Properties

Label 297.2.n.b.37.5
Level $297$
Weight $2$
Character 297.37
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(37,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([10, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 37.5
Character \(\chi\) \(=\) 297.37
Dual form 297.2.n.b.289.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0512706 + 0.487807i) q^{2} +(1.72097 + 0.365803i) q^{4} +(0.178553 + 1.69882i) q^{5} +(2.28209 - 2.53451i) q^{7} +(-0.569818 + 1.75372i) q^{8} -0.837851 q^{10} +(2.17733 - 2.50184i) q^{11} +(-3.65228 + 1.62610i) q^{13} +(1.11935 + 1.24316i) q^{14} +(2.38835 + 1.06336i) q^{16} +(-2.67346 + 1.94238i) q^{17} +(-1.36513 + 4.20144i) q^{19} +(-0.314149 + 2.98893i) q^{20} +(1.10878 + 1.19039i) q^{22} +(3.74601 - 6.48827i) q^{23} +(2.03663 - 0.432899i) q^{25} +(-0.605969 - 1.86498i) q^{26} +(4.85453 - 3.52702i) q^{28} +(-1.13169 + 1.25687i) q^{29} +(-3.56147 + 1.58567i) q^{31} +(-2.48514 + 4.30439i) q^{32} +(-0.810437 - 1.40372i) q^{34} +(4.71315 + 3.42431i) q^{35} +(0.947300 + 2.91549i) q^{37} +(-1.97950 - 0.881330i) q^{38} +(-3.08100 - 0.654886i) q^{40} +(-0.261546 - 0.290476i) q^{41} +(-4.80634 - 8.32483i) q^{43} +(4.66230 - 3.50912i) q^{44} +(2.97296 + 2.15999i) q^{46} +(-1.05665 + 0.224598i) q^{47} +(-0.484141 - 4.60629i) q^{49} +(0.106752 + 1.01568i) q^{50} +(-6.88030 + 1.46245i) q^{52} +(-10.1643 - 7.38480i) q^{53} +(4.63895 + 3.25218i) q^{55} +(3.14445 + 5.44635i) q^{56} +(-0.555089 - 0.616488i) q^{58} +(-3.57664 - 0.760238i) q^{59} +(-3.52005 - 1.56723i) q^{61} +(-0.590902 - 1.81861i) q^{62} +(2.25785 + 1.64043i) q^{64} +(-3.41458 - 5.91423i) q^{65} +(-1.55060 + 2.68572i) q^{67} +(-5.31146 + 2.36482i) q^{68} +(-1.91205 + 2.12354i) q^{70} +(5.67699 - 4.12458i) q^{71} +(-4.64842 - 14.3064i) q^{73} +(-1.47077 + 0.312621i) q^{74} +(-3.88624 + 6.73117i) q^{76} +(-1.37210 - 11.2279i) q^{77} +(0.418023 - 3.97722i) q^{79} +(-1.38001 + 4.24724i) q^{80} +(0.155106 - 0.112691i) q^{82} +(0.114162 + 0.0508282i) q^{83} +(-3.77711 - 4.19490i) q^{85} +(4.30733 - 1.91775i) q^{86} +(3.14685 + 5.24403i) q^{88} +7.93327 q^{89} +(-4.21345 + 12.9677i) q^{91} +(8.82019 - 9.79581i) q^{92} +(-0.0553855 - 0.526958i) q^{94} +(-7.38123 - 1.56893i) q^{95} +(-0.0358699 + 0.341280i) q^{97} +2.27180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0512706 + 0.487807i −0.0362538 + 0.344932i 0.961327 + 0.275411i \(0.0888138\pi\)
−0.997580 + 0.0695211i \(0.977853\pi\)
\(3\) 0 0
\(4\) 1.72097 + 0.365803i 0.860484 + 0.182902i
\(5\) 0.178553 + 1.69882i 0.0798514 + 0.759735i 0.959042 + 0.283265i \(0.0914175\pi\)
−0.879190 + 0.476471i \(0.841916\pi\)
\(6\) 0 0
\(7\) 2.28209 2.53451i 0.862547 0.957956i −0.136921 0.990582i \(-0.543720\pi\)
0.999468 + 0.0326264i \(0.0103872\pi\)
\(8\) −0.569818 + 1.75372i −0.201461 + 0.620034i
\(9\) 0 0
\(10\) −0.837851 −0.264952
\(11\) 2.17733 2.50184i 0.656490 0.754334i
\(12\) 0 0
\(13\) −3.65228 + 1.62610i −1.01296 + 0.451000i −0.844984 0.534791i \(-0.820390\pi\)
−0.167977 + 0.985791i \(0.553724\pi\)
\(14\) 1.11935 + 1.24316i 0.299159 + 0.332249i
