273 + 1.81984i −0.0147133 + 0.139988i
\(170\) 1.03115 + 3.17357i 0.0790860 + 0.243402i
\(171\) 0 0
\(172\) 1.52896 + 1.11085i 0.116582 + 0.0847016i
\(173\) 1.38319 + 0.615835i 0.105162 + 0.0468211i 0.458643 0.888620i \(-0.348336\pi\)
−0.353481 + 0.935442i \(0.615002\pi\)
\(174\) 0 0
\(175\) 4.76018 8.24487i 0.359836 0.623254i
\(176\) 8.31903 8.18485i 0.627070 0.616956i
\(177\) 0 0
\(178\) −2.58345 + 0.549130i −0.193638 + 0.0411590i
\(179\) 10.6703 7.75244i 0.797537 0.579445i −0.112653 0.993634i \(-0.535935\pi\)
0.910191 + 0.414190i \(0.135935\pi\)
\(180\) 0 0
\(181\) 0.864886 + 2.66185i 0.0642865 + 0.197853i 0.978041 0.208414i \(-0.0668301\pi\)
−0.913754 + 0.406267i \(0.866830\pi\)
\(182\) 2.99296 3.32402i 0.221853 0.246392i
\(183\) 0 0
\(184\) −0.217744 2.07170i −0.0160523 0.152728i
\(185\) −14.0369 15.5895i −1.03201 1.14616i
\(186\) 0 0
\(187\) 3.59584 + 13.8700i 0.262954 + 1.01427i
\(188\) 11.2557 0.820907
\(189\) 0 0
\(190\) 1.01374 0.736522i 0.0735441 0.0534329i
\(191\) −1.74997 + 16.6498i −0.126623 + 1.20474i 0.728032 + 0.685544i \(0.240435\pi\)
−0.854655 + 0.519197i \(0.826231\pi\)
\(192\) 0 0
\(193\) 21.5578 + 4.58224i 1.55176 + 0.329837i 0.902487 0.430717i \(-0.141739\pi\)
0.649275 + 0.760554i \(0.275073\pi\)
\(194\) 1.93097 0.859725i 0.138636 0.0617247i
\(195\) 0 0
\(196\) 18.0020 3.82645i 1.28586 0.273318i
\(197\) −18.2247 −1.29845 −0.649227 0.760595i \(-0.724907\pi\)
−0.649227 + 0.760595i \(0.724907\pi\)
\(198\) 0 0
\(199\) −25.0958 −1.77899 −0.889497 0.456942i \(-0.848945\pi\)
−0.889497 + 0.456942i \(0.848945\pi\)
\(200\) −2.55458 + 0.542993i −0.180636 + 0.0383954i
\(201\) 0 0
\(202\) −3.57338 + 1.59097i −0.251422 + 0.111940i
\(203\) −14.1577 3.00931i −0.993674 0.211212i
\(204\) 0 0
\(205\) −1.94578 + 18.5128i −0.135899 + 1.29299i
\(206\) 1.17081 0.850642i 0.0815741 0.0592670i
\(207\) 0 0
\(208\) 13.5506 0.939563
\(209\) 4.53618 2.89367i 0.313774 0.200159i
\(210\) 0 0
\(211\) 5.53373 + 6.14582i 0.380957 + 0.423096i 0.902877 0.429899i \(-0.141451\pi\)
−0.521920 + 0.852995i \(0.674784\pi\)
\(212\) 0.315242 + 2.99933i 0.0216509 + 0.205995i
\(213\) 0 0
\(214\) −0.530233 + 0.588884i −0.0362460 + 0.0402552i
\(215\) −0.824482 2.53749i −0.0562292 0.173056i
\(216\) 0 0
\(217\) −16.0308 + 11.6470i −1.08824 + 0.790652i
\(218\) −4.84125 + 1.02904i −0.327891 + 0.0696953i
\(219\) 0 0
\(220\) −17.0464 + 2.55799i −1.14927 + 0.172460i
\(221\) −8.31846 + 14.4080i −0.559560 + 0.969187i
\(222\) 0 0
\(223\) −6.71646 2.99036i −0.449768 0.200249i 0.169337 0.985558i \(-0.445837\pi\)
−0.619104 + 0.785309i \(0.712504\pi\)
\(224\) −10.6711 7.75301i −0.712993 0.518020i
\(225\) 0 0
\(226\) 0.0831507 + 0.255912i 0.00553110 + 0.0170230i
\(227\) −1.97989 + 18.8374i −0.131410 + 1.25028i 0.707775 + 0.706438i \(0.249699\pi\)
−0.839185 + 0.543846i \(0.816968\pi\)
\(228\) 0 0
\(229\) −5.25900 5.84071i −0.347524 0.385965i 0.543888 0.839158i \(-0.316952\pi\)
−0.891412 + 0.453193i \(0.850285\pi\)
\(230\) −0.719959 + 1.24701i −0.0474727 + 0.0822251i
\(231\) 0 0
\(232\) 1.98527 + 3.43859i 0.130339 + 0.225754i
\(233\) 2.03006 6.24789i 0.132994 0.409313i −0.862279 0.506434i \(-0.830963\pi\)
0.995273 + 0.0971212i \(0.0309634\pi\)
\(234\) 0 0
\(235\) −12.8556 9.34013i −0.838606 0.609283i
\(236\) 14.5878 16.2014i 0.949584 1.05462i
\(237\) 0 0
\(238\) 4.58412 2.04098i 0.297144 0.132297i
\(239\) −2.67031 25.4063i −0.172728 1.64340i −0.646617 0.762815i \(-0.723817\pi\)
0.473889 0.880585i \(-0.342850\pi\)
\(240\) 0 0
\(241\) 1.49099 + 2.58247i 0.0960432 + 0.166352i 0.910044 0.414513i \(-0.136048\pi\)
−0.814000 + 0.580864i \(0.802715\pi\)
\(242\) 3.12437 0.277103i 0.200842 0.0178129i
\(243\) 0 0
\(244\) 5.10344 15.7068i 0.326714 1.00552i
\(245\) −23.7360 10.5680i −1.51644 0.675163i
\(246\) 0 0
\(247\) 6.11086 + 1.29890i 0.388825 + 0.0826473i
\(248\) 5.31695 + 1.13015i 0.337627 + 0.0717647i
\(249\) 0 0
\(250\) −1.87888 0.836532i −0.118831 0.0529070i
\(251\) −3.60577 + 11.0974i −0.227594 + 0.700463i 0.770424 + 0.637532i \(0.220045\pi\)
−0.998018 + 0.0629308i \(0.979955\pi\)
\(252\) 0 0
\(253\) −3.40953 + 5.15792i −0.214355 + 0.324276i
\(254\) 0.349364 + 0.605116i 0.0219211 + 0.0379684i
\(255\) 0 0
\(256\) −1.03320 9.83028i −0.0645752 0.614392i
\(257\) −18.9327 + 8.42939i −1.18099 + 0.525811i −0.900843 0.434146i \(-0.857050\pi\)
−0.280148 + 0.959957i \(0.590384\pi\)
\(258\) 0 0
\(259\) −21.1083 + 23.4432i −1.31161 + 1.45669i
\(260\) −16.1919 11.7641i −1.00418 0.729578i
\(261\) 0 0
\(262\) 0.352231 1.08406i 0.0217609 0.0669732i
\(263\) 4.54273 + 7.86823i 0.280117 + 0.485176i 0.971413 0.237395i \(-0.0762936\pi\)
−0.691297 + 0.722571i \(0.742960\pi\)
\(264\) 0 0
\(265\) 2.12883 3.68724i 0.130773 0.226505i
\(266\) −1.26084 1.40031i −0.0773073 0.0858585i
\(267\) 0 0
\(268\) −0.349083 + 3.32131i −0.0213237 + 0.202881i
\(269\) −2.45399 7.55261i −0.149623 0.460491i 0.847954 0.530070i \(-0.177834\pi\)
−0.997576 + 0.0695792i \(0.977834\pi\)
\(270\) 0 0
\(271\) −3.01249 2.18870i −0.182995 0.132954i 0.492516 0.870303i \(-0.336077\pi\)
