Properties

Label 297.2.n.b.37.6
Level $297$
Weight $2$
Character 297.37
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(37,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 37.6
Character \(\chi\) \(=\) 297.37
Dual form 297.2.n.b.289.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0603978 - 0.574647i) q^{2} +(1.62972 + 0.346409i) q^{4} +(0.314048 + 2.98797i) q^{5} +(-0.779082 + 0.865259i) q^{7} +(0.654602 - 2.01466i) q^{8} +1.73599 q^{10} +(0.565602 + 3.26804i) q^{11} +(-3.60501 + 1.60505i) q^{13} +(0.450163 + 0.499957i) q^{14} +(1.92600 + 0.857509i) q^{16} +(-0.254185 + 0.184677i) q^{17} +(1.96794 - 6.05670i) q^{19} +(-0.523246 + 4.97835i) q^{20} +(1.91213 - 0.127639i) q^{22} +(-0.0427501 + 0.0740453i) q^{23} +(-3.93860 + 0.837174i) q^{25} +(0.704604 + 2.16855i) q^{26} +(-1.56942 + 1.14025i) q^{28} +(5.15218 - 5.72208i) q^{29} +(5.96439 - 2.65552i) q^{31} +(2.72743 - 4.72404i) q^{32} +(0.0907715 + 0.157221i) q^{34} +(-2.83004 - 2.05614i) q^{35} +(-1.92922 - 5.93753i) q^{37} +(-3.36160 - 1.49668i) q^{38} +(6.22531 + 1.32323i) q^{40} +(-3.88703 - 4.31698i) q^{41} +(3.39229 + 5.87562i) q^{43} +(-0.210303 + 5.52194i) q^{44} +(0.0399679 + 0.0290384i) q^{46} +(-0.320574 + 0.0681401i) q^{47} +(0.589996 + 5.61344i) q^{49} +(0.243197 + 2.31387i) q^{50} +(-6.43117 + 1.36699i) q^{52} +(-1.96000 - 1.42402i) q^{53} +(-9.58718 + 2.71632i) q^{55} +(1.23321 + 2.13598i) q^{56} +(-2.97699 - 3.30629i) q^{58} +(-2.24586 - 0.477372i) q^{59} +(-12.5039 - 5.56709i) q^{61} +(-1.16575 - 3.58780i) q^{62} +(0.861321 + 0.625787i) q^{64} +(-5.92799 - 10.2676i) q^{65} +(-5.83989 + 10.1150i) q^{67} +(-0.478226 + 0.212920i) q^{68} +(-1.35248 + 1.50208i) q^{70} +(7.05272 - 5.12410i) q^{71} +(0.910538 + 2.80235i) q^{73} +(-3.52850 + 0.750007i) q^{74} +(5.30529 - 9.18904i) q^{76} +(-3.26835 - 2.05668i) q^{77} +(0.928965 - 8.83851i) q^{79} +(-1.95735 + 6.02412i) q^{80} +(-2.71551 + 1.97293i) q^{82} +(-4.52916 - 2.01651i) q^{83} +(-0.631634 - 0.701501i) q^{85} +(3.58129 - 1.59449i) q^{86} +(6.95423 + 0.999772i) q^{88} -2.12862 q^{89} +(1.41981 - 4.36973i) q^{91} +(-0.0953208 + 0.105864i) q^{92} +(0.0197945 + 0.188332i) q^{94} +(18.7153 + 3.97805i) q^{95} +(0.00928623 - 0.0883526i) q^{97} +3.26138 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0603978 0.574647i 0.0427077 0.406337i −0.952195 0.305492i \(-0.901179\pi\)
0.994902 0.100844i \(-0.0321544\pi\)
\(3\) 0 0
\(4\) 1.62972 + 0.346409i 0.814862 + 0.173204i
\(5\) 0.314048 + 2.98797i 0.140447 + 1.33626i 0.806889 + 0.590704i \(0.201150\pi\)
−0.666442 + 0.745557i \(0.732184\pi\)
\(6\) 0 0
\(7\) −0.779082 + 0.865259i −0.294465 + 0.327037i −0.872164 0.489213i \(-0.837284\pi\)
0.577699 + 0.816250i \(0.303951\pi\)
\(8\) 0.654602 2.01466i 0.231437 0.712289i
\(9\) 0 0
\(10\) 1.73599 0.548970
\(11\) 0.565602 + 3.26804i 0.170535 + 0.985352i
\(12\) 0 0
\(13\) −3.60501 + 1.60505i −0.999849 + 0.445161i −0.840354 0.542037i \(-0.817653\pi\)
−0.159495 + 0.987199i \(0.550986\pi\)
\(14\) 0.450163 + 0.499957i 0.120311 + 0.133619i
\(15\) 0 0
\(16\) 1.92600 + 0.857509i 0.481499 + 0.214377i
\(17\) −0.254185 + 0.184677i −0.0616490 + 0.0447906i −0.618183 0.786034i \(-0.712131\pi\)
0.556534 + 0.830825i \(0.312131\pi\)
\(18\) 0 0
\(19\) 1.96794 6.05670i 0.451477 1.38950i −0.423746 0.905781i \(-0.639285\pi\)
0.875222 0.483721i \(-0.160715\pi\)
\(20\) −0.523246 + 4.97835i −0.117001 + 1.11319i
\(21\) 0 0
\(22\) 1.91213 0.127639i 0.407668 0.0272126i
\(23\) −0.0427501 + 0.0740453i −0.00891401 + 0.0154395i −0.870448 0.492260i \(-0.836171\pi\)
0.861534 + 0.507700i \(0.169504\pi\)
\(24\) 0 0
\(25\) −3.93860 + 0.837174i −0.787719 + 0.167435i
\(26\) 0.704604 + 2.16855i 0.138184 + 0.425287i
\(27\) 0 0
\(28\) −1.56942 + 1.14025i −0.296593 + 0.215487i
\(29\) 5.15218 5.72208i 0.956737 1.06256i −0.0412506 0.999149i \(-0.513134\pi\)
0.997987 0.0634149i \(-0.0201991\pi\)
\(30\) 0 0
\(31\) 5.96439 2.65552i 1.07124 0.476945i 0.206125 0.978526i \(-0.433915\pi\)
0.865111 + 0.501581i \(0.167248\pi\)
\(32\) 2.72743 4.72404i 0.482146 0.835101i
\(33\) 0 0
\(34\) 0.0907715 + 0.157221i 0.0155672 + 0.0269632i
\(35\) −2.83004 2.05614i −0.478363 0.347551i
\(36\) 0 0
\(37\) −1.92922 5.93753i −0.317162 0.976124i −0.974855 0.222838i \(-0.928468\pi\)
0.657694 0.753286i \(-0.271532\pi\)
\(38\) −3.36160 1.49668i −0.545324 0.242794i
\(39\) 0 0
\(40\) 6.22531 + 1.32323i 0.984308 + 0.209221i
\(41\) −3.88703 4.31698i −0.607052 0.674199i 0.358764 0.933428i \(-0.383198\pi\)
−0.965816 + 0.259229i \(0.916532\pi\)
\(42\) 0 0
\(43\) 3.39229 + 5.87562i 0.517320 + 0.896024i 0.999798 + 0.0201157i \(0.00640347\pi\)
−0.482478 + 0.875908i \(0.660263\pi\)
\(44\) −0.210303 + 5.52194i −0.0317043 + 0.832463i
\(45\) 0 0
\(46\) 0.0399679 + 0.0290384i 0.00589294 + 0.00428147i
\(47\) −0.320574 + 0.0681401i −0.0467605 + 0.00993925i −0.231233 0.972899i \(-0.574276\pi\)
0.184472 + 0.982838i \(0.440942\pi\)
\(48\) 0 0
\(49\) 0.589996 + 5.61344i 0.0842852 + 0.801920i
\(50\) 0.243197 + 2.31387i 0.0343933 + 0.327230i
\(51\) 0 0
\(52\) −6.43117 + 1.36699i −0.891843 + 0.189567i
\(53\) −1.96000 1.42402i −0.269227 0.195605i 0.444978 0.895541i \(-0.353211\pi\)
−0.714205 + 0.699937i \(0.753211\pi\)
\(54\) 0 0
\(55\) −9.58718 + 2.71632i −1.29274 + 0.366269i
\(56\) 1.23321 + 2.13598i 0.164795 + 0.285433i
\(57\) 0 0
\(58\) −2.97699 3.30629i −0.390899 0.434137i
\(59\) −2.24586 0.477372i −0.292386 0.0621485i 0.0593835 0.998235i \(-0.481087\pi\)
−0.351769 + 0.936087i \(0.614420\pi\)
\(60\) 0 0
\(61\) −12.5039 5.56709i −1.60096 0.712792i −0.604478 0.796622i \(-0.706618\pi\)
−0.996480 + 0.0838297i \(0.973285\pi\)
\(62\) −1.16575 3.58780i −0.148050 0.455652i
\(63\) 0 0
\(64\) 0.861321 + 0.625787i 0.107665 + 0.0782233i
\(65\) −5.92799 10.2676i −0.735277 1.27354i
\(66\) 0 0
\(67\) −5.83989 + 10.1150i −0.713456 + 1.23574i 0.250096 + 0.968221i \(0.419538\pi\)
−0.963552 + 0.267521i \(0.913795\pi\)
\(68\) −0.478226 + 0.212920i −0.0579934 + 0.0258203i
\(69\) 0 0
\(70\) −1.35248 + 1.50208i −0.161653 + 0.179533i
\(71\) 7.05272 5.12410i 0.837004 0.608119i −0.0845279 0.996421i \(-0.526938\pi\)
0.921532 + 0.388302i \(0.126938\pi\)
\(72\) 0 0
\(73\) 0.910538 + 2.80235i 0.106570 + 0.327990i 0.990096 0.140393i \(-0.0448367\pi\)
−0.883525 + 0.468383i \(0.844837\pi\)
\(74\) −3.52850 + 0.750007i −0.410180 + 0.0871865i
\(75\) 0 0
\(76\) 5.30529 9.18904i 0.608559 1.05405i
\(77\) −3.26835 2.05668i −0.372463 0.234381i
\(78\) 0 0