\(15\) 0 0
\(16\) 2.38835 + 1.06336i 0.597088 + 0.265840i
\(17\) −2.67346 + 1.94238i −0.648409 + 0.471097i −0.862729 0.505667i \(-0.831246\pi\)
0.214320 + 0.976763i \(0.431246\pi\)
\(18\) 0 0
\(19\) −1.36513 + 4.20144i −0.313182 + 0.963875i 0.663314 + 0.748341i \(0.269149\pi\)
−0.976496 + 0.215534i \(0.930851\pi\)
\(20\) −0.314149 + 2.98893i −0.0702459 + 0.668345i
\(21\) 0 0
\(22\) 1.10878 + 1.19039i 0.236394 + 0.253792i
\(23\) 3.74601 6.48827i 0.781096 1.35290i −0.150208 0.988654i \(-0.547994\pi\)
0.931304 0.364244i \(-0.118672\pi\)
\(24\) 0 0
\(25\) 2.03663 0.432899i 0.407326 0.0865799i
\(26\) −0.605969 1.86498i −0.118840 0.365753i
\(27\) 0 0
\(28\) 4.85453 3.52702i 0.917420 0.666544i
\(29\) −1.13169 + 1.25687i −0.210150 + 0.233395i −0.839000 0.544131i \(-0.816859\pi\)
0.628850 + 0.777527i \(0.283526\pi\)
\(30\) 0 0
\(31\) −3.56147 + 1.58567i −0.639659 + 0.284795i −0.700825 0.713333i \(-0.747185\pi\)
0.0611661 + 0.998128i \(0.480518\pi\)
\(32\) −2.48514 + 4.30439i −0.439315 + 0.760915i
\(33\) 0 0
\(34\) −0.810437 1.40372i −0.138989 0.240736i
\(35\) 4.71315 + 3.42431i 0.796668 + 0.578813i
\(36\) 0 0
\(37\) 0.947300 + 2.91549i 0.155735 + 0.479304i 0.998235 0.0593935i \(-0.0189167\pi\)
−0.842499 + 0.538697i \(0.818917\pi\)
\(38\) −1.97950 0.881330i −0.321117 0.142971i
\(39\) 0 0
\(40\) −3.08100 0.654886i −0.487148 0.103547i
\(41\) −0.261546 0.290476i −0.0408467 0.0453648i 0.722375 0.691501i \(-0.243050\pi\)
−0.763222 + 0.646136i \(0.776384\pi\)
\(42\) 0 0
\(43\) −4.80634 8.32483i −0.732960 1.26952i −0.955613 0.294626i \(-0.904805\pi\)
0.222652 0.974898i \(-0.428529\pi\)
\(44\) 4.66230 3.50912i 0.702869 0.529020i
\(45\) 0 0
\(46\) 2.97296 + 2.15999i 0.438340 + 0.318472i
\(47\) −1.05665 + 0.224598i −0.154129 + 0.0327610i −0.284330 0.958727i \(-0.591771\pi\)
0.130201 + 0.991488i \(0.458438\pi\)
\(48\) 0 0
\(49\) −0.484141 4.60629i −0.0691630 0.658042i
\(50\) 0.106752 + 1.01568i 0.0150970 + 0.143639i
\(51\) 0 0
\(52\) −6.88030 + 1.46245i −0.954126 + 0.202806i
\(53\) −10.1643 7.38480i −1.39618 1.01438i −0.995156 0.0983117i \(-0.968656\pi\)
−0.401020 0.916069i \(-0.631344\pi\)
\(54\) 0 0
\(55\) 4.63895 + 3.25218i 0.625516 + 0.438524i
\(56\) 3.14445 + 5.44635i 0.420195 + 0.727799i
\(57\) 0 0
\(58\) −0.555089 0.616488i −0.0728867 0.0809489i
\(59\) −3.57664 0.760238i −0.465639 0.0989746i −0.0308830 0.999523i \(-0.509832\pi\)
−0.434756 + 0.900548i \(0.643165\pi\)
\(60\) 0 0
\(61\) −3.52005 1.56723i −0.450696 0.200663i 0.168820 0.985647i \(-0.446004\pi\)
−0.619516 + 0.784984i \(0.712671\pi\)
\(62\) −0.590902 1.81861i −0.0750446 0.230964i
\(63\) 0 0
\(64\) 2.25785 + 1.64043i 0.282232 + 0.205053i
\(65\) −3.41458 5.91423i −0.423527 0.733570i
\(66\) 0 0
\(67\) −1.55060 + 2.68572i −0.189436 + 0.328113i −0.945062 0.326890i \(-0.893999\pi\)
0.755626 + 0.655003i \(0.227333\pi\)
\(68\) −5.31146 + 2.36482i −0.644110 + 0.286776i
\(69\) 0 0
\(70\) −1.91205 + 2.12354i −0.228533 + 0.253812i
\(71\) 5.67699 4.12458i 0.673735 0.489497i −0.197538 0.980295i \(-0.563295\pi\)