−0.675512 + 0.737349i \(0.736077\pi\)
\(272\) 13.8875 + 6.18310i 0.842052 + 0.374906i
\(273\) 0 0
\(274\) −0.155300 + 0.268987i −0.00938201 + 0.0162501i
\(275\) 6.87801 + 3.57526i 0.414760 + 0.215596i
\(276\) 0 0
\(277\) 3.81540 0.810988i 0.229245 0.0487275i −0.0918567 0.995772i \(-0.529280\pi\)
0.321102 + 0.947045i \(0.395947\pi\)
\(278\) 0.665523 0.483531i 0.0399154 0.0290003i
\(279\) 0 0
\(280\) 3.80987 + 11.7256i 0.227684 + 0.700738i
\(281\) −0.0265130 + 0.0294457i −0.00158163 + 0.00175658i −0.743935 0.668252i \(-0.767043\pi\)
0.742353 + 0.670008i \(0.233710\pi\)
\(282\) 0 0
\(283\) −0.668341 6.35884i −0.0397288 0.377994i −0.996263 0.0863734i \(-0.972472\pi\)
0.956534 0.291621i \(-0.0941945\pi\)
\(284\) −7.37107 8.18641i −0.437393 0.485774i
\(285\) 0 0
\(286\) 2.81161 + 2.31490i 0.166254 + 0.136883i
\(287\) 27.9925 1.65235
\(288\) 0 0
\(289\) −1.34634 + 0.978174i −0.0791965 + 0.0575397i
\(290\) 0.286886 2.72954i 0.0168465 0.160284i
\(291\) 0 0
\(292\) −7.59455 1.61427i −0.444438 0.0944681i
\(293\) 21.3837 9.52066i 1.24925 0.556203i 0.327819 0.944741i \(-0.393686\pi\)
0.921433 + 0.388538i \(0.127020\pi\)
\(294\) 0 0
\(295\) −30.1054 + 6.39910i −1.75280 + 0.372570i
\(296\) 8.65375 0.502989
\(297\) 0 0
\(298\) 5.75282 0.333252
\(299\) −7.02221 + 1.49262i −0.406105 + 0.0863202i
\(300\) 0 0
\(301\) −3.66533 + 1.63191i −0.211266 + 0.0940616i
\(302\) −3.08994 0.656788i −0.177806 0.0377939i
\(303\) 0 0
\(304\) 0.596696 5.67718i 0.0342229 0.325609i
\(305\) −18.8625 + 13.7044i −1.08007 + 0.784713i
\(306\) 0 0
\(307\) 29.1494 1.66365 0.831823 0.555042i \(-0.187298\pi\)
0.831823 + 0.555042i \(0.187298\pi\)
\(308\) 6.50506 + 25.0915i 0.370660 + 1.42972i
\(309\) 0 0
\(310\) −2.51417 2.79227i −0.142795 0.158590i
\(311\) −2.05981 19.5978i −0.116801 1.11129i −0.883224 0.468952i \(-0.844632\pi\)
0.766423 0.642337i \(-0.222035\pi\)
\(312\) 0 0
\(313\) 0.895549 0.994608i 0.0506194 0.0562185i −0.717303 0.696761i \(-0.754624\pi\)
0.767923 + 0.640542i \(0.221290\pi\)
\(314\) −0.0293235 0.0902485i −0.00165482 0.00509302i
\(315\) 0 0
\(316\) −6.64387 + 4.82706i −0.373747 + 0.271543i
\(317\) 3.91346 0.831832i 0.219802 0.0467203i −0.0966942 0.995314i \(-0.530827\pi\)
0.316496 + 0.948594i \(0.397494\pi\)
\(318\) 0 0
\(319\) 1.93817 11.6246i 0.108517 0.650855i
\(320\) −8.28080 + 14.3428i −0.462911 + 0.801785i
\(321\) 0 0
\(322\) 1.97812 + 0.880714i 0.110236 + 0.0490803i
\(323\) 5.67011 + 4.11958i 0.315493 + 0.229219i
\(324\) 0 0
\(325\) 2.78134 + 8.56008i 0.154281 + 0.474828i
\(326\) 0.397555 3.78248i 0.0220185 0.209492i
\(327\) 0 0
\(328\) −5.13825 5.70660i −0.283712 0.315094i
\(329\) −11.9478 + 20.6942i −0.658704 + 1.14091i
\(330\) 0 0
\(331\) −1.59017 2.75425i −0.0874034 0.151387i 0.819009 0.573780i \(-0.194524\pi\)
−0.906413 + 0.422393i \(0.861190\pi\)
\(332\) −3.85401 + 11.8614i −0.211516 + 0.650980i
\(333\) 0 0
\(334\) 4.36353 + 3.17029i 0.238762 + 0.173471i
\(335\) 3.15477 3.50372i 0.172363 0.191429i
\(336\) 0 0
\(337\) −16.6245 + 7.40171i −0.905595 + 0.403197i −0.806058 0.591837i \(-0.798403\pi\)
−0.0995376 + 0.995034i \(0.531736\pi\)
\(338\) 0.0545411 + 0.518924i 0.00296665 + 0.0282258i
\(339\) 0 0
\(340\) −11.2265 19.4449i −0.608844 1.05455i
\(341\) −10.0512 12.6206i −0.544303 0.683445i
\(342\) 0 0
\(343\) −3.26270 + 10.0416i −0.176169 + 0.542193i
\(344\) 1.00548 + 0.447669i 0.0542120 + 0.0241367i
\(345\) 0 0
\(346\) 0.422305 + 0.0897637i 0.0227033 + 0.00482573i
\(347\) −26.8150 5.69971i −1.43951 0.305977i −0.578963 0.815354i \(-0.696543\pi\)
−0.860543 + 0.509377i \(0.829876\pi\)
\(348\) 0 0
\(349\) 20.9252 + 9.31652i 1.12010 + 0.498702i 0.881390 0.472389i \(-0.156608\pi\)
0.238712 + 0.971090i \(0.423275\pi\)
\(350\) 0.838893 2.58185i 0.0448407 0.138006i
\(351\) 0 0
\(352\) 5.92237 8.95933i 0.315663 0.477534i
\(353\) −14.8524 25.7250i −0.790511 1.36921i −0.925651 0.378379i \(-0.876482\pi\)
0.135140 0.990827i \(-0.456852\pi\)
\(354\) 0 0
\(355\) 1.62561 + 15.4666i 0.0862783 + 0.820883i
\(356\) 16.2353 7.22842i 0.860469 0.383105i
\(357\) 0 0
\(358\) 2.51653 2.79489i 0.133003 0.147714i
\(359\) −29.8183 21.6643i −1.57375 1.14340i −0.923450 0.383718i \(-0.874644\pi\)
−0.650299 0.759678i \(-0.725356\pi\)
\(360\) 0 0
\(361\) −5.05804 + 15.5670i −0.266213 + 0.819318i
\(362\) 0.399041 + 0.691159i 0.0209731 + 0.0363265i
\(363\) 0 0
\(364\) −15.0485 + 26.0648i −0.788756 + 1.36617i
\(365\) 7.33449 + 8.14578i 0.383905 + 0.426370i
\(366\) 0 0
\(367\) 2.59864 24.7244i 0.135648 1.29061i −0.688918 0.724839i \(-0.741914\pi\)
0.824566 0.565766i \(-0.191419\pi\)
\(368\) 2.02708 + 6.23872i 0.105669 + 0.325216i
\(369\) 0 0
\(370\) −4.83936 3.51600i −0.251586 0.182788i
\(371\) −5.84904 2.60416i −0.303667 0.135201i
\(372\) 0 0
\(373\) −9.13952 + 15.8301i −0.473227 + 0.819653i −0.999530 0.0306440i \(-0.990244\pi\)
0.526304 + 0.850297i \(0.323578\pi\)
\(374\) 1.82523 + 3.65539i 0.0943805 + 0.189016i
\(375\) 0 0
\(376\) 6.41186 1.36288i 0.330667 0.0702853i
\(377\) 11.0704 8.04312i 0.570155 0.414242i
\(378\) 0 0