\(79\) 0.928965 8.83851i 0.104517 0.994410i −0.809055 0.587733i \(-0.800021\pi\)
0.913572 0.406677i \(-0.133313\pi\)
\(80\) −1.95735 + 6.02412i −0.218839 + 0.673517i
\(81\) 0 0
\(82\) −2.71551 + 1.97293i −0.299878 + 0.217874i
\(83\) −4.52916 2.01651i −0.497140 0.221341i 0.142821 0.989749i \(-0.454383\pi\)
−0.639961 + 0.768408i \(0.721049\pi\)
\(84\) 0 0
\(85\) −0.631634 0.701501i −0.0685104 0.0760885i
\(86\) 3.58129 1.59449i 0.386181 0.171939i
\(87\) 0 0
\(88\) 6.95423 + 0.999772i 0.741323 + 0.106576i
\(89\) −2.12862 −0.225634 −0.112817 0.993616i \(-0.535987\pi\)
−0.112817 + 0.993616i \(0.535987\pi\)
\(90\) 0 0
\(91\) 1.41981 4.36973i 0.148837 0.458072i
\(92\) −0.0953208 + 0.105864i −0.00993788 + 0.0110371i
\(93\) 0 0
\(94\) 0.0197945 + 0.188332i 0.00204165 + 0.0194250i
\(95\) 18.7153 + 3.97805i 1.92014 + 0.408139i
\(96\) 0 0
\(97\) 0.00928623 0.0883526i 0.000942874 0.00897084i −0.994040 0.109013i \(-0.965231\pi\)
0.994983 + 0.100042i \(0.0318977\pi\)
\(98\) 3.26138 0.329449
\(99\) 0 0
\(100\) −6.70883 −0.670883
\(101\) −0.214961 + 2.04522i −0.0213894 + 0.203507i −0.999998 0.00222652i \(-0.999291\pi\)
0.978608 + 0.205733i \(0.0659579\pi\)
\(102\) 0 0
\(103\) 2.95079 + 0.627210i 0.290750 + 0.0618009i 0.350978 0.936384i \(-0.385849\pi\)
−0.0602275 + 0.998185i \(0.519183\pi\)
\(104\) 0.873787 + 8.31352i 0.0856818 + 0.815208i
\(105\) 0 0
\(106\) −0.936690 + 1.04030i −0.0909794 + 0.101043i
\(107\) −3.70600 + 11.4059i −0.358272 + 1.10265i 0.595815 + 0.803121i \(0.296829\pi\)
−0.954088 + 0.299527i \(0.903171\pi\)
\(108\) 0 0
\(109\) 5.20013 0.498082 0.249041 0.968493i \(-0.419885\pi\)
0.249041 + 0.968493i \(0.419885\pi\)
\(110\) 0.981882 + 5.67330i 0.0936187 + 0.540928i
\(111\) 0 0
\(112\) −2.24248 + 0.998415i −0.211894 + 0.0943414i
\(113\) −12.8657 14.2889i −1.21031 1.34418i −0.922262 0.386566i \(-0.873661\pi\)
−0.288046 0.957617i \(-0.593005\pi\)
\(114\) 0 0
\(115\) −0.234671 0.104482i −0.0218832 0.00974301i
\(116\) 10.3788 7.54065i 0.963649 0.700132i
\(117\) 0 0
\(118\) −0.409965 + 1.26174i −0.0377403 + 0.116153i
\(119\) 0.0382384 0.363814i 0.00350531 0.0333508i
\(120\) 0 0
\(121\) −10.3602 + 3.69682i −0.941835 + 0.336074i
\(122\) −3.95432 + 6.84907i −0.358007 + 0.620086i
\(123\) 0 0
\(124\) 10.6402 2.26164i 0.955518 0.203102i
\(125\) 0.903736 + 2.78141i 0.0808326 + 0.248777i
\(126\) 0 0
\(127\) 10.6652 7.74873i 0.946384 0.687588i −0.00356461 0.999994i \(-0.501135\pi\)
0.949949 + 0.312405i \(0.101135\pi\)
\(128\) 7.71165 8.56465i 0.681620 0.757015i
\(129\) 0 0
\(130\) −6.25827 + 2.78636i −0.548887 + 0.244380i
\(131\) −8.98588 + 15.5640i −0.785100 + 1.35983i 0.143839 + 0.989601i \(0.454055\pi\)
−0.928939 + 0.370233i \(0.879278\pi\)
\(132\) 0 0
\(133\) 3.70742 + 6.42144i 0.321474 + 0.556810i
\(134\) 5.45983 + 3.96680i 0.471657 + 0.342679i
\(135\) 0 0
\(136\) 0.205670 + 0.632986i 0.0176360 + 0.0542781i
\(137\) 14.9837 + 6.67119i 1.28015 + 0.569958i 0.930283 0.366842i \(-0.119561\pi\)
0.349864 + 0.936801i \(0.386228\pi\)
\(138\) 0 0
\(139\) 11.6415 + 2.47448i 0.987421 + 0.209883i 0.673195 0.739465i \(-0.264922\pi\)
0.314226 + 0.949348i \(0.398255\pi\)
\(140\) −3.89991 4.33129i −0.329603 0.366061i
\(141\) 0 0
\(142\) −2.51858 4.36231i −0.211355 0.366077i
\(143\) −7.28438 10.8735i −0.609150 0.909287i
\(144\) 0 0
\(145\) 18.7154 + 13.5976i 1.55423 + 1.12922i
\(146\) 1.66535 0.353982i 0.137826 0.0292958i
\(147\) 0 0
\(148\) −1.08729 10.3448i −0.0893744 0.850340i
\(149\) −0.473693 4.50689i −0.0388065 0.369219i −0.996641 0.0818976i \(-0.973902\pi\)
0.957834 0.287321i \(-0.0927647\pi\)
\(150\) 0 0
\(151\) 2.86682 0.609361i 0.233298 0.0495891i −0.0897788 0.995962i \(-0.528616\pi\)
0.323077 + 0.946373i \(0.395283\pi\)
\(152\) −10.9140 7.92945i −0.885239 0.643164i
\(153\) 0 0
\(154\) −1.37927 + 1.75393i −0.111144 + 0.141336i
\(155\) 9.80771 + 16.9874i 0.787774 + 1.36446i
\(156\) 0 0
\(157\) −12.0802 13.4165i −0.964108 1.07075i −0.997454 0.0713070i \(-0.977283\pi\)
0.0333460 0.999444i \(-0.489384\pi\)
\(158\) −5.02291 1.06765i −0.399602 0.0849379i
\(159\) 0 0
\(160\) 14.9718 + 6.66589i 1.18363 + 0.526985i
\(161\) −0.0307625 0.0946773i −0.00242443 0.00746161i
\(162\) 0 0
\(163\) 4.71129 + 3.42295i 0.369017 + 0.268106i 0.756803 0.653643i \(-0.226760\pi\)
−0.387786 + 0.921749i \(0.626760\pi\)
\(164\) −4.83934 8.38199i −0.377889 0.654523i
\(165\) 0 0
\(166\) −1.43233 + 2.48087i −0.111171 + 0.192553i
\(167\) 4.58758 2.04252i 0.354997 0.158055i −0.221487 0.975163i \(-0.571091\pi\)
0.576484 + 0.817108i \(0.304424\pi\)
\(168\) 0 0
\(169\) 1.72118 1.91157i 0.132399 0.147044i
\(170\) −0.441265 + 0.320598i −0.0338435 + 0.0245887i
\(171\) 0 0
\(172\) 3.49313 + 10.7508i 0.266349 + 0.819738i
\(173\) −15.2492 + 3.24131i −1.15937 + 0.246433i −0.747153 0.664652i \(-0.768580\pi\)
−0.412221 + 0.911084i \(0.635247\pi\)
\(174\) 0 0
\(175\) 2.34412 4.06013i 0.177199 0.306917i
\(176\) −1.71303 + 6.77925i −0.129124 + 0.511005i
\(177\) 0 0
\(178\) −0.128564 + 1.22321i −0.00963629 + 0.0916832i
\(179\) −2.17822 + 6.70387i −0.162808 + 0.501071i −0.998868 0.0475668i \(-0.984853\pi\)
0.836060 + 0.548638i \(0.184853\pi\)
\(180\) 0 0
\(181\) −2.02068 + 1.46811i −0.150196 + 0.109124i −0.660345 0.750962i \(-0.729590\pi\)
0.510149 + 0.860086i \(0.329590\pi\)
\(182\) −2.42530 1.07981i −0.179775 0.0800410i
\(183\) 0 0
\(184\) 0.121192 + 0.134597i 0.00893437 + 0.00992262i
\(185\) 17.1353 7.62912i 1.25981 0.560904i
\(186\) 0 0
\(187\) −0.747298 0.726235i −0.0546479 0.0531076i
\(188\) −0.546051 −0.0398249
\(189\) 0 0
\(190\) 3.41633 10.5144i 0.247847 0.762795i
\(191\) 7.91112 8.78619i 0.572428 0.635746i −0.385516 0.922701i \(-0.625976\pi\)
0.957944 + 0.286955i \(0.0926431\pi\)
\(192\) 0 0
\(193\) −0.705218 6.70970i −0.0507627 0.482975i −0.990139 0.140087i \(-0.955262\pi\)
0.939376 0.342887i \(-0.111405\pi\)
\(194\) −0.0502106 0.0106726i −0.00360491 0.000766248i
\(195\) 0 0
\(196\) −0.983012 + 9.35274i −0.0702152 + 0.668053i
\(197\) 20.6474 1.47107 0.735534 0.677488i \(-0.236931\pi\)
0.735534 + 0.677488i \(0.236931\pi\)
\(198\) 0 0
\(199\) −13.2862 −0.941832 −0.470916 0.882178i \(-0.656077\pi\)
−0.470916 + 0.882178i \(0.656077\pi\)
\(200\) −0.891593 + 8.48294i −0.0630451 + 0.599834i
\(201\) 0 0
\(202\) 1.16229 + 0.247053i 0.0817788 + 0.0173826i
\(203\) 0.937103 + 8.91594i 0.0657718 + 0.625777i
\(204\) 0 0
\(205\) 11.6783 12.9701i 0.815647 0.905868i
\(206\) 0.538646 1.65778i 0.0375292 0.115503i
\(207\) 0 0