\(379\) −9.72145 29.9196i −0.499357 1.53686i −0.810054 0.586355i \(-0.800562\pi\)
0.310697 0.950509i \(-0.399438\pi\)
\(380\) −5.64172 + 6.26577i −0.289414 + 0.321427i
\(381\) 0 0
\(382\) 0.499001 + 4.74767i 0.0255311 + 0.242912i
\(383\) 8.31848 + 9.23861i 0.425054 + 0.472071i 0.917191 0.398447i \(-0.130451\pi\)
−0.492137 + 0.870518i \(0.663784\pi\)
\(384\) 0 0
\(385\) 13.3915 34.0559i 0.682495 1.73565i
\(386\) 6.28449 0.319872
\(387\) 0 0
\(388\) −11.5064 + 8.35986i −0.584147 + 0.424408i
\(389\) 0.765115 7.27958i 0.0387929 0.369090i −0.957853 0.287258i \(-0.907256\pi\)
0.996646 0.0818317i \(-0.0260770\pi\)
\(390\) 0 0
\(391\) −7.87788 1.67449i −0.398401 0.0846829i
\(392\) 9.79160 4.35950i 0.494551 0.220188i
\(393\) 0 0
\(394\) −5.08317 + 1.08046i −0.256087 + 0.0544329i
\(395\) 11.5938 0.583346
\(396\) 0 0
\(397\) 34.2087 1.71688 0.858442 0.512911i \(-0.171433\pi\)
0.858442 + 0.512911i \(0.171433\pi\)
\(398\) −6.99965 + 1.48782i −0.350861 + 0.0745777i
\(399\) 0 0
\(400\) 7.51315 3.34507i 0.375658 0.167254i
\(401\) 7.31241 + 1.55430i 0.365164 + 0.0776181i 0.386840 0.922147i \(-0.373567\pi\)
−0.0216754 + 0.999765i \(0.506900\pi\)
\(402\) 0 0
\(403\) 1.95817 18.6307i 0.0975432 0.928061i
\(404\) 21.2932 15.4704i 1.05938 0.769682i
\(405\) 0 0
\(406\) −4.12723 −0.204831
\(407\) −19.8294 16.3262i −0.982904 0.809260i
\(408\) 0 0
\(409\) 1.61274 + 1.79113i 0.0797447 + 0.0885655i 0.781697 0.623659i \(-0.214355\pi\)
−0.701952 + 0.712224i \(0.747688\pi\)
\(410\) 0.554835 + 5.27891i 0.0274014 + 0.260707i
\(411\) 0 0
\(412\) −6.51588 + 7.23662i −0.321014 + 0.356522i
\(413\) 14.3023 + 44.0180i 0.703771 + 2.16598i
\(414\) 0 0
\(415\) 14.2446 10.3493i 0.699239 0.508027i
\(416\) 12.1976 2.59268i 0.598037 0.127117i
\(417\) 0 0
\(418\) 1.09366 1.07602i 0.0534929 0.0526301i
\(419\) −5.60088 + 9.70101i −0.273621 + 0.473925i −0.969786 0.243956i \(-0.921555\pi\)
0.696165 + 0.717881i \(0.254888\pi\)
\(420\) 0 0
\(421\) −6.30791 2.80846i −0.307429 0.136876i 0.247223 0.968959i \(-0.420482\pi\)
−0.554652 + 0.832083i \(0.687149\pi\)
\(422\) 1.90781 + 1.38611i 0.0928708 + 0.0674746i
\(423\) 0 0
\(424\) 0.542748 + 1.67041i 0.0263582 + 0.0811222i
\(425\) −1.05546 + 10.0420i −0.0511974 + 0.487110i
\(426\) 0 0
\(427\) 23.4605 + 26.0555i 1.13533 + 1.26091i
\(428\) 2.66600 4.61765i 0.128866 0.223202i
\(429\) 0 0
\(430\) −0.380399 0.658871i −0.0183445 0.0317736i
\(431\) 9.01729 27.7524i 0.434348 1.33678i −0.459406 0.888226i \(-0.651938\pi\)
0.893754 0.448558i \(-0.148062\pi\)
\(432\) 0 0
\(433\) 29.5582 + 21.4753i 1.42048 + 1.03204i 0.991693 + 0.128630i \(0.0410581\pi\)
0.428785 + 0.903407i \(0.358942\pi\)
\(434\) −3.78075 + 4.19895i −0.181482 + 0.201556i
\(435\) 0 0
\(436\) 30.4240 13.5457i 1.45705 0.648719i
\(437\) 0.316129 + 3.00777i 0.0151225 + 0.143881i
\(438\) 0 0
\(439\) 10.7487 + 18.6173i 0.513009 + 0.888557i 0.999886 + 0.0150869i \(0.00480250\pi\)
−0.486877 + 0.873470i \(0.661864\pi\)
\(440\) −9.40081 + 3.52121i −0.448166 + 0.167867i
\(441\) 0 0
\(442\) −1.46597 + 4.51180i −0.0697293 + 0.214605i
\(443\) 30.5535 + 13.6033i 1.45164 + 0.646313i 0.972812 0.231595i \(-0.0743945\pi\)
0.478830 + 0.877908i \(0.341061\pi\)
\(444\) 0 0
\(445\) −24.5412 5.21639i −1.16336 0.247281i
\(446\) −2.05062 0.435873i −0.0970998 0.0206392i
\(447\) 0 0
\(448\) 22.7518 + 10.1298i 1.07492 + 0.478586i
\(449\) −12.2165 + 37.5984i −0.576530 + 1.77438i 0.0543777 + 0.998520i \(0.482682\pi\)
−0.630908 + 0.775858i \(0.717318\pi\)
\(450\) 0 0
\(451\) 1.00777 + 22.7700i 0.0474540 + 1.07220i
\(452\) −0.905290 1.56801i −0.0425813 0.0737529i
\(453\) 0 0
\(454\) 0.564564 + 5.37146i 0.0264963 + 0.252095i
\(455\) 38.8164 17.2822i 1.81974 0.810201i
\(456\) 0 0
\(457\) 25.1006 27.8771i 1.17416 1.30404i 0.230516 0.973069i \(-0.425959\pi\)
0.943642 0.330967i \(-0.107375\pi\)
\(458\) −1.81309 1.31729i −0.0847204 0.0615529i
\(459\) 0 0
\(460\) 2.99402 9.21464i 0.139597 0.429635i
\(461\) 9.68265 + 16.7708i 0.450966 + 0.781096i 0.998446 0.0557228i \(-0.0177463\pi\)
−0.547480 + 0.836818i \(0.684413\pi\)
\(462\) 0 0
\(463\) 7.17464 12.4268i 0.333434 0.577524i −0.649749 0.760149i \(-0.725126\pi\)
0.983183 + 0.182625i \(0.0584594\pi\)
\(464\) −8.36637 9.29180i −0.388399 0.431361i
\(465\) 0 0
\(466\) 0.195809 1.86300i 0.00907067 0.0863017i
\(467\) 6.89755 + 21.2285i 0.319180 + 0.982336i 0.973999 + 0.226551i \(0.0727449\pi\)
−0.654819 + 0.755786i \(0.727255\pi\)
\(468\) 0 0
\(469\) −5.73585 4.16734i −0.264857 0.192430i
\(470\) −4.13938 1.84297i −0.190935 0.0850099i
\(471\) 0 0
\(472\) 6.34827 10.9955i 0.292203 0.506110i
\(473\) −1.45940 2.92274i −0.0671034 0.134388i
\(474\) 0 0
\(475\) 3.70883 0.788336i 0.170173 0.0361714i
\(476\) −27.3160 + 19.8462i −1.25203 + 0.909651i
\(477\) 0 0
\(478\) −2.25103 6.92795i −0.102960 0.316877i
\(479\) 15.5651 17.2868i 0.711186 0.789852i −0.273929 0.961750i \(-0.588323\pi\)
0.985115 + 0.171898i \(0.0549898\pi\)
\(480\) 0 0
\(481\) −3.11742 29.6603i −0.142142 1.35239i
\(482\) 0.568967 + 0.631902i 0.0259157 + 0.0287823i
\(483\) 0 0
\(484\) −20.1760 + 6.19475i −0.917091 + 0.281580i
\(485\) 20.0790 0.911740
\(486\) 0 0
\(487\) −0.219083 + 0.159173i −0.00992760 + 0.00721282i −0.592738 0.805395i \(-0.701953\pi\)
0.582810 + 0.812608i \(0.301953\pi\)
\(488\) 1.00536 9.56538i 0.0455106 0.433004i
\(489\) 0 0
\(490\) −7.24692 1.54038i −0.327382 0.0695873i
\(491\) 3.84288 1.71096i 0.173427 0.0772146i −0.318187 0.948028i \(-0.603074\pi\)
0.491614 + 0.870813i \(0.336407\pi\)
\(492\) 0 0
\(493\) 15.0157 3.19169i 0.676274 0.143746i
\(494\) 1.78143 0.0801504
\(495\) 0 0
\(496\) −17.1173 −0.768589
\(497\) 22.8754 4.86233i 1.02610 0.218105i
\(498\) 0 0
\(499\) −14.0359 + 6.24920i −0.628334 + 0.279752i −0.696096 0.717949i \(-0.745081\pi\)
0.0677612 + 0.997702i \(0.478414\pi\)
\(500\) 13.5365 + 2.87728i 0.605373 + 0.128676i
\(501\) 0 0
\(502\) −0.347793 + 3.30903i −0.0155228 + 0.147689i
\(503\) 3.16786 2.30159i 0.141248 0.102623i −0.514917 0.857240i \(-0.672177\pi\)
0.656165 + 0.754617i \(0.272177\pi\)
\(504\) 0 0
\(505\) −37.1573 −1.65348
\(506\) −0.645186 + 1.64077i −0.0286820 + 0.0729411i
\(507\) 0 0
\(508\) −3.14596 3.49394i −0.139579 0.155019i
\(509\) 2.98422 + 28.3930i 0.132273 + 1.25850i 0.836280 + 0.548303i \(0.184726\pi\)
−0.704006 + 0.710194i \(0.748607\pi\)
\(510\) 0 0
\(511\) 11.0295 12.2494i 0.487914 0.541884i
\(512\) −5.95109 18.3156i −0.263004 0.809442i
\(513\) 0 0
\(514\) −4.78092 + 3.47354i −0.210877 + 0.153211i
\(515\) 13.4471 2.85826i 0.592549 0.125950i
\(516\) 0 0
\(517\) −17.2635 8.97371i −0.759246 0.394663i
\(518\) −4.49763 + 7.79012i −0.197615 + 0.342278i
\(519\) 0 0
\(520\) −10.6482 4.74089i −0.466955 0.207902i
\(521\) −11.5485 8.39049i −0.505950 0.367594i 0.305335 0.952245i \(-0.401232\pi\)
−0.811285 + 0.584651i \(0.801232\pi\)
\(522\) 0 0
\(523\) −10.2462 31.5345i −0.448034 1.37891i −0.879122 0.476597i \(-0.841870\pi\)
0.431088 0.902310i \(-0.358130\pi\)
\(524\) −0.801704 + 7.62771i −0.0350226 + 0.333218i
\(525\) 0 0
\(526\) 1.73352 + 1.92527i 0.0755850 + 0.0839456i
\(527\) 10.5080 18.2004i 0.457736 0.792822i
\(528\) 0 0
\(529\) 9.76231 + 16.9088i 0.424448 + 0.735166i
\(530\) 0.375166 1.15464i 0.0162962 0.0501545i
\(531\) 0 0
\(532\) 10.2575 + 7.45252i 0.444720 + 0.323108i
\(533\) −17.7081 + 19.6668i −0.767023 + 0.851865i
\(534\) 0 0
\(535\) −6.87672 + 3.06171i −0.297307 + 0.132369i
\(536\) 0.203299 + 1.93427i 0.00878120 + 0.0835475i
\(537\) 0 0
\(538\) −1.13222 1.96107i −0.0488136 0.0845476i
\(539\) −30.6613 8.48344i −1.32068 0.365407i
\(540\) 0 0
\(541\) −8.79490 + 27.0679i −0.378122 + 1.16374i 0.563226 + 0.826303i \(0.309560\pi\)
−0.941348 + 0.337437i \(0.890440\pi\)
\(542\) −0.969992 0.431868i −0.0416647 0.0185503i
\(543\) 0 0
\(544\) 13.6839 + 2.90860i 0.586693 + 0.124705i
\(545\) −45.9888 9.77523i −1.96995 0.418725i
\(546\) 0 0
\(547\) −28.0884 12.5058i −1.20098 0.534709i −0.293965 0.955816i \(-0.594975\pi\)
−0.907011 + 0.421108i \(0.861641\pi\)
\(548\) 0.645829 1.98766i 0.0275884 0.0849085i
\(549\) 0 0
\(550\) 2.13036 + 0.589432i 0.0908388 + 0.0251335i
\(551\) −2.88228 4.99226i −0.122789 0.212678i
\(552\) 0 0
\(553\) −1.82240 17.3390i −0.0774963 0.737328i
\(554\) 1.01610 0.452397i 0.0431700 0.0192205i
\(555\) 0 0
\(556\) −3.70382 + 4.11351i −0.157077 + 0.174452i
\(557\) −5.90145 4.28765i −0.250052 0.181674i 0.455698 0.890135i \(-0.349390\pi\)
−0.705750 + 0.708461i \(0.749390\pi\)
\(558\) 0 0
\(559\) 1.17215 3.60751i 0.0495767 0.152581i
\(560\) −19.4122 33.6230i −0.820316 1.42083i
\(561\) 0 0
\(562\) −0.00564923 + 0.00978475i −0.000238298 + 0.000412745i
\(563\) 24.4724 + 27.1794i 1.03139 + 1.14547i 0.989231 + 0.146363i \(0.0467567\pi\)
0.0421581 + 0.999111i \(0.486577\pi\)
\(564\) 0 0
\(565\) −0.267186 + 2.54211i −0.0112406 + 0.106947i
\(566\) −0.563400 1.73397i −0.0236815 0.0728841i
\(567\) 0 0
\(568\) −5.19020 3.77090i −0.217776 0.158224i
\(569\) −0.138387 0.0616140i −0.00580150 0.00258299i 0.403834 0.914832i \(-0.367677\pi\)
−0.409635 + 0.912249i \(0.634344\pi\)
\(570\) 0 0
\(571\) −21.6127 + 37.4343i −0.904463 + 1.56658i −0.0828262 + 0.996564i \(0.526395\pi\)
−0.821637 + 0.570012i \(0.806939\pi\)
\(572\) −21.7437 11.3026i −0.909150 0.472584i
\(573\) 0 0
\(574\) 7.80760 1.65956i 0.325883 0.0692686i
\(575\) −3.52502 + 2.56108i −0.147003 + 0.106804i
\(576\) 0 0
\(577\) 9.00017 + 27.6997i 0.374682 + 1.15315i 0.943693 + 0.330822i \(0.107326\pi\)
−0.569011 + 0.822330i \(0.692674\pi\)
\(578\) −0.317526 + 0.352648i −0.0132073 + 0.0146682i
\(579\) 0 0
\(580\) 1.93038 + 18.3664i 0.0801547 + 0.762621i
\(581\) −17.7169 19.6766i −0.735019 0.816322i
\(582\) 0 0
\(583\) 1.90773 4.85155i 0.0790103 0.200931i
\(584\) −4.52173 −0.187111
\(585\) 0 0
\(586\) 5.39985 3.92322i 0.223066 0.162067i
\(587\) −2.37226 + 22.5706i −0.0979137 + 0.931586i 0.829741 + 0.558148i \(0.188488\pi\)
−0.927655 + 0.373438i \(0.878179\pi\)
\(588\) 0 0
\(589\) −7.71934 1.64080i −0.318070 0.0676078i
\(590\) −8.01754 + 3.56964i −0.330077 + 0.146960i
\(591\) 0 0
\(592\) −26.6554 + 5.66579i −1.09553 + 0.232863i
\(593\) 22.9308 0.941656 0.470828 0.882225i \(-0.343955\pi\)