\(208\) −8.31958 −0.576859
\(209\) 20.9066 + 3.00563i 1.44614 + 0.207904i
\(210\) 0 0
\(211\) −7.62355 + 3.39422i −0.524827 + 0.233668i −0.652009 0.758211i \(-0.726074\pi\)
0.127182 + 0.991879i \(0.459407\pi\)
\(212\) −2.70097 2.99973i −0.185503 0.206022i
\(213\) 0 0
\(214\) 6.33052 + 2.81853i 0.432746 + 0.192671i
\(215\) −16.4908 + 11.9813i −1.12467 + 0.817117i
\(216\) 0 0
\(217\) −2.34904 + 7.22960i −0.159463 + 0.490778i
\(218\) 0.314076 2.98824i 0.0212719 0.202389i
\(219\) 0 0
\(220\) −16.5654 + 1.10578i −1.11684 + 0.0745514i
\(221\) 0.619925 1.07374i 0.0417007 0.0722277i
\(222\) 0 0
\(223\) 0.375272 0.0797665i 0.0251301 0.00534156i −0.195330 0.980738i \(-0.562578\pi\)
0.220460 + 0.975396i \(0.429244\pi\)
\(224\) 1.96263 + 6.04035i 0.131134 + 0.403588i
\(225\) 0 0
\(226\) −8.98811 + 6.53024i −0.597880 + 0.434385i
\(227\) −12.0537 + 13.3870i −0.800035 + 0.888529i −0.995747 0.0921329i \(-0.970632\pi\)
0.195712 + 0.980661i \(0.437298\pi\)
\(228\) 0 0
\(229\) 12.2670 5.46161i 0.810624 0.360913i 0.0407985 0.999167i \(-0.487010\pi\)
0.769826 + 0.638254i \(0.220343\pi\)
\(230\) −0.0742139 + 0.128542i −0.00489352 + 0.00847583i
\(231\) 0 0
\(232\) −8.15540 14.1256i −0.535428 0.927389i
\(233\) −2.72611 1.98063i −0.178593 0.129756i 0.494897 0.868952i \(-0.335206\pi\)
−0.673490 + 0.739196i \(0.735206\pi\)
\(234\) 0 0
\(235\) −0.304276 0.936466i −0.0198488 0.0610883i
\(236\) −3.49476 1.55597i −0.227490 0.101285i
\(237\) 0 0
\(238\) −0.206755 0.0439472i −0.0134020 0.00284867i
\(239\) 15.5217 + 17.2386i 1.00401 + 1.11507i 0.993351 + 0.115128i \(0.0367278\pi\)
0.0106638 + 0.999943i \(0.496606\pi\)
\(240\) 0 0
\(241\) −7.58206 13.1325i −0.488404 0.845940i 0.511507 0.859279i \(-0.329087\pi\)
−0.999911 + 0.0133389i \(0.995754\pi\)
\(242\) 1.49863 + 6.17673i 0.0963358 + 0.397055i
\(243\) 0 0
\(244\) −18.4494 13.4043i −1.18110 0.858120i
\(245\) −16.5875 + 3.52578i −1.05974 + 0.225254i
\(246\) 0 0
\(247\) 2.62688 + 24.9931i 0.167144 + 1.59027i
\(248\) −1.44566 13.7545i −0.0917993 0.873412i
\(249\) 0 0
\(250\) 1.65291 0.351338i 0.104539 0.0222205i
\(251\) −0.471095 0.342271i −0.0297353 0.0216039i 0.572818 0.819682i \(-0.305850\pi\)
−0.602554 + 0.798078i \(0.705850\pi\)
\(252\) 0 0
\(253\) −0.266163 0.0978289i −0.0167335 0.00615045i
\(254\) −3.80863 6.59673i −0.238974 0.413916i
\(255\) 0 0
\(256\) −3.03110 3.36638i −0.189444 0.210399i
\(257\) −10.7317 2.28109i −0.669423 0.142290i −0.139351 0.990243i \(-0.544502\pi\)
−0.530072 + 0.847953i \(0.677835\pi\)
\(258\) 0 0
\(259\) 6.64052 + 2.95655i 0.412622 + 0.183711i
\(260\) −6.10421 18.7868i −0.378567 1.16511i
\(261\) 0 0
\(262\) 8.40108 + 6.10374i 0.519020 + 0.377090i
\(263\) −7.19768 12.4668i −0.443828 0.768733i 0.554142 0.832422i \(-0.313047\pi\)
−0.997970 + 0.0636896i \(0.979713\pi\)
\(264\) 0 0
\(265\) 3.63940 6.30363i 0.223567 0.387229i
\(266\) 3.91398 1.74262i 0.239982 0.106847i
\(267\) 0 0
\(268\) −13.0213 + 14.4617i −0.795404 + 0.883386i
\(269\) 0.395590 0.287413i 0.0241195 0.0175239i −0.575660 0.817689i \(-0.695255\pi\)
0.599780 + 0.800165i \(0.295255\pi\)
\(270\) 0 0
\(271\) 6.77950 + 20.8652i 0.411825 + 1.26747i 0.915060 + 0.403318i \(0.132143\pi\)
−0.503234 + 0.864150i \(0.667857\pi\)
\(272\) −0.647922 + 0.137720i −0.0392861 + 0.00835051i
\(273\) 0 0
\(274\) 4.73856 8.20743i 0.286267 0.495829i
\(275\) −4.96360 12.3980i −0.299316 0.747627i
\(276\) 0 0
\(277\) −0.299947 + 2.85381i −0.0180221 + 0.171469i −0.999831 0.0184051i \(-0.994141\pi\)
0.981809 + 0.189874i \(0.0608078\pi\)
\(278\) 2.12508 6.54031i 0.127454 0.392262i
\(279\) 0 0
\(280\) −5.99497 + 4.35560i −0.358268 + 0.260297i
\(281\) −16.6065 7.39368i −0.990660 0.441070i −0.153571 0.988138i \(-0.549078\pi\)
−0.837089 + 0.547067i \(0.815744\pi\)
\(282\) 0 0
\(283\) −13.7420 15.2620i −0.816878 0.907235i 0.180200 0.983630i \(-0.442326\pi\)
−0.997078 + 0.0763955i \(0.975659\pi\)
\(284\) 13.2690 5.90775i 0.787372 0.350561i
\(285\) 0 0
\(286\) −6.68838 + 3.52921i −0.395492 + 0.208686i
\(287\) 6.76362 0.399244
\(288\) 0 0
\(289\) −5.22278 + 16.0741i −0.307223 + 0.945534i
\(290\) 8.94417 9.93350i 0.525219 0.583315i
\(291\) 0 0
\(292\) 0.513168 + 4.88247i 0.0300309 + 0.285725i
\(293\) 0.841272 + 0.178818i 0.0491476 + 0.0104467i 0.232420 0.972616i \(-0.425336\pi\)
−0.183272 + 0.983062i \(0.558669\pi\)
\(294\) 0 0
\(295\) 0.721065 6.86047i 0.0419820 0.399432i
\(296\) −13.2250 −0.768685
\(297\) 0 0
\(298\) −2.61848 −0.151684
\(299\) 0.0352677 0.335550i 0.00203959 0.0194054i
\(300\) 0 0
\(301\) −7.72681 1.64238i −0.445366 0.0946654i
\(302\) −0.177018 1.68421i −0.0101862 0.0969155i
\(303\) 0 0
\(304\) 8.98392 9.97766i 0.515263 0.572258i
\(305\) 12.7075 39.1095i 0.727627 2.23941i
\(306\) 0 0
\(307\) 3.48920 0.199139 0.0995696 0.995031i \(-0.468253\pi\)
0.0995696 + 0.995031i \(0.468253\pi\)
\(308\) −4.61406 4.48401i −0.262910 0.255500i
\(309\) 0 0
\(310\) 10.3541 4.60996i 0.588076 0.261828i
\(311\) −7.25692 8.05963i −0.411502 0.457020i 0.501389 0.865222i \(-0.332822\pi\)
−0.912892 + 0.408202i \(0.866156\pi\)
\(312\) 0 0
\(313\) −25.8360 11.5029i −1.46034 0.650185i −0.485732 0.874108i \(-0.661447\pi\)
−0.974607 + 0.223923i \(0.928114\pi\)
\(314\) −8.43935 + 6.13155i −0.476260 + 0.346023i
\(315\) 0 0
\(316\) 4.57569 14.0825i 0.257403 0.792204i
\(317\) −0.116291 + 1.10643i −0.00653154 + 0.0621434i −0.997302 0.0734057i \(-0.976613\pi\)
0.990771 + 0.135549i \(0.0432799\pi\)
\(318\) 0 0
\(319\) 21.6141 + 13.6011i 1.21016 + 0.761517i
\(320\) −1.59933 + 2.77013i −0.0894055 + 0.154855i
\(321\) 0 0
\(322\) −0.0562640 + 0.0119593i −0.00313547 + 0.000666464i
\(323\) 0.618308 + 1.90296i 0.0344036 + 0.105883i
\(324\) 0 0
\(325\) 12.8550 9.33967i 0.713065 0.518072i
\(326\) 2.25154 2.50059i 0.124701 0.138495i
\(327\) 0 0
\(328\) −11.2417 + 5.00512i −0.620719 + 0.276362i
\(329\) 0.190795 0.330466i 0.0105188 0.0182192i
\(330\) 0 0
\(331\) 6.18915 + 10.7199i 0.340187 + 0.589221i 0.984467 0.175569i \(-0.0561764\pi\)
−0.644281 + 0.764789i \(0.722843\pi\)
\(332\) −6.68275 4.85530i −0.366763 0.266469i
\(333\) 0 0
\(334\) −0.896648 2.75960i −0.0490624 0.150999i
\(335\) −32.0573 14.2728i −1.75148 0.779807i
\(336\) 0 0
\(337\) −13.1792 2.80132i −0.717916 0.152598i −0.165552 0.986201i \(-0.552941\pi\)
−0.552364 + 0.833603i \(0.686274\pi\)
\(338\) −0.994521 1.10453i −0.0540948 0.0600783i
\(339\) 0 0
\(340\) −0.786384 1.36206i −0.0426477 0.0738679i
\(341\) 12.0518 + 17.9899i 0.652642 + 0.974208i
\(342\) 0 0
\(343\) −11.9104 8.65342i −0.643102 0.467241i
\(344\) 14.0580 2.98811i 0.757955 0.161108i
\(345\) 0 0
\(346\) 0.941593 + 8.95866i 0.0506204 + 0.481621i
\(347\) 1.01802 + 9.68582i 0.0546502 + 0.519962i 0.987265 + 0.159087i \(0.0508551\pi\)
−0.932614 + 0.360875i \(0.882478\pi\)
\(348\) 0 0
\(349\) 4.34317 0.923168i 0.232484 0.0494161i −0.0901962 0.995924i \(-0.528749\pi\)
0.322680 + 0.946508i \(0.395416\pi\)
\(350\) −2.19156 1.59226i −0.117144 0.0851100i
\(351\) 0 0
\(352\) 16.9810 + 6.24142i 0.905090 + 0.332669i
\(353\) 16.2618 + 28.1662i 0.865527 + 1.49914i 0.866523 + 0.499137i \(0.166349\pi\)
−0.000996749 1.00000i \(0.500317\pi\)
\(354\) 0 0
\(355\) 17.5256 + 19.4641i 0.930160 + 1.03305i
\(356\) −3.46907 0.737373i −0.183860 0.0390807i
\(357\) 0 0
\(358\) 3.72080 + 1.65661i 0.196650 + 0.0875543i
\(359\) 8.58143 + 26.4109i 0.452911 + 1.39392i 0.873571 + 0.486697i \(0.161799\pi\)
−0.420660 + 0.907218i \(0.638201\pi\)
\(360\) 0 0
\(361\) −17.4395 12.6705i −0.917868 0.666870i
\(362\) 0.721600 + 1.24985i 0.0379264 + 0.0656905i
\(363\) 0 0
\(364\) 3.82761 6.62962i 0.200621 0.347487i
\(365\) −8.08737 + 3.60073i −0.423312 + 0.188471i
\(366\) 0 0
\(367\) 0.784353 0.871112i 0.0409429 0.0454717i −0.722326 0.691553i \(-0.756927\pi\)
0.763268 + 0.646082i \(0.223593\pi\)
\(368\) −0.145831 + 0.105952i −0.00760197 + 0.00552315i
\(369\) 0 0
\(370\) −3.34912 10.3075i −0.174112 0.535862i
\(371\) 2.75915 0.586475i 0.143248 0.0304483i
\(372\) 0 0
\(373\) −10.8834 + 18.8506i −0.563520 + 0.976046i 0.433665 + 0.901074i \(0.357220\pi\)
−0.997186 + 0.0749719i \(0.976113\pi\)
\(374\) −0.462464 + 0.385570i −0.0239134 + 0.0199373i
\(375\) 0 0
\(376\) −0.0725693 + 0.690451i −0.00374248 + 0.0356073i
\(377\) −9.38942 + 28.8977i −0.483580 + 1.48831i
\(378\) 0 0
\(379\) 13.1440 9.54967i 0.675161 0.490533i −0.196588 0.980486i \(-0.562986\pi\)
0.871749 + 0.489953i \(0.162986\pi\)
\(380\) 29.1227 + 12.9663i 1.49396 + 0.665155i
\(381\) 0 0
\(382\) −4.57114 5.07676i −0.233880 0.259750i
\(383\) −5.65791 + 2.51906i −0.289105 + 0.128718i −0.546165 0.837677i \(-0.683913\pi\)
0.257060 + 0.966396i \(0.417246\pi\)
\(384\) 0 0
\(385\) 5.11888 10.4116i 0.260882 0.530626i
\(386\) −3.89830 −0.198418
\(387\) 0 0
\(388\) 0.0457401 0.140773i 0.00232210 0.00714669i
\(389\) 0.483924 0.537452i 0.0245359 0.0272499i −0.730752 0.682643i \(-0.760830\pi\)
0.755288 + 0.655393i \(0.227497\pi\)
\(390\) 0 0
\(391\) −0.00280798 0.0267162i −0.000142006 0.00135110i
\(392\) 11.6954 + 2.48593i 0.590705 + 0.125558i
\(393\) 0 0
\(394\) 1.24706 11.8650i 0.0628259 0.597749i
\(395\) 26.7009 1.34347
\(396\) 0 0
\(397\) 4.08994 0.205268 0.102634 0.994719i \(-0.467273\pi\)
0.102634 + 0.994719i \(0.467273\pi\)
\(398\) −0.802456 + 7.63486i −0.0402235 + 0.382701i
\(399\) 0 0
\(400\) −8.30361 1.76499i −0.415180 0.0882493i
\(401\) −0.590196 5.61534i −0.0294730 0.280417i −0.999325 0.0367238i \(-0.988308\pi\)
0.969852 0.243693i \(-0.0783588\pi\)
\(402\) 0 0
\(403\) −17.2394 + 19.1463i −0.858757 + 0.953746i
\(404\) −1.05881 + 3.25868i −0.0526777 + 0.162125i
\(405\) 0 0
\(406\) 5.18012 0.257085
\(407\) 18.3129 9.66305i 0.907738 0.478980i
\(408\) 0 0
\(409\) 8.63188 3.84316i 0.426819 0.190032i −0.182073 0.983285i \(-0.558281\pi\)
0.608892 + 0.793253i \(0.291614\pi\)
\(410\) −6.74786 7.49426i −0.333253 0.370115i
\(411\) 0 0
\(412\) 4.59171 + 2.04436i 0.226217 + 0.100718i
\(413\) 2.16276 1.57134i 0.106422 0.0773204i
\(414\) 0 0
\(415\) 4.60290 14.1663i 0.225948 0.695395i
\(416\) −2.25006 + 21.4079i −0.110318 + 1.04961i
\(417\) 0 0
\(418\) 2.98989 11.8324i 0.146240 0.578741i
\(419\) 0.0757820 0.131258i 0.00370219 0.00641238i −0.864168 0.503203i \(-0.832155\pi\)
0.867871 + 0.496790i \(0.165488\pi\)
\(420\) 0 0
\(421\) −16.6056 + 3.52962i −0.809306 + 0.172023i −0.593939 0.804510i \(-0.702428\pi\)
−0.215367 + 0.976533i \(0.569095\pi\)
\(422\) 1.49003 + 4.58585i 0.0725337 + 0.223236i
\(423\) 0 0
\(424\) −4.15194 + 3.01656i −0.201636 + 0.146497i
\(425\) 0.846527 0.940164i 0.0410626 0.0456047i
\(426\) 0 0
\(427\) 14.5585 6.48187i 0.704536 0.313680i
\(428\) −9.99085 + 17.3047i −0.482926 + 0.836453i
\(429\) 0 0
\(430\) 5.88900 + 10.2000i 0.283993 + 0.491890i
\(431\) −20.5242 14.9117i −0.988618 0.718273i −0.0289998 0.999579i \(-0.509232\pi\)
−0.959618 + 0.281307i \(0.909232\pi\)
\(432\) 0 0
\(433\) 5.10950 + 15.7254i 0.245547 + 0.755716i 0.995546 + 0.0942769i \(0.0300539\pi\)
−0.749999 + 0.661439i \(0.769946\pi\)
\(434\) 4.01259 + 1.78652i 0.192611 + 0.0857558i
\(435\) 0 0
\(436\) 8.47477 + 1.80137i 0.405868 + 0.0862699i
\(437\) 0.364341 + 0.404641i 0.0174288 + 0.0193566i
\(438\) 0 0
\(439\) 19.6207 + 33.9840i 0.936443 + 1.62197i 0.772040 + 0.635574i \(0.219237\pi\)
0.164403 + 0.986393i \(0.447430\pi\)
\(440\) −0.803326 + 21.0930i −0.0382971 + 1.00557i
\(441\) 0 0
\(442\) −0.579580 0.421089i −0.0275678 0.0200292i
\(443\) 31.4859 6.69254i 1.49594 0.317972i 0.613991 0.789313i \(-0.289563\pi\)
0.881951 + 0.471341i \(0.156230\pi\)
\(444\) 0 0
\(445\) −0.668490 6.36026i −0.0316895 0.301505i
\(446\) −0.0231720 0.220466i −0.00109722 0.0104394i
\(447\) 0 0
\(448\) −1.21251 + 0.257726i −0.0572856 + 0.0121764i
\(449\) −20.9085 15.1909i −0.986731 0.716902i −0.0275281 0.999621i \(-0.508764\pi\)
−0.959203 + 0.282719i \(0.908764\pi\)
\(450\) 0 0
\(451\) 11.9096 15.1447i 0.560799 0.713134i
\(452\) −16.0178 27.7437i −0.753415 1.30495i
\(453\) 0 0
\(454\) 6.96480 + 7.73519i 0.326874 + 0.363030i
\(455\) 13.5025 + 2.87005i 0.633007 + 0.134550i
\(456\) 0 0
\(457\) −11.6169 5.17218i −0.543416 0.241944i 0.116623 0.993176i \(-0.462793\pi\)
−0.660038 + 0.751232i \(0.729460\pi\)
\(458\) −2.39760 7.37904i −0.112032 0.344800i
\(459\) 0 0
\(460\) −0.346255 0.251569i −0.0161442 0.0117295i
\(461\) −9.51087 16.4733i −0.442965 0.767238i 0.554943 0.831889i \(-0.312740\pi\)
−0.997908 + 0.0646502i \(0.979407\pi\)
\(462\) 0 0
\(463\) 11.4334 19.8032i 0.531353 0.920331i −0.467977 0.883741i \(-0.655017\pi\)
0.999330 0.0365903i \(-0.0116497\pi\)
\(464\) 14.8298 6.60266i 0.688457 0.306521i
\(465\) 0 0
\(466\) −1.30281 + 1.44692i −0.0603517 + 0.0670274i
\(467\) 12.8819 9.35921i 0.596101 0.433093i −0.248392 0.968660i \(-0.579902\pi\)
0.844493 + 0.535567i \(0.179902\pi\)
\(468\) 0 0
\(469\) −4.20232 12.9334i −0.194045 0.597210i
\(470\) −0.556515 + 0.118291i −0.0256701 + 0.00545635i
\(471\) 0 0
\(472\) −2.43188 + 4.21215i −0.111936 + 0.193880i
\(473\) −17.2831 + 14.4094i −0.794677 + 0.662545i