0.470828 + 0.882225i \(0.343955\pi\)
\(594\) 0 0
\(595\) 47.6673 1.95417
\(596\) −37.8633 + 8.04810i −1.55094 + 0.329663i
\(597\) 0 0
\(598\) −1.87012 + 0.832633i −0.0764750 + 0.0340489i
\(599\) −12.2275 2.59904i −0.499603 0.106194i −0.0487841 0.998809i \(-0.515535\pi\)
−0.450819 + 0.892615i \(0.648868\pi\)
\(600\) 0 0
\(601\) −2.34968 + 22.3557i −0.0958453 + 0.911907i 0.835921 + 0.548849i \(0.184934\pi\)
−0.931767 + 0.363058i \(0.881733\pi\)
\(602\) −0.925574 + 0.672469i −0.0377236 + 0.0274078i
\(603\) 0 0
\(604\) 21.2559 0.864892
\(605\) 28.1843 + 9.66704i 1.14585 + 0.393021i
\(606\) 0 0
\(607\) 17.8690 + 19.8455i 0.725279 + 0.805504i 0.987183 0.159590i \(-0.0510173\pi\)
−0.261905 + 0.965094i \(0.584351\pi\)
\(608\) −0.549118 5.22451i −0.0222697 0.211882i
\(609\) 0 0
\(610\) −4.44861 + 4.94068i −0.180119 + 0.200042i
\(611\) −6.98102 21.4854i −0.282422 0.869205i
\(612\) 0 0
\(613\) 35.1797 25.5595i 1.42089 1.03234i 0.429269 0.903176i \(-0.358771\pi\)
0.991623 0.129163i \(-0.0412289\pi\)
\(614\) 8.13027 1.72814i 0.328111 0.0697422i
\(615\) 0 0
\(616\) 6.74380 + 13.5058i 0.271716 + 0.544164i
\(617\) 20.7128 35.8756i 0.833864 1.44430i −0.0610871 0.998132i \(-0.519457\pi\)
0.894952 0.446163i \(-0.147210\pi\)
\(618\) 0 0
\(619\) 8.14129 + 3.62474i 0.327226 + 0.145690i 0.563773 0.825930i \(-0.309349\pi\)
−0.236547 + 0.971620i \(0.576016\pi\)
\(620\) 20.4539 + 14.8606i 0.821446 + 0.596816i
\(621\) 0 0
\(622\) −1.73638 5.34404i −0.0696227 0.214277i
\(623\) −3.94375 + 37.5223i −0.158003 + 1.50330i
\(624\) 0 0
\(625\) −20.8926 23.2036i −0.835704 0.928144i
\(626\) 0.190818 0.330506i 0.00762662 0.0132097i
\(627\) 0 0
\(628\) 0.319255 + 0.552966i 0.0127397 + 0.0220657i
\(629\) 10.3390 31.8202i 0.412244 1.26876i
\(630\) 0 0
\(631\) 4.58752 + 3.33303i 0.182626 + 0.132686i 0.675342 0.737504i \(-0.263996\pi\)
−0.492716 + 0.870190i \(0.663996\pi\)
\(632\) −3.20023 + 3.55422i −0.127298 + 0.141379i
\(633\) 0 0
\(634\) 1.04222 0.464025i 0.0413917 0.0184288i
\(635\) 0.693806 + 6.60113i 0.0275329 + 0.261958i
\(636\) 0 0
\(637\) −18.4693 31.9898i −0.731780 1.26748i
\(638\) −0.148586 3.35722i −0.00588257 0.132914i
\(639\) 0 0
\(640\) −6.88034 + 21.1755i −0.271970 + 0.837036i
\(641\) −24.4996 10.9079i −0.967678 0.430838i −0.138833 0.990316i \(-0.544335\pi\)
−0.828845 + 0.559478i \(0.811002\pi\)
\(642\) 0 0
\(643\) −13.8295 2.93955i −0.545382 0.115925i −0.0730222 0.997330i \(-0.523264\pi\)
−0.472360 + 0.881406i \(0.656598\pi\)
\(644\) −14.2515 3.02925i −0.561587 0.119369i
\(645\) 0 0
\(646\) 1.82572 + 0.812864i 0.0718321 + 0.0319817i
\(647\) 0.393698 1.21168i 0.0154779 0.0476360i −0.943019 0.332738i \(-0.892027\pi\)
0.958497 + 0.285102i \(0.0920275\pi\)
\(648\) 0 0
\(649\) −35.2907 + 13.2187i −1.38528 + 0.518878i
\(650\) 1.28325 + 2.22266i 0.0503334 + 0.0871799i
\(651\) 0 0
\(652\) 2.67505 + 25.4514i 0.104763 + 0.996753i
\(653\) 4.41090 1.96386i 0.172612 0.0768517i −0.318612 0.947885i \(-0.603217\pi\)
0.491223 + 0.871034i \(0.336550\pi\)
\(654\) 0 0
\(655\) 7.24523 8.04664i 0.283094 0.314408i
\(656\) 19.5632 + 14.2135i 0.763813 + 0.554942i
\(657\) 0 0
\(658\) −2.10558 + 6.48030i −0.0820840 + 0.252628i
\(659\) −11.0889 19.2065i −0.431961 0.748178i 0.565082 0.825035i \(-0.308845\pi\)
−0.997042 + 0.0768574i \(0.975511\pi\)
\(660\) 0 0
\(661\) 13.6987 23.7269i 0.532820 0.922871i −0.466446 0.884550i \(-0.654466\pi\)
0.999265 0.0383209i \(-0.0122009\pi\)
\(662\) −0.606812 0.673933i −0.0235844 0.0261931i
\(663\) 0 0
\(664\) −0.759228 + 7.22357i −0.0294638 + 0.280329i
\(665\) −5.53132 17.0236i −0.214495 0.660148i
\(666\) 0 0
\(667\) 5.35915 + 3.89365i 0.207507 + 0.150763i
\(668\) −33.1547 14.7614i −1.28279 0.571136i
\(669\) 0 0
\(670\) 0.672198 1.16428i 0.0259693 0.0449801i
\(671\) −20.3498 + 20.0215i −0.785594 + 0.772923i
\(672\) 0 0
\(673\) −34.4734 + 7.32754i −1.32885 + 0.282456i −0.817010 0.576624i \(-0.804370\pi\)
−0.511842 + 0.859080i \(0.671037\pi\)
\(674\) −4.19805 + 3.05006i −0.161703 + 0.117484i
\(675\) 0 0
\(676\) −1.08494 3.33910i −0.0417285 0.128427i
\(677\) 29.4752 32.7355i 1.13282 1.25813i 0.170757 0.985313i \(-0.445379\pi\)
0.962067 0.272815i \(-0.0879546\pi\)
\(678\) 0 0
\(679\) −3.15617 30.0289i −0.121123 1.15240i
\(680\) −8.74970 9.71753i −0.335536 0.372650i
\(681\) 0 0
\(682\) −3.55167 2.92422i −0.136001 0.111974i
\(683\) −42.2845 −1.61797 −0.808985 0.587829i \(-0.799983\pi\)
−0.808985 + 0.587829i \(0.799983\pi\)
\(684\) 0 0
\(685\) −2.38701 + 1.73426i −0.0912029 + 0.0662628i
\(686\) −0.314703 + 2.99420i −0.0120154 + 0.114319i
\(687\) 0 0
\(688\) −3.39020 0.720610i −0.129250 0.0274730i
\(689\) 5.52972 2.46199i 0.210666 0.0937943i
\(690\) 0 0
\(691\) 8.28186 1.76036i 0.315057 0.0669674i −0.0476694 0.998863i \(-0.515179\pi\)
0.362726 + 0.931896i \(0.381846\pi\)
\(692\) −2.90507 −0.110434
\(693\) 0 0
\(694\) −7.81709 −0.296733
\(695\) 7.64373 1.62472i 0.289943 0.0616293i
\(696\) 0 0
\(697\) −27.1223 + 12.0756i −1.02733 + 0.457397i
\(698\) 6.38874 + 1.35797i 0.241818 + 0.0513999i
\(699\) 0 0
\(700\) −1.90938 + 18.1666i −0.0721678 + 0.686631i