\(474\) 0 0
\(475\) −2.68041 + 25.5024i −0.122986 + 1.17013i
\(476\) 0.188347 0.579671i 0.00863285 0.0265692i
\(477\) 0 0
\(478\) 10.8436 7.87832i 0.495973 0.360346i
\(479\) 14.9730 + 6.66640i 0.684133 + 0.304596i 0.719214 0.694789i \(-0.244502\pi\)
−0.0350809 + 0.999384i \(0.511169\pi\)
\(480\) 0 0
\(481\) 16.4849 + 18.3083i 0.751647 + 0.834788i
\(482\) −8.00450 + 3.56383i −0.364595 + 0.162328i
\(483\) 0 0
\(484\) −18.1649 + 2.43594i −0.825676 + 0.110724i
\(485\) 0.266911 0.0121198
\(486\) 0 0
\(487\) 7.04142 21.6713i 0.319077 0.982019i −0.654966 0.755658i \(-0.727317\pi\)
0.974044 0.226361i \(-0.0726828\pi\)
\(488\) −19.4008 + 21.5468i −0.878234 + 0.975378i
\(489\) 0 0
\(490\) 1.02423 + 9.74490i 0.0462700 + 0.440230i
\(491\) −42.6893 9.07389i −1.92654 0.409499i −0.999394 0.0348013i \(-0.988920\pi\)
−0.927147 0.374698i \(-0.877747\pi\)
\(492\) 0 0
\(493\) −0.252876 + 2.40596i −0.0113890 + 0.108359i
\(494\) 14.5209 0.653324
\(495\) 0 0
\(496\) 13.7645 0.618045
\(497\) −1.06098 + 10.0945i −0.0475914 + 0.452801i
\(498\) 0 0
\(499\) 19.6642 + 4.17976i 0.880291 + 0.187112i 0.625819 0.779969i \(-0.284765\pi\)
0.254472 + 0.967080i \(0.418098\pi\)
\(500\) 0.509335 + 4.84600i 0.0227781 + 0.216720i
\(501\) 0 0
\(502\) −0.225138 + 0.250041i −0.0100484 + 0.0111599i
\(503\) 3.27815 10.0891i 0.146165 0.449850i −0.850994 0.525176i \(-0.824000\pi\)
0.997159 + 0.0753254i \(0.0239995\pi\)
\(504\) 0 0
\(505\) −6.17856 −0.274942
\(506\) −0.0722927 + 0.147041i −0.00321380 + 0.00653676i
\(507\) 0 0
\(508\) 20.0656 8.93377i 0.890266 0.396372i
\(509\) 29.7551 + 33.0464i 1.31887 + 1.46476i 0.785475 + 0.618894i \(0.212419\pi\)
0.533399 + 0.845864i \(0.320914\pi\)
\(510\) 0 0
\(511\) −3.13414 1.39541i −0.138646 0.0617292i
\(512\) 16.5301 12.0098i 0.730534 0.530764i
\(513\) 0 0
\(514\) −1.95899 + 6.02915i −0.0864073 + 0.265934i
\(515\) −0.947394 + 9.01385i −0.0417472 + 0.397198i
\(516\) 0 0
\(517\) −0.404002 1.00911i −0.0177680 0.0443805i
\(518\) 2.10004 3.63738i 0.0922707 0.159817i
\(519\) 0 0
\(520\) −24.5661 + 5.22169i −1.07730 + 0.228986i
\(521\) −5.23819 16.1215i −0.229489 0.706296i −0.997805 0.0662243i \(-0.978905\pi\)
0.768315 0.640071i \(-0.221095\pi\)
\(522\) 0 0
\(523\) −24.4438 + 17.7595i −1.06885 + 0.776567i −0.975706 0.219085i \(-0.929693\pi\)
−0.0931472 + 0.995652i \(0.529693\pi\)
\(524\) −20.0360 + 22.2523i −0.875277 + 0.972094i
\(525\) 0 0
\(526\) −7.59870 + 3.38316i −0.331319 + 0.147513i
\(527\) −1.02565 + 1.77648i −0.0446780 + 0.0773845i
\(528\) 0 0
\(529\) 11.4963 + 19.9123i 0.499841 + 0.865750i
\(530\) −3.40255 2.47210i −0.147797 0.107381i
\(531\) 0 0
\(532\) 3.81763 + 11.7495i 0.165515 + 0.509404i
\(533\) 20.9417 + 9.32386i 0.907087 + 0.403861i
\(534\) 0 0
\(535\) −35.2443 7.49141i −1.52374 0.323882i
\(536\) 16.5554 + 18.3867i 0.715086 + 0.794183i
\(537\) 0 0
\(538\) −0.141268 0.244683i −0.00609050 0.0105491i
\(539\) −18.0112 + 5.10310i −0.775799 + 0.219806i
\(540\) 0 0
\(541\) −9.57164 6.95421i −0.411517 0.298985i 0.362699 0.931906i \(-0.381855\pi\)
−0.774216 + 0.632922i \(0.781855\pi\)
\(542\) 12.3996 2.63561i 0.532607 0.113209i
\(543\) 0 0
\(544\) 0.179148 + 1.70447i 0.00768089 + 0.0730788i
\(545\) 1.63309 + 15.5378i 0.0699539 + 0.665567i
\(546\) 0 0
\(547\) −2.49018 + 0.529304i −0.106472 + 0.0226314i −0.260840 0.965382i \(-0.583999\pi\)
0.154367 + 0.988014i \(0.450666\pi\)
\(548\) 22.1084 + 16.0627i 0.944424 + 0.686164i
\(549\) 0 0
\(550\) −7.42425 + 2.10350i −0.316571 + 0.0896937i
\(551\) −24.5177 42.4659i −1.04449 1.80911i
\(552\) 0 0
\(553\) 6.92386 + 7.68972i 0.294432 + 0.327000i
\(554\) 1.62181 + 0.344727i 0.0689043 + 0.0146461i
\(555\) 0 0
\(556\) 18.1153 + 8.06545i 0.768260 + 0.342051i
\(557\) −2.98987 9.20189i −0.126685 0.389896i 0.867519 0.497404i \(-0.165713\pi\)
−0.994204 + 0.107507i \(0.965713\pi\)
\(558\) 0 0
\(559\) −21.6599 15.7368i −0.916117 0.665598i
\(560\) −3.68748 6.38690i −0.155824 0.269896i
\(561\) 0 0
\(562\) −5.25175 + 9.09630i −0.221532 + 0.383704i
\(563\) 21.9134 9.75648i 0.923540 0.411187i 0.110820 0.993840i \(-0.464652\pi\)
0.812720 + 0.582654i \(0.197986\pi\)
\(564\) 0 0
\(565\) 38.6542 42.9298i 1.62619 1.80607i
\(566\) −9.60027 + 6.97501i −0.403530 + 0.293181i
\(567\) 0 0
\(568\) −5.70659 17.5631i −0.239443 0.736930i
\(569\) −36.7971 + 7.82146i −1.54261 + 0.327893i −0.899169 0.437601i \(-0.855828\pi\)
−0.643444 + 0.765493i \(0.722495\pi\)
\(570\) 0 0
\(571\) 7.37740 12.7780i 0.308735 0.534744i −0.669351 0.742946i \(-0.733428\pi\)
0.978086 + 0.208202i \(0.0667612\pi\)
\(572\) −8.10485 20.2442i −0.338881 0.846451i
\(573\) 0 0
\(574\) 0.408508 3.88669i 0.0170508 0.162227i
\(575\) 0.106386 0.327424i 0.00443662 0.0136545i
\(576\) 0 0
\(577\) 18.0466 13.1116i 0.751289 0.545843i −0.144937 0.989441i \(-0.546298\pi\)
0.896226 + 0.443598i \(0.146298\pi\)
\(578\) 8.92147 + 3.97210i 0.371084 + 0.165217i
\(579\) 0 0
\(580\) 25.7907 + 28.6435i 1.07090 + 1.18935i
\(581\) 5.27339 2.34787i 0.218777 0.0974059i
\(582\) 0 0
\(583\) 3.54519 7.21079i 0.146827 0.298640i
\(584\) 6.24181 0.258288
\(585\) 0 0
\(586\) 0.153568 0.472634i 0.00634384 0.0195243i
\(587\) 1.67294 1.85799i 0.0690496 0.0766873i −0.707630 0.706583i \(-0.750236\pi\)
0.776680 + 0.629896i \(0.216902\pi\)
\(588\) 0 0
\(589\) −4.34610 41.3504i −0.179078 1.70381i
\(590\) −3.89880 0.828715i −0.160511 0.0341177i
\(591\) 0 0
\(592\) 1.37581 13.0900i 0.0565456 0.537995i
\(593\) 10.8953 0.447417 0.223708 0.974656i \(-0.428184\pi\)
0.223708 + 0.974656i \(0.428184\pi\)
\(594\) 0 0
\(595\) 1.09907 0.0450577
\(596\) 0.789236 7.50908i 0.0323284 0.307584i
\(597\) 0 0
\(598\) −0.190693 0.0405330i −0.00779800 0.00165752i
\(599\) −3.85063 36.6363i −0.157332 1.49692i −0.733558 0.679627i \(-0.762142\pi\)
0.576225 0.817291i \(-0.304525\pi\)
\(600\) 0 0
\(601\) −10.3409 + 11.4848i −0.421815 + 0.468474i −0.916172 0.400786i \(-0.868737\pi\)
0.494356 + 0.869259i \(0.335404\pi\)
\(602\) −1.41047 + 4.34099i −0.0574866 + 0.176925i
\(603\) 0 0
\(604\) 4.88321 0.198695
\(605\) −14.2996 29.7949i −0.581361 1.21134i
\(606\) 0 0
\(607\) −23.2743 + 10.3624i −0.944675 + 0.420596i −0.820489 0.571663i \(-0.806299\pi\)
−0.124186 + 0.992259i \(0.539632\pi\)
\(608\) −23.2447 25.8158i −0.942696 1.04697i
\(609\) 0 0
\(610\) −21.7067 9.66443i −0.878877 0.391301i
\(611\) 1.04630 0.760183i 0.0423289 0.0307537i
\(612\) 0 0
\(613\) −11.6728 + 35.9252i −0.471461 + 1.45101i 0.379211 + 0.925310i \(0.376195\pi\)