\(701\) 35.2342 25.5991i 1.33078 0.966865i 0.331046 0.943615i \(-0.392599\pi\)
0.999730 0.0232503i \(-0.00740148\pi\)
\(702\) 0 0
\(703\) −12.5638 −0.473854
\(704\) −7.42078 + 18.8717i −0.279681 + 0.711255i
\(705\) 0 0
\(706\) −5.66770 6.29462i −0.213307 0.236901i
\(707\) 5.84067 + 55.5703i 0.219661 + 2.08994i
\(708\) 0 0
\(709\) −4.03304 + 4.47915i −0.151464 + 0.168218i −0.814102 0.580722i \(-0.802770\pi\)
0.662638 + 0.748940i \(0.269437\pi\)
\(710\) 1.37036 + 4.21753i 0.0514287 + 0.158281i
\(711\) 0 0
\(712\) 8.37326 6.08353i 0.313801 0.227990i
\(713\) 8.87056 1.88550i 0.332205 0.0706124i
\(714\) 0 0
\(715\) 15.4553 + 30.9523i 0.577996 + 1.15755i
\(716\) −12.6530 + 21.9157i −0.472866 + 0.819028i
\(717\) 0 0
\(718\) −9.60122 4.27474i −0.358314 0.159532i
\(719\) 32.6897 + 23.7504i 1.21912 + 0.885741i 0.996027 0.0890560i \(-0.0283850\pi\)
0.223092 + 0.974797i \(0.428385\pi\)
\(720\) 0 0
\(721\) −6.38836 19.6614i −0.237915 0.732227i
\(722\) −0.487871 + 4.64179i −0.0181567 + 0.172749i
\(723\) 0 0
\(724\) −3.59329 3.99075i −0.133544 0.148315i
\(725\) 4.15251 7.19235i 0.154220 0.267117i
\(726\) 0 0
\(727\) −9.36031 16.2125i −0.347155 0.601290i 0.638588 0.769549i \(-0.279519\pi\)
−0.985743 + 0.168259i \(0.946185\pi\)
\(728\) −5.41643 + 16.6700i −0.200746 + 0.617833i
\(729\) 0 0
\(730\) 2.52864 + 1.83717i 0.0935893 + 0.0679966i
\(731\) 2.84739 3.16235i 0.105315 0.116964i
\(732\) 0 0
\(733\) 0.515414 0.229477i 0.0190373 0.00847594i −0.397196 0.917734i \(-0.630017\pi\)
0.416233 + 0.909258i \(0.363350\pi\)
\(734\) −0.740999 7.05013i −0.0273508 0.260225i
\(735\) 0 0
\(736\) 3.01837 + 5.22796i 0.111258 + 0.192705i
\(737\) 3.18335 4.81575i 0.117260 0.177391i
\(738\) 0 0
\(739\) 0.602004 1.85278i 0.0221451 0.0681555i −0.939373 0.342896i \(-0.888592\pi\)
0.961518 + 0.274741i \(0.0885921\pi\)
\(740\) 36.7700 + 16.3711i 1.35169 + 0.601813i
\(741\) 0 0
\(742\) −1.78579 0.379581i −0.0655583 0.0139349i
\(743\) −26.6669 5.66823i −0.978315 0.207947i −0.309111 0.951026i \(-0.600032\pi\)
−0.669204 + 0.743079i \(0.733365\pi\)
\(744\) 0 0
\(745\) 49.9236 + 22.2274i 1.82906 + 0.814350i
\(746\) −1.61067 + 4.95714i −0.0589709 + 0.181494i
\(747\) 0 0
\(748\) −17.1270 21.5052i −0.626224 0.786308i
\(749\) 5.65985 + 9.80315i 0.206807 + 0.358199i
\(750\) 0 0
\(751\) −3.16787 30.1402i −0.115597 1.09983i −0.886451 0.462822i \(-0.846837\pi\)
0.770854 0.637011i \(-0.219830\pi\)
\(752\) −18.8576 + 8.39595i −0.687667 + 0.306169i
\(753\) 0 0
\(754\) 2.61088 2.89968i 0.0950828 0.105600i
\(755\) −24.2772 17.6384i −0.883539 0.641929i
\(756\) 0 0
\(757\) 3.43224 10.5634i 0.124747 0.383931i −0.869108 0.494622i \(-0.835306\pi\)
0.993855 + 0.110691i \(0.0353064\pi\)
\(758\) −4.48528 7.76874i −0.162913 0.282173i
\(759\) 0 0
\(760\) −2.45515 + 4.25244i −0.0890576 + 0.154252i
\(761\) 22.3095 + 24.7772i 0.808717 + 0.898171i 0.996462 0.0840467i \(-0.0267845\pi\)
−0.187745 + 0.982218i \(0.560118\pi\)
\(762\) 0 0
\(763\) −7.39038 + 70.3147i −0.267550 + 2.54556i
\(764\) −9.92620 30.5497i −0.359117 1.10525i
\(765\) 0 0
\(766\) 2.86788 + 2.08364i 0.103621 + 0.0752849i
\(767\) −39.9735 17.7974i −1.44336 0.642625i
\(768\) 0 0
\(769\) 25.9701 44.9815i 0.936504 1.62207i 0.164575 0.986364i \(-0.447375\pi\)
0.771929 0.635709i \(-0.219292\pi\)
\(770\) 1.71610 10.2927i 0.0618439 0.370923i
\(771\) 0 0
\(772\) −41.3627 + 8.79191i −1.48868 + 0.316428i
\(773\) −6.24784 + 4.53932i −0.224719 + 0.163268i −0.694448 0.719542i \(-0.744352\pi\)
0.469729 + 0.882811i \(0.344352\pi\)
\(774\) 0 0
\(775\) −3.51343 10.8132i −0.126206 0.388423i
\(776\) −5.54240 + 6.15546i −0.198961 + 0.220968i
\(777\) 0 0
\(778\) −0.218171 2.07576i −0.00782182 0.0744197i
\(779\) 7.45990 + 8.28505i 0.267279 + 0.296843i
\(780\) 0 0
\(781\) 4.77872 + 18.4326i 0.170996 + 0.659569i
\(782\) −2.29655 −0.0821244
\(783\) 0 0
\(784\) −27.3060 + 19.8390i −0.975215 + 0.708535i
\(785\) 0.0942245 0.896486i 0.00336301 0.0319969i
\(786\) 0 0
\(787\) 19.2757 + 4.09717i 0.687104 + 0.146048i 0.538218 0.842806i \(-0.319098\pi\)
0.148886 + 0.988854i \(0.452431\pi\)
\(788\) 31.9444 14.2226i 1.13797 0.506658i
\(789\) 0 0
\(790\) 3.23370 0.687345i 0.115050 0.0244546i
\(791\) 3.84382 0.136670
\(792\) 0 0
\(793\) −33.1470 −1.17709
\(794\) 9.54139 2.02808i 0.338611 0.0719740i
\(795\) 0 0
\(796\) 43.9882 19.5848i 1.55912 0.694165i
\(797\) 13.7193 + 2.91612i 0.485961 + 0.103294i 0.444375 0.895841i \(-0.353426\pi\)
0.0415860 + 0.999135i \(0.486759\pi\)
\(798\) 0 0
\(799\) 2.64915 25.2050i 0.0937202 0.891689i
\(800\) 6.12297 4.44860i 0.216480 0.157282i
\(801\) 0 0
\(802\) 2.13170 0.0752731
\(803\) 10.3612 + 8.53071i 0.365638 + 0.301042i
\(804\) 0 0
\(805\) 13.7635 + 15.2859i 0.485099 + 0.538757i
\(806\) −0.558368 5.31251i −0.0196677 0.187125i
\(807\) 0 0
\(808\) 10.2565 11.3910i 0.360824 0.400736i
\(809\) 6.46767 + 19.9055i 0.227391 + 0.699839i 0.998040 + 0.0625783i \(0.0199323\pi\)
−0.770649 + 0.637260i \(0.780068\pi\)
\(810\) 0 0
\(811\) −1.57186 + 1.14203i −0.0551956 + 0.0401019i −0.615041 0.788495i \(-0.710861\pi\)
0.559845 + 0.828597i \(0.310861\pi\)
\(812\) 27.1642 5.77393i 0.953276 0.202625i
\(813\) 0 0
\(814\) −6.49866 3.37806i −0.227778 0.118401i
\(815\) 18.0646 31.2888i 0.632775 1.09600i
\(816\) 0 0
\(817\) −1.45980 0.649943i −0.0510718 0.0227386i
\(818\) 0.556008 + 0.403964i 0.0194404 + 0.0141243i
\(819\) 0 0
\(820\) −11.0369 33.9680i −0.385424 1.18621i
\(821\) 1.13327 10.7824i 0.0395515 0.376307i −0.956786 0.290794i \(-0.906080\pi\)
0.996337 0.0855130i \(-0.0272529\pi\)
\(822\) 0 0
\(823\) 31.8960 + 35.4241i 1.11182 + 1.23481i 0.969528 + 0.244982i \(0.0787819\pi\)
0.142296 + 0.989824i \(0.454551\pi\)
\(824\) −2.83556 + 4.91134i −0.0987815 + 0.171094i
\(825\) 0 0
\(826\) 6.59880 + 11.4295i 0.229601 + 0.397681i
\(827\) −11.5619 + 35.5838i −0.402046 + 1.23737i 0.521291 + 0.853379i \(0.325451\pi\)
−0.923337 + 0.383991i \(0.874549\pi\)
\(828\) 0 0
\(829\) −8.66207 6.29336i −0.300846 0.218578i 0.427113 0.904198i \(-0.359531\pi\)
−0.727959 + 0.685621i \(0.759531\pi\)
\(830\) 3.35949 3.73110i 0.116610 0.129508i
\(831\) 0 0
\(832\) −21.5097 + 9.57674i −0.745715 + 0.332014i
\(833\) −4.33162 41.2126i −0.150082 1.42793i
\(834\) 0 0
\(835\) 25.6181 + 44.3718i 0.886549 + 1.53555i
\(836\) −5.69284 + 8.61209i −0.196891 + 0.297856i
\(837\) 0 0
\(838\) −0.987051 + 3.03783i −0.0340971 + 0.104940i
\(839\) −14.0334 6.24809i −0.484488 0.215708i 0.149932 0.988696i \(-0.452094\pi\)
−0.634420 + 0.772988i \(0.718761\pi\)
\(840\) 0 0
\(841\) 16.0159 + 3.40429i 0.552274 + 0.117389i
\(842\) −1.92589 0.409360i −0.0663704 0.0141075i
\(843\) 0 0
\(844\) −14.4958 6.45394i −0.498966 0.222154i
\(845\) −1.53168 + 4.71402i −0.0526913 + 0.162167i
\(846\) 0 0
\(847\) 10.0272 43.6703i 0.344539 1.50053i
\(848\) −2.76543 4.78987i −0.0949654 0.164485i
\(849\) 0 0
\(850\) 0.300963 + 2.86347i 0.0103229 + 0.0982162i
\(851\) 13.1894 5.87228i 0.452125 0.201299i
\(852\) 0 0
\(853\) 27.7450 30.8139i 0.949970 1.05505i −0.0484478 0.998826i \(-0.515427\pi\)
0.998418 0.0562233i \(-0.0179059\pi\)
\(854\) 8.08825 + 5.87646i 0.276774 + 0.201088i
\(855\) 0 0
\(856\) 0.959576 2.95327i 0.0327976 0.100941i
\(857\) 9.20273 + 15.9396i 0.314359 + 0.544486i 0.979301 0.202409i \(-0.0648770\pi\)
−0.664942 + 0.746895i \(0.731544\pi\)
\(858\) 0 0
\(859\) 7.52426 13.0324i 0.256725 0.444660i −0.708638 0.705572i \(-0.750690\pi\)
0.965363 + 0.260912i \(0.0840233\pi\)
\(860\) 3.42542 + 3.80432i 0.116806 + 0.129726i
\(861\) 0 0
\(862\) 0.869760 8.27521i 0.0296241 0.281855i
\(863\) 4.45906 + 13.7236i 0.151788 + 0.467155i 0.997821 0.0659746i \(-0.0210156\pi\)
−0.846033 + 0.533130i \(0.821016\pi\)
\(864\) 0 0
\(865\) 3.31799 + 2.41066i 0.112815 + 0.0819649i
\(866\) 9.51747 + 4.23745i 0.323417 + 0.143994i
\(867\) 0 0
\(868\) 19.0095 32.9255i 0.645225 1.11756i
\(869\) 14.0385 2.10662i 0.476222 0.0714623i
\(870\) 0 0
\(871\) 6.55636 1.39360i 0.222154 0.0472202i
\(872\) 15.6910 11.4002i 0.531365 0.386059i
\(873\) 0 0
\(874\) 0.266492 + 0.820177i 0.00901421 + 0.0277429i
\(875\) −19.6589 + 21.8334i −0.664593 + 0.738105i
\(876\) 0 0
\(877\) 2.51656 + 23.9435i 0.0849782 + 0.808514i 0.951142 + 0.308754i \(0.0999119\pi\)
−0.866164 + 0.499760i \(0.833421\pi\)
\(878\) 4.10175 + 4.55545i 0.138427 + 0.153739i
\(879\) 0 0
\(880\) 26.6511 17.0010i 0.898409 0.573104i
\(881\) 10.0956 0.340129 0.170064 0.985433i \(-0.445602\pi\)
0.170064 + 0.985433i \(0.445602\pi\)
\(882\) 0 0
\(883\) −41.0332 + 29.8124i −1.38088 + 1.00327i −0.384079 + 0.923300i \(0.625481\pi\)
−0.996798 + 0.0799659i \(0.974519\pi\)
\(884\) 3.33666 31.7462i 0.112224 1.06774i
\(885\) 0 0
\(886\) 9.32839 + 1.98281i 0.313393 + 0.0666138i
\(887\) 2.35029 1.04641i 0.0789149 0.0351352i −0.366900 0.930261i \(-0.619581\pi\)
0.445815 + 0.895125i \(0.352914\pi\)
\(888\) 0 0
\(889\) 9.76319 2.07523i 0.327447 0.0696010i
\(890\) −7.15422 −0.239810
\(891\) 0 0
\(892\) 14.1064 0.472316
\(893\) −9.30898 + 1.97868i −0.311513 + 0.0662141i
\(894\) 0 0
\(895\) 32.6375 14.5311i 1.09095 0.485722i
\(896\) 32.7504 + 6.96130i 1.09411 + 0.232561i
\(897\) 0 0
\(898\) −1.17833 + 11.2111i −0.0393215 + 0.374119i
\(899\) −13.9843 + 10.1602i −0.466403 + 0.338862i
\(900\) 0 0
\(901\) 6.79061 0.226228
\(902\) 1.63102 + 6.29121i 0.0543071 + 0.209474i
\(903\) 0 0
\(904\) −0.705563 0.783607i −0.0234667 0.0260624i
\(905\) 0.792460 + 7.53975i 0.0263423 + 0.250630i
\(906\) 0 0
\(907\) 6.88861 7.65058i 0.228733 0.254033i −0.617843 0.786301i \(-0.711993\pi\)
0.846576 + 0.532268i \(0.178660\pi\)
\(908\) −11.2304 34.5636i −0.372693 1.14703i
\(909\) 0 0
\(910\) 9.80197 7.12155i 0.324932 0.236077i
\(911\) −15.2616 + 3.24395i −0.505639 + 0.107477i −0.453666 0.891172i \(-0.649884\pi\)
−0.0519727 + 0.998649i \(0.516551\pi\)
\(912\) 0 0
\(913\) 15.3677 15.1198i 0.508597 0.500394i
\(914\) 5.34829 9.26351i 0.176906 0.306410i
\(915\) 0 0
\(916\) 13.7761 + 6.13353i 0.455176 + 0.202657i
\(917\) −13.1729 9.57070i −0.435009 0.316052i
\(918\) 0 0
\(919\) 3.46483 + 10.6637i 0.114294 + 0.351761i 0.991799 0.127806i \(-0.0407935\pi\)
−0.877505 + 0.479568i \(0.840794\pi\)