−0.850672 + 0.525697i \(0.823805\pi\)
\(614\) 0.210740 2.00506i 0.00850478 0.0809175i
\(615\) 0 0
\(616\) −6.28298 + 5.23830i −0.253148 + 0.211057i
\(617\) 20.9464 36.2802i 0.843271 1.46059i −0.0438437 0.999038i \(-0.513960\pi\)
0.887115 0.461549i \(-0.152706\pi\)
\(618\) 0 0
\(619\) 5.85872 1.24531i 0.235482 0.0500532i −0.0886590 0.996062i \(-0.528258\pi\)
0.324141 + 0.946009i \(0.394925\pi\)
\(620\) 10.0993 + 31.0823i 0.405596 + 1.24830i
\(621\) 0 0
\(622\) −5.06974 + 3.68338i −0.203278 + 0.147690i
\(623\) 1.65837 1.84181i 0.0664413 0.0737905i
\(624\) 0 0
\(625\) −26.4193 + 11.7626i −1.05677 + 0.470505i
\(626\) −8.17057 + 14.1518i −0.326562 + 0.565621i
\(627\) 0 0
\(628\) −15.0399 26.0498i −0.600157 1.03950i
\(629\) 1.58690 + 1.15295i 0.0632739 + 0.0459712i
\(630\) 0 0
\(631\) −6.64368 20.4471i −0.264481 0.813988i −0.991813 0.127702i \(-0.959240\pi\)
0.727332 0.686286i \(-0.240760\pi\)
\(632\) −17.1985 7.65725i −0.684118 0.304589i
\(633\) 0 0
\(634\) 0.628784 + 0.133652i 0.0249722 + 0.00530801i
\(635\) 26.5024 + 29.4338i 1.05171 + 1.16805i
\(636\) 0 0
\(637\) −11.1368 19.2895i −0.441256 0.764278i
\(638\) 9.12129 11.5990i 0.361115 0.459208i
\(639\) 0 0
\(640\) 28.0127 + 20.3525i 1.10730 + 0.804501i
\(641\) 12.5565 2.66896i 0.495951 0.105418i 0.0468561 0.998902i \(-0.485080\pi\)
0.449095 + 0.893484i \(0.351746\pi\)
\(642\) 0 0
\(643\) −2.96396 28.2002i −0.116887 1.11211i −0.882990 0.469391i \(-0.844473\pi\)
0.766103 0.642718i \(-0.222193\pi\)
\(644\) −0.0173374 0.164954i −0.000683189 0.00650011i
\(645\) 0 0
\(646\) 1.13087 0.240374i 0.0444936 0.00945741i
\(647\) −14.1536 10.2832i −0.556436 0.404274i 0.273717 0.961810i \(-0.411747\pi\)
−0.830153 + 0.557536i \(0.811747\pi\)
\(648\) 0 0
\(649\) 0.289810 7.60956i 0.0113760 0.298701i
\(650\) −4.59060 7.95116i −0.180058 0.311870i
\(651\) 0 0
\(652\) 6.49236 + 7.21050i 0.254261 + 0.282385i
\(653\) −28.6619 6.09227i −1.12163 0.238409i −0.390468 0.920617i \(-0.627687\pi\)
−0.731159 + 0.682207i \(0.761020\pi\)
\(654\) 0 0
\(655\) −49.3268 21.9617i −1.92736 0.858114i
\(656\) −3.78455 11.6477i −0.147762 0.454764i
\(657\) 0 0
\(658\) −0.178378 0.129599i −0.00695388 0.00505229i
\(659\) 13.7935 + 23.8911i 0.537319 + 0.930664i 0.999047 + 0.0436422i \(0.0138961\pi\)
−0.461728 + 0.887021i \(0.652771\pi\)
\(660\) 0 0
\(661\) −14.8776 + 25.7688i −0.578672 + 1.00229i 0.416960 + 0.908925i \(0.363096\pi\)
−0.995632 + 0.0933649i \(0.970238\pi\)
\(662\) 6.53398 2.90912i 0.253950 0.113066i
\(663\) 0 0
\(664\) −7.02738 + 7.80469i −0.272715 + 0.302881i
\(665\) −18.0228 + 13.0943i −0.698893 + 0.507775i
\(666\) 0 0
\(667\) 0.203437 + 0.626115i 0.00787711 + 0.0242433i
\(668\) 8.18403 1.73957i 0.316650 0.0673060i
\(669\) 0 0
\(670\) −10.1380 + 17.5596i −0.391666 + 0.678385i
\(671\) 11.1213 44.0120i 0.429331 1.69906i
\(672\) 0 0
\(673\) −1.00908 + 9.60079i −0.0388973 + 0.370083i 0.957707 + 0.287745i \(0.0929055\pi\)
−0.996604 + 0.0823384i \(0.973761\pi\)
\(674\) −2.40577 + 7.40418i −0.0926666 + 0.285198i
\(675\) 0 0
\(676\) 3.46724 2.51910i 0.133355 0.0968883i
\(677\) 0.0896326 + 0.0399070i 0.00344486 + 0.00153375i 0.408458 0.912777i \(-0.366067\pi\)
−0.405013 + 0.914311i \(0.632733\pi\)
\(678\) 0 0
\(679\) 0.0692131 + 0.0768689i 0.00265615 + 0.00294996i
\(680\) −1.82675 + 0.813323i −0.0700528 + 0.0311895i
\(681\) 0 0
\(682\) 11.0657 5.83898i 0.423729 0.223586i
\(683\) −30.5246 −1.16799 −0.583996 0.811756i \(-0.698512\pi\)
−0.583996 + 0.811756i \(0.698512\pi\)
\(684\) 0 0
\(685\) −15.2277 + 46.8660i −0.581820 + 1.79066i
\(686\) −5.69202 + 6.32163i −0.217323 + 0.241361i
\(687\) 0 0
\(688\) 1.49514 + 14.2253i 0.0570018 + 0.542336i
\(689\) 9.35145 + 1.98771i 0.356262 + 0.0757258i
\(690\) 0 0
\(691\) −3.42871 + 32.6220i −0.130434 + 1.24100i 0.711992 + 0.702188i \(0.247793\pi\)
−0.842426 + 0.538812i \(0.818873\pi\)
\(692\) −25.9748 −0.987413
\(693\) 0 0
\(694\) 5.62741 0.213614
\(695\) −3.73768 + 35.5616i −0.141778 + 1.34893i
\(696\) 0 0
\(697\) 1.78527 + 0.379471i 0.0676220 + 0.0143735i
\(698\) −0.268178 2.55154i −0.0101507 0.0965773i
\(699\) 0 0
\(700\) 5.22673 5.80487i 0.197552 0.219404i
\(701\) 2.70365 8.32098i 0.102115 0.314279i −0.886927 0.461909i \(-0.847165\pi\)
0.989043 + 0.147630i \(0.0471646\pi\)
\(702\) 0 0
\(703\) −39.7584 −1.49952
\(704\) −1.55793 + 3.16878i −0.0587168 + 0.119428i
\(705\) 0 0
\(706\) 17.1678 7.64360i 0.646119 0.287671i
\(707\) −1.60217 1.77939i −0.0602558 0.0669208i
\(708\) 0 0
\(709\) 24.4610 + 10.8907i 0.918651 + 0.409010i 0.810911 0.585169i \(-0.198972\pi\)
0.107740 + 0.994179i \(0.465639\pi\)
\(710\) 12.2435 8.89542i 0.459490 0.333839i
\(711\) 0 0
\(712\) −1.39340 + 4.28845i −0.0522199 + 0.160716i
\(713\) −0.0583495 + 0.555159i −0.00218521 + 0.0207909i
\(714\) 0 0
\(715\) 30.2020 25.1803i 1.12949 0.941690i
\(716\) −5.87217 + 10.1709i −0.219453 + 0.380105i
\(717\) 0 0
\(718\) 15.6953 3.33613i 0.585742 0.124503i
\(719\) 4.63672 + 14.2703i 0.172920 + 0.532194i 0.999532 0.0305782i \(-0.00973486\pi\)
−0.826612 + 0.562772i \(0.809735\pi\)
\(720\) 0 0
\(721\) −2.84161 + 2.06455i −0.105827 + 0.0768879i
\(722\) −8.33438 + 9.25627i −0.310174 + 0.344483i
\(723\) 0 0
\(724\) −3.80172 + 1.69263i −0.141290 + 0.0629062i
\(725\) −15.5020 + 26.8502i −0.575730 + 0.997193i
\(726\) 0 0
\(727\) −13.7663 23.8438i −0.510562 0.884319i −0.999925 0.0122391i \(-0.996104\pi\)
0.489363 0.872080i \(-0.337229\pi\)
\(728\) −7.87410 5.72087i −0.291834 0.212029i
\(729\) 0 0
\(730\) 1.58069 + 4.86486i 0.0585039 + 0.180057i
\(731\) −1.94736 0.867021i −0.0720257 0.0320679i
\(732\) 0 0
\(733\) −46.6964 9.92564i −1.72477 0.366612i −0.764273 0.644893i \(-0.776902\pi\)
−0.960500 + 0.278281i \(0.910235\pi\)
\(734\) −0.453208 0.503339i −0.0167282 0.0185786i
\(735\) 0 0
\(736\) 0.233195 + 0.403906i 0.00859570 + 0.0148882i
\(737\) −36.3593 13.3640i −1.33931 0.492267i
\(738\) 0 0
\(739\) −1.20421 0.874910i −0.0442976 0.0321841i 0.565416 0.824806i \(-0.308716\pi\)
−0.609714 + 0.792622i \(0.708716\pi\)
\(740\) 30.5686 6.49755i 1.12372 0.238855i
\(741\) 0 0
\(742\) −0.170370 1.62096i −0.00625446 0.0595072i
\(743\) −1.89825 18.0607i −0.0696402 0.662582i −0.972541 0.232733i \(-0.925233\pi\)
0.902901 0.429850i \(-0.141433\pi\)
\(744\) 0 0
\(745\) 13.3177 2.83076i 0.487922 0.103711i
\(746\) 10.1751 + 7.39264i 0.372537 + 0.270664i
\(747\) 0 0
\(748\) −0.966316 1.44243i −0.0353320 0.0527406i
\(749\) −6.98177 12.0928i −0.255108 0.441860i
\(750\) 0 0
\(751\) −2.94060 3.26586i −0.107304 0.119173i 0.687100 0.726563i \(-0.258883\pi\)
−0.794404 + 0.607390i \(0.792217\pi\)
\(752\) −0.675855 0.143657i −0.0246459 0.00523865i
\(753\) 0 0
\(754\) 16.0389 + 7.14096i 0.584101 + 0.260058i
\(755\) 2.72107 + 8.37459i 0.0990299 + 0.304783i
\(756\) 0 0
\(757\) 11.1369 + 8.09140i 0.404776 + 0.294087i 0.771483 0.636249i \(-0.219515\pi\)
−0.366708 + 0.930336i \(0.619515\pi\)
\(758\) −4.69382 8.12993i −0.170487 0.295292i
\(759\) 0 0
\(760\) 20.2655 35.1008i 0.735105 1.27324i
\(761\) 28.4168 12.6520i 1.03011 0.458634i 0.179126 0.983826i \(-0.442673\pi\)
0.850984 + 0.525192i \(0.176006\pi\)
\(762\) 0 0
\(763\) −4.05133 + 4.49945i −0.146668 + 0.162891i
\(764\) 15.9365 11.5786i 0.576564 0.418898i
\(765\) 0 0
\(766\) 1.10585 + 3.40344i 0.0399558 + 0.122971i
\(767\) 8.86254 1.88379i 0.320008 0.0680197i
\(768\) 0 0
\(769\) −10.9677 + 18.9966i −0.395504 + 0.685034i −0.993165 0.116715i \(-0.962764\pi\)
0.597661 + 0.801749i \(0.296097\pi\)
\(770\) −5.67384 3.57039i −0.204471 0.128668i
\(771\) 0 0
\(772\) 1.17499 11.1793i 0.0422887 0.402350i
\(773\) 3.92965 12.0942i 0.141340 0.434999i −0.855182 0.518327i \(-0.826555\pi\)
0.996522 + 0.0833281i \(0.0265549\pi\)
\(774\) 0 0
\(775\) −21.2682 + 15.4522i −0.763976 + 0.555061i
\(776\) −0.171921 0.0765443i −0.00617162 0.00274778i
\(777\) 0 0
\(778\) −0.279617 0.310546i −0.0100248 0.0111336i
\(779\) −33.7961 + 15.0470i −1.21087 + 0.539114i
\(780\) 0 0
\(781\) 20.7348 + 20.1504i 0.741950 + 0.721038i
\(782\) −0.0155220 −0.000555064
\(783\) 0 0
\(784\) −3.67724 + 11.3174i −0.131330 + 0.404193i
\(785\) 36.2942 40.3088i 1.29540 1.43868i
\(786\) 0 0
\(787\) 1.80433 + 17.1671i 0.0643176 + 0.611941i 0.978444 + 0.206512i \(0.0662112\pi\)
−0.914127 + 0.405429i \(0.867122\pi\)
\(788\) 33.6496 + 7.15244i 1.19872 + 0.254795i
\(789\) 0 0
\(790\) 1.61268 15.3436i 0.0573765 0.545901i
\(791\) 22.3870 0.795991
\(792\) 0 0
\(793\) 54.0120 1.91802
\(794\) 0.247023 2.35027i 0.00876652 0.0834079i
\(795\) 0 0
\(796\) −21.6528 4.60245i −0.767463 0.163129i
\(797\) 3.67956 + 35.0087i 0.130337 + 1.24007i 0.842748 + 0.538309i \(0.180936\pi\)
−0.712411 + 0.701762i \(0.752397\pi\)
\(798\) 0 0
\(799\) 0.0689013 0.0765227i 0.00243755 0.00270718i
\(800\) −6.78739 + 20.8894i −0.239970 + 0.738553i
\(801\) 0 0
\(802\) −3.26248 −0.115202
\(803\) −8.64318 + 4.56069i −0.305011 + 0.160943i
\(804\) 0 0
\(805\) 0.273232 0.121651i 0.00963016 0.00428762i
\(806\) 9.96114 + 11.0630i 0.350866 + 0.389677i
\(807\) 0 0
\(808\) 3.97970 + 1.77188i 0.140005 + 0.0623344i
\(809\) −15.4367 + 11.2154i −0.542725 + 0.394313i −0.825096 0.564992i \(-0.808879\pi\)
0.282371 + 0.959305i \(0.408879\pi\)
\(810\) 0 0
\(811\) −9.59769 + 29.5387i −0.337020 + 1.03724i 0.628698 + 0.777650i \(0.283588\pi\)
−0.965718 + 0.259593i \(0.916412\pi\)
\(812\) −1.56134 + 14.8551i −0.0547923 + 0.521314i
\(813\) 0 0
\(814\) −4.44678 11.1071i −0.155860 0.389303i
\(815\) −8.74810 + 15.1522i −0.306433 + 0.530757i
\(816\) 0 0
\(817\) 42.2627 8.98321i 1.47858 0.314283i
\(818\) −1.68711 5.19240i −0.0589885 0.181548i
\(819\) 0 0
\(820\) 23.5253 17.0922i 0.821540 0.596884i
\(821\) −22.7561 + 25.2732i −0.794195 + 0.882042i −0.995231 0.0975412i \(-0.968902\pi\)
0.201037 + 0.979584i \(0.435569\pi\)
\(822\) 0 0
\(823\) 14.2111 6.32720i 0.495368 0.220552i −0.143818 0.989604i \(-0.545938\pi\)
0.639186 + 0.769052i \(0.279271\pi\)
\(824\) 3.19521 5.53426i 0.111310 0.192795i
\(825\) 0 0
\(826\) −0.772337 1.33773i −0.0268730 0.0465455i
\(827\) 12.9667 + 9.42084i 0.450895 + 0.327595i 0.789949 0.613172i \(-0.210107\pi\)
−0.339054 + 0.940767i \(0.610107\pi\)
\(828\) 0 0
\(829\) 5.90205 + 18.1646i 0.204987 + 0.630884i 0.999714 + 0.0239173i \(0.00761382\pi\)
−0.794727 + 0.606967i \(0.792386\pi\)
\(830\) −7.86260 3.50065i −0.272915 0.121509i
\(831\) 0 0
\(832\) −4.10949 0.873499i −0.142471 0.0302831i
\(833\) −1.18664 1.31790i −0.0411146 0.0456624i
\(834\) 0 0
\(835\) 7.54371 + 13.0661i 0.261061 + 0.452171i
\(836\) 33.0308 + 12.1406i 1.14240 + 0.419891i
\(837\) 0 0
\(838\) −0.0708501 0.0514756i −0.00244747 0.00177819i
\(839\) 1.45541 0.309356i 0.0502462 0.0106802i −0.182720 0.983165i \(-0.558490\pi\)
0.232966 + 0.972485i \(0.425157\pi\)
\(840\) 0 0
\(841\) −3.16588 30.1213i −0.109168 1.03867i
\(842\) 1.02535 + 9.75552i 0.0353358 + 0.336198i
\(843\) 0 0
\(844\) −13.6001 + 2.89079i −0.468134 + 0.0995049i
\(845\) 6.25224 + 4.54252i 0.215084 + 0.156267i
\(846\) 0 0
\(847\) 4.87274 11.8444i 0.167429 0.406977i
\(848\) −2.55384 4.42338i −0.0876993 0.151900i
\(849\) 0 0
\(850\) −0.489134 0.543238i −0.0167772 0.0186329i
\(851\) 0.522121 + 0.110980i 0.0178981 + 0.00380435i
\(852\) 0 0
\(853\) 34.5339 + 15.3755i 1.18242 + 0.526447i 0.901287 0.433222i \(-0.142624\pi\)
0.281132 + 0.959669i \(0.409290\pi\)
\(854\) −2.84548 8.75750i −0.0973704 0.299675i
\(855\) 0 0
\(856\) 20.5530 + 14.9326i 0.702487 + 0.510387i
\(857\) 9.91348 + 17.1706i 0.338638 + 0.586538i 0.984177 0.177189i \(-0.0567005\pi\)
−0.645539 + 0.763727i \(0.723367\pi\)
\(858\) 0 0
\(859\) 7.85764 13.6098i 0.268099 0.464362i −0.700272 0.713876i \(-0.746938\pi\)
0.968371 + 0.249515i \(0.0802711\pi\)
\(860\) −31.0259 + 13.8136i −1.05798 + 0.471041i
\(861\) 0 0
\(862\) −9.80860 + 10.8936i −0.334082 + 0.371036i
\(863\) 6.57548 4.77736i 0.223832 0.162623i −0.470218 0.882550i \(-0.655825\pi\)
0.694050 + 0.719927i \(0.255825\pi\)
\(864\) 0 0
\(865\) −14.4739 44.5462i −0.492128 1.51462i
\(866\) 9.34517 1.98638i 0.317562 0.0674998i
\(867\) 0 0
\(868\) −6.33269 + 10.9685i −0.214945 + 0.372296i
\(869\) 29.4100 1.96318i 0.997667 0.0665963i
\(870\) 0 0
\(871\) 4.81776 45.8379i 0.163244 1.55316i
\(872\) 3.40401 10.4765i 0.115274 0.354778i
\(873\) 0 0
\(874\) 0.254531 0.184928i 0.00860964 0.00625527i
\(875\) −3.11073 1.38498i −0.105162 0.0468210i
\(876\) 0 0
\(877\) −1.69526 1.88278i −0.0572449 0.0635769i 0.713842 0.700307i \(-0.246953\pi\)
−0.771087 + 0.636730i \(0.780287\pi\)
\(878\) 20.7138 9.22239i 0.699058 0.311241i
\(879\) 0 0
\(880\) −20.7942 2.98947i −0.700971 0.100775i
\(881\) 47.4109 1.59731 0.798657 0.601786i \(-0.205544\pi\)
0.798657 + 0.601786i \(0.205544\pi\)
\(882\) 0 0
\(883\) 8.19295 25.2153i 0.275715 0.848563i −0.713315 0.700844i \(-0.752807\pi\)
0.989029 0.147719i \(-0.0471930\pi\)
\(884\) 1.38226 1.53515i 0.0464904 0.0516328i
\(885\) 0 0
\(886\) −1.94417 18.4975i −0.0653156 0.621436i