\(920\) 0.589812 5.61168i 0.0194455 0.185012i
\(921\) 0 0
\(922\) 3.69493 + 4.10363i 0.121686 + 0.135146i
\(923\) −11.0549 + 19.1476i −0.363875 + 0.630251i
\(924\) 0 0
\(925\) −9.05036 15.6757i −0.297574 0.515413i
\(926\) 1.26440 3.89141i 0.0415506 0.127880i
\(927\) 0 0
\(928\) −9.30886 6.76328i −0.305578 0.222016i
\(929\) −15.7430 + 17.4843i −0.516510 + 0.573643i −0.943819 0.330463i \(-0.892795\pi\)
0.427309 + 0.904106i \(0.359462\pi\)
\(930\) 0 0
\(931\) −14.2158 + 6.32929i −0.465904 + 0.207434i
\(932\) 1.31755 + 12.5356i 0.0431577 + 0.410618i
\(933\) 0 0
\(934\) 3.18239 + 5.51206i 0.104131 + 0.180360i
\(935\) 1.71609 + 38.7741i 0.0561221 + 1.26805i
\(936\) 0 0
\(937\) 5.76486 17.7424i 0.188330 0.579619i −0.811660 0.584130i \(-0.801436\pi\)
0.999990 + 0.00451068i \(0.00143580\pi\)
\(938\) −1.84689 0.822288i −0.0603031 0.0268487i
\(939\) 0 0
\(940\) 29.8225 + 6.33896i 0.972702 + 0.206754i
\(941\) −31.7826 6.75560i −1.03608 0.220226i −0.341683 0.939815i \(-0.610997\pi\)
−0.694400 + 0.719589i \(0.744330\pi\)
\(942\) 0 0
\(943\) −11.7037 5.21082i −0.381125 0.169688i
\(944\) −12.3551 + 38.0250i −0.402123 + 1.23761i
\(945\) 0 0
\(946\) −0.580329 0.728681i −0.0188681 0.0236915i
\(947\) −1.92137 3.32790i −0.0624360 0.108142i 0.833118 0.553096i \(-0.186554\pi\)
−0.895554 + 0.444953i \(0.853220\pi\)
\(948\) 0 0
\(949\) 1.62891 + 15.4980i 0.0528765 + 0.503087i
\(950\) 0.987720 0.439761i 0.0320459 0.0142677i
\(951\) 0 0
\(952\) −13.1576 + 14.6130i −0.426441 + 0.473610i
\(953\) 15.4434 + 11.2203i 0.500262 + 0.363461i 0.809117 0.587648i \(-0.199946\pi\)
−0.308855 + 0.951109i \(0.599946\pi\)
\(954\) 0 0
\(955\) −14.0134 + 43.1289i −0.453464 + 1.39562i
\(956\) 24.5077 + 42.4486i 0.792636 + 1.37289i
\(957\) 0 0
\(958\) 3.31651 5.74436i 0.107152 0.185592i
\(959\) 2.96887 + 3.29726i 0.0958698 + 0.106474i
\(960\) 0 0
\(961\) 0.766796 7.29558i 0.0247354 0.235341i
\(962\) −2.62793 8.08795i −0.0847280 0.260766i
\(963\) 0 0
\(964\) −4.62879 3.36302i −0.149083 0.108315i
\(965\) 54.5376 + 24.2817i 1.75563 + 0.781655i
\(966\) 0 0
\(967\) −13.2813 + 23.0039i −0.427099 + 0.739757i −0.996614 0.0822239i \(-0.973798\pi\)
0.569515 + 0.821981i \(0.307131\pi\)
\(968\) −10.7433 + 5.97185i −0.345302 + 0.191943i
\(969\) 0 0
\(970\) 5.60037 1.19040i 0.179817 0.0382213i
\(971\) −41.3472 + 30.0405i −1.32689 + 0.964045i −0.327076 + 0.944998i \(0.606063\pi\)
−0.999819 + 0.0190472i \(0.993937\pi\)
\(972\) 0 0
\(973\) −3.63134 11.1761i −0.116415 0.358290i
\(974\) −0.0516693 + 0.0573846i −0.00165559 + 0.00183872i
\(975\) 0 0
\(976\) 3.16592 + 30.1217i 0.101339 + 0.964171i
\(977\) 14.1686 + 15.7358i 0.453292 + 0.503432i 0.925862 0.377861i \(-0.123340\pi\)
−0.472570 + 0.881293i \(0.656674\pi\)
\(978\) 0 0
\(979\) −30.6638 1.85712i −0.980020 0.0593539i
\(980\) 49.8521 1.59247
\(981\) 0 0
\(982\) 0.970410 0.705044i 0.0309670 0.0224989i
\(983\) 5.31375 50.5569i 0.169482 1.61252i −0.497515 0.867456i \(-0.665754\pi\)
0.666997 0.745061i \(-0.267579\pi\)
\(984\) 0 0
\(985\) −48.2870 10.2637i −1.53855 0.327029i
\(986\) 3.99892 1.78043i 0.127352 0.0567006i
\(987\) 0 0
\(988\) −11.7249 + 2.49219i −0.373017 + 0.0792873i
\(989\) 1.83625 0.0583895
\(990\) 0 0
\(991\) −13.1480 −0.417662 −0.208831 0.977952i \(-0.566966\pi\)
−0.208831 + 0.977952i \(0.566966\pi\)
\(992\) −15.4082 + 3.27512i −0.489211 + 0.103985i
\(993\) 0 0
\(994\) 6.09209 2.71237i 0.193229 0.0860312i
\(995\) −66.4923 14.1334i −2.10795 0.448058i
\(996\) 0 0
\(997\) 3.88937 37.0048i 0.123177 1.17195i −0.741969 0.670435i \(-0.766108\pi\)
0.865146 0.501520i \(-0.167226\pi\)
\(998\) −3.54437 + 2.57514i −0.112195 + 0.0815146i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.64.5 72
3.2 odd 2 99.2.m.b.31.5 yes 72
9.2 odd 6 99.2.m.b.97.5 yes 72
9.4 even 3 891.2.f.e.163.5 36
9.5 odd 6 891.2.f.f.163.5 36
9.7 even 3 inner 297.2.n.b.262.5 72
11.5 even 5 inner 297.2.n.b.280.5 72
33.5 odd 10 99.2.m.b.49.5 yes 72
33.26 odd 10 1089.2.e.p.364.9 36
33.29 even 10 1089.2.e.o.364.10 36
99.4 even 15 9801.2.a.cp.1.9 18
99.5 odd 30 891.2.f.f.82.5 36
99.16 even 15 inner 297.2.n.b.181.5 72
99.29 even 30 1089.2.e.o.727.10 36
99.38 odd 30 99.2.m.b.16.5 72
99.40 odd 30 9801.2.a.cn.1.10 18
99.49 even 15 891.2.f.e.82.5 36
99.59 odd 30 9801.2.a.cm.1.10 18
99.92 odd 30 1089.2.e.p.727.9 36
99.95 even 30 9801.2.a.co.1.9 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.5 72 99.38 odd 30
99.2.m.b.31.5 yes 72 3.2 odd 2
99.2.m.b.49.5 yes 72 33.5 odd 10
99.2.m.b.97.5 yes 72 9.2 odd 6
297.2.n.b.64.5 72 1.1 even 1 trivial
297.2.n.b.181.5 72 99.16 even 15 inner
297.2.n.b.262.5 72 9.7 even 3 inner
297.2.n.b.280.5 72 11.5 even 5 inner
891.2.f.e.82.5 36 99.49 even 15
891.2.f.e.163.5 36 9.4 even 3
891.2.f.f.82.5 36 99.5 odd 30
891.2.f.f.163.5 36 9.5 odd 6
1089.2.e.o.364.10 36 33.29 even 10
1089.2.e.o.727.10 36 99.29 even 30
1089.2.e.p.364.9 36 33.26 odd 10
1089.2.e.p.727.9 36 99.92 odd 30
9801.2.a.cm.1.10 18 99.59 odd 30
9801.2.a.cn.1.10 18 99.40 odd 30
9801.2.a.co.1.9 18 99.95 even 30
9801.2.a.cp.1.9 18 99.4 even 15