\(887\) −46.7841 9.94428i −1.57086 0.333896i −0.661511 0.749935i \(-0.730085\pi\)
−0.909347 + 0.416039i \(0.863418\pi\)
\(888\) 0 0
\(889\) −1.60442 + 15.2651i −0.0538106 + 0.511974i
\(890\) −3.69528 −0.123866
\(891\) 0 0
\(892\) 0.639221 0.0214027
\(893\) −0.218166 + 2.07571i −0.00730066 + 0.0694612i
\(894\) 0 0
\(895\) −20.7150 4.40311i −0.692427 0.147180i
\(896\) 1.40263 + 13.3451i 0.0468586 + 0.445830i
\(897\) 0 0
\(898\) −9.99221 + 11.0975i −0.333445 + 0.370328i
\(899\) 15.5345 47.8104i 0.518106 1.59457i
\(900\) 0 0
\(901\) 0.761187 0.0253588
\(902\) −7.98352 7.75850i −0.265822 0.258330i
\(903\) 0 0
\(904\) −37.2091 + 16.5666i −1.23756 + 0.550995i
\(905\) −5.02126 5.57667i −0.166912 0.185375i
\(906\) 0 0
\(907\) 43.3554 + 19.3030i 1.43959 + 0.640947i 0.970258 0.242074i \(-0.0778277\pi\)
0.469333 + 0.883021i \(0.344494\pi\)
\(908\) −24.2817 + 17.6417i −0.805815 + 0.585459i
\(909\) 0 0
\(910\) 2.46479 7.58583i 0.0817068 0.251468i
\(911\) −2.97198 + 28.2765i −0.0984660 + 0.936841i 0.828067 + 0.560629i \(0.189440\pi\)
−0.926533 + 0.376213i \(0.877226\pi\)
\(912\) 0 0
\(913\) 4.02834 15.9420i 0.133319 0.527604i
\(914\) −3.67381 + 6.36322i −0.121519 + 0.210477i
\(915\) 0 0
\(916\) 21.8837 4.65153i 0.723059 0.153691i
\(917\) −6.46615 19.9008i −0.213531 0.657181i
\(918\) 0 0
\(919\) −31.0442 + 22.5550i −1.02406 + 0.744020i −0.967110 0.254358i \(-0.918136\pi\)
−0.0569449 + 0.998377i \(0.518136\pi\)
\(920\) −0.364112 + 0.404387i −0.0120044 + 0.0133322i
\(921\) 0 0
\(922\) −10.0408 + 4.47044i −0.330675 + 0.147226i
\(923\) −17.2007 + 29.7924i −0.566167 + 0.980629i
\(924\) 0 0
\(925\) 12.5692 + 21.7704i 0.413272 + 0.715808i
\(926\) −10.6893 7.76621i −0.351271 0.255214i
\(927\) 0 0
\(928\) −12.9791 39.9457i −0.426061 1.31128i
\(929\) −12.2302 5.44526i −0.401261 0.178653i 0.196176 0.980569i \(-0.437148\pi\)
−0.597437 + 0.801916i \(0.703814\pi\)
\(930\) 0 0
\(931\) 35.1600 + 7.47348i 1.15232 + 0.244934i
\(932\) −3.75669 4.17223i −0.123055 0.136666i
\(933\) 0 0
\(934\) −4.60021 7.96779i −0.150523 0.260714i
\(935\) 1.93528 2.46098i 0.0632905 0.0804826i
\(936\) 0 0
\(937\) 19.9588 + 14.5010i 0.652027 + 0.473725i 0.863961 0.503559i \(-0.167976\pi\)
−0.211934 + 0.977284i \(0.567976\pi\)
\(938\) −7.68596 + 1.63370i −0.250956 + 0.0533422i
\(939\) 0 0
\(940\) −0.171486 1.63158i −0.00559327 0.0532164i
\(941\) 0.867827 + 8.25682i 0.0282903 + 0.269165i 0.999519 + 0.0310154i \(0.00987409\pi\)
−0.971229 + 0.238149i \(0.923459\pi\)
\(942\) 0 0
\(943\) 0.485823 0.103265i 0.0158206 0.00336277i
\(944\) −3.91616 2.84526i −0.127460 0.0926053i
\(945\) 0 0
\(946\) 7.23646 + 10.8020i 0.235278 + 0.351202i
\(947\) 18.9748 + 32.8653i 0.616598 + 1.06798i 0.990102 + 0.140351i \(0.0448231\pi\)
−0.373503 + 0.927629i \(0.621844\pi\)
\(948\) 0 0
\(949\) −7.78041 8.64102i −0.252563 0.280499i
\(950\) 14.4930 + 3.08058i 0.470214 + 0.0999472i
\(951\) 0 0
\(952\) −0.707930 0.315191i −0.0229442 0.0102154i
\(953\) 15.0400 + 46.2884i 0.487194 + 1.49943i 0.828778 + 0.559578i \(0.189037\pi\)
−0.341583 + 0.939852i \(0.610963\pi\)
\(954\) 0 0
\(955\) 28.7373 + 20.8789i 0.929918 + 0.675625i
\(956\) 19.3245 + 33.4710i 0.624998 + 1.08253i
\(957\) 0 0
\(958\) 4.73516 8.20154i 0.152986 0.264980i
\(959\) −17.4459 + 7.76740i −0.563356 + 0.250822i
\(960\) 0 0
\(961\) 7.77911 8.63958i 0.250939 0.278696i
\(962\) 11.5165 8.36721i 0.371306 0.269770i
\(963\) 0 0
\(964\) −7.80746 24.0289i −0.251461 0.773918i
\(965\) 19.8269 4.21434i 0.638250 0.135664i
\(966\) 0 0
\(967\) −5.48901 + 9.50724i −0.176515 + 0.305732i −0.940684 0.339283i \(-0.889816\pi\)
0.764170 + 0.645015i \(0.223149\pi\)
\(968\) 0.666025 + 23.2922i 0.0214069 + 0.748639i
\(969\) 0 0
\(970\) 0.0161208 0.153380i 0.000517609 0.00492472i
\(971\) −4.03687 + 12.4242i −0.129549 + 0.398712i −0.994702 0.102796i \(-0.967221\pi\)
0.865153 + 0.501508i \(0.167221\pi\)
\(972\) 0 0
\(973\) −11.2108 + 8.14510i −0.359401 + 0.261120i
\(974\) −12.0280 5.35523i −0.385403 0.171592i
\(975\) 0 0
\(976\) −19.3086 21.4444i −0.618053 0.686418i
\(977\) 10.1187 4.50514i 0.323726 0.144132i −0.238438 0.971158i \(-0.576635\pi\)
0.562164 + 0.827025i \(0.309969\pi\)
\(978\) 0 0
\(979\) −1.20395 6.95643i −0.0384785 0.222328i
\(980\) −28.2544 −0.902554
\(981\) 0 0
\(982\) −7.79262 + 23.9832i −0.248673 + 0.765336i
\(983\) 17.6861 19.6424i 0.564100 0.626496i −0.391849 0.920029i \(-0.628165\pi\)
0.955949 + 0.293533i \(0.0948312\pi\)
\(984\) 0 0
\(985\) 6.48429 + 61.6939i 0.206607 + 1.96573i
\(986\) 1.36730 + 0.290629i 0.0435438 + 0.00925552i
\(987\) 0 0
\(988\) −4.37673 + 41.6418i −0.139242 + 1.32480i
\(989\) −0.580083 −0.0184456
\(990\) 0 0
\(991\) −18.9911 −0.603272 −0.301636 0.953423i \(-0.597533\pi\)
−0.301636 + 0.953423i \(0.597533\pi\)
\(992\) 3.72266 35.4188i 0.118195 1.12455i
\(993\) 0 0
\(994\) 5.73671 + 1.21937i 0.181957 + 0.0386762i
\(995\) −4.17250 39.6987i −0.132277 1.25853i
\(996\) 0 0
\(997\) 14.7966 16.4333i 0.468613 0.520447i −0.461788 0.886990i \(-0.652792\pi\)
0.930401 + 0.366543i \(0.119459\pi\)
\(998\) 3.58956 11.0475i 0.113625 0.349703i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.37.6 72
3.2 odd 2 99.2.m.b.4.4 72
9.2 odd 6 99.2.m.b.70.6 yes 72
9.4 even 3 891.2.f.e.730.6 36
9.5 odd 6 891.2.f.f.730.4 36
9.7 even 3 inner 297.2.n.b.235.4 72
11.3 even 5 inner 297.2.n.b.91.4 72
33.5 odd 10 1089.2.e.p.364.8 36
33.14 odd 10 99.2.m.b.58.6 yes 72
33.17 even 10 1089.2.e.o.364.11 36
99.5 odd 30 9801.2.a.cm.1.11 18
99.14 odd 30 891.2.f.f.487.4 36
99.25 even 15 inner 297.2.n.b.289.6 72
99.38 odd 30 1089.2.e.p.727.8 36
99.47 odd 30 99.2.m.b.25.4 yes 72
99.49 even 15 9801.2.a.cp.1.8 18
99.50 even 30 9801.2.a.co.1.8 18
99.58 even 15 891.2.f.e.487.6 36
99.83 even 30 1089.2.e.o.727.11 36
99.94 odd 30 9801.2.a.cn.1.11 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.4 72 3.2 odd 2
99.2.m.b.25.4 yes 72 99.47 odd 30
99.2.m.b.58.6 yes 72 33.14 odd 10
99.2.m.b.70.6 yes 72 9.2 odd 6
297.2.n.b.37.6 72 1.1 even 1 trivial
297.2.n.b.91.4 72 11.3 even 5 inner
297.2.n.b.235.4 72 9.7 even 3 inner
297.2.n.b.289.6 72 99.25 even 15 inner
891.2.f.e.487.6 36 99.58 even 15
891.2.f.e.730.6 36 9.4 even 3
891.2.f.f.487.4 36 99.14 odd 30
891.2.f.f.730.4 36 9.5 odd 6
1089.2.e.o.364.11 36 33.17 even 10
1089.2.e.o.727.11 36 99.83 even 30
1089.2.e.p.364.8 36 33.5 odd 10
1089.2.e.p.727.8 36 99.38 odd 30
9801.2.a.cm.1.11 18 99.5 odd 30
9801.2.a.cn.1.11 18 99.94 odd 30
9801.2.a.co.1.8 18 99.50 even 30
9801.2.a.cp.1.8 18 99.49 even 15