0.871273 + 0.490798i \(0.163295\pi\)
\(72\) 0 0
\(73\) −4.64842 14.3064i −0.544057 1.67443i −0.723222 0.690615i \(-0.757340\pi\)
0.179165 0.983819i \(-0.442660\pi\)
\(74\) −1.47077 + 0.312621i −0.170973 + 0.0363414i
\(75\) 0 0
\(76\) −3.88624 + 6.73117i −0.445783 + 0.772118i
\(77\) −1.37210 11.2279i −0.156365 1.27954i
\(78\) 0 0
\(79\) 0.418023 3.97722i 0.0470313 0.447473i −0.945513 0.325585i \(-0.894439\pi\)
0.992544 0.121887i \(-0.0388946\pi\)
\(80\) −1.38001 + 4.24724i −0.154290 + 0.474856i
\(81\) 0 0
\(82\) 0.155106 0.112691i 0.0171286 0.0124447i
\(83\) 0.114162 + 0.0508282i 0.0125309 + 0.00557912i 0.412993 0.910734i \(-0.364484\pi\)
−0.400462 + 0.916314i \(0.631150\pi\)
\(84\) 0 0
\(85\) −3.77711 4.19490i −0.409685 0.455001i
\(86\) 4.30733 1.91775i 0.464472 0.206796i
\(87\) 0 0
\(88\) 3.14685 + 5.24403i 0.335455 + 0.559015i
\(89\) 7.93327 0.840925 0.420462 0.907310i \(-0.361868\pi\)
0.420462 + 0.907310i \(0.361868\pi\)
\(90\) 0 0
\(91\) −4.21345 + 12.9677i −0.441690 + 1.35938i
\(92\) 8.82019 9.79581i 0.919568 1.02128i
\(93\) 0 0
\(94\) −0.0553855 0.526958i −0.00571258 0.0543515i
\(95\) −7.38123 1.56893i −0.757298 0.160969i
\(96\) 0 0
\(97\) −0.0358699 + 0.341280i −0.00364204 + 0.0346517i −0.996192 0.0871867i \(-0.972212\pi\)
0.992550 + 0.121838i \(0.0388790\pi\)
\(98\) 2.27180 0.229487
\(99\) 0 0
\(100\) 3.66333 0.366333
\(101\) 0.743781 7.07660i 0.0740090 0.704148i −0.893112 0.449833i \(-0.851483\pi\)
0.967121 0.254315i \(-0.0818500\pi\)
\(102\) 0 0
\(103\) 1.61814 + 0.343946i 0.159440 + 0.0338900i 0.286940 0.957949i \(-0.407362\pi\)
−0.127500 + 0.991839i \(0.540695\pi\)
\(104\) −0.770589 7.33167i −0.0755625 0.718929i
\(105\) 0 0
\(106\) 4.12349 4.57960i 0.400509 0.444810i
\(107\) −1.02187 + 3.14498i −0.0987876 + 0.304037i −0.988222 0.153025i \(-0.951098\pi\)
0.889435 + 0.457062i \(0.151098\pi\)
\(108\) 0 0
\(109\) −5.50709 −0.527484 −0.263742 0.964593i \(-0.584957\pi\)
−0.263742 + 0.964593i \(0.584957\pi\)
\(110\) −1.82428 + 2.09617i −0.173938 + 0.199862i
\(111\) 0 0
\(112\) 8.14552 3.62662i 0.769680 0.342683i
\(113\) 10.9799 + 12.1944i 1.03290 + 1.14716i 0.988969 + 0.148121i \(0.0473225\pi\)
0.0439343 + 0.999034i \(0.486011\pi\)
\(114\) 0 0
\(115\) 11.6913 + 5.20529i 1.09022 + 0.485395i
\(116\) −2.40738 + 1.74906i −0.223519 + 0.162396i
\(117\) 0 0
\(118\) 0.554226 1.70573i 0.0510206 0.157025i
\(119\) −1.17807 + 11.2086i −0.107994 + 1.02749i
\(120\) 0 0
\(121\) −1.51845 10.8947i −0.138040 0.990427i
\(122\) 0.944980 1.63675i 0.0855545 0.148185i
\(123\) 0 0
\(124\) −6.70922 + 1.42609i −0.602506 + 0.128067i
\(125\) 3.73834 + 11.5054i 0.334368 + 1.02908i
\(126\) 0 0
\(127\) −8.73327 + 6.34509i −0.774952 + 0.563036i −0.903460 0.428673i \(-0.858981\pi\)
0.128508 + 0.991709i \(0.458981\pi\)
\(128\) −7.56750 + 8.40456i −0.668879 + 0.742865i
\(129\) 0 0
\(130\) 3.06007 1.36243i 0.268386 0.119493i
\(131\) −10.5778 + 18.3213i −0.924189 + 1.60074i −0.131329 + 0.991339i \(0.541925\pi\)
−0.792860 + 0.609404i \(0.791409\pi\)
\(132\) 0 0
\(133\) 7.53325 + 13.0480i 0.653216 + 1.13140i
\(134\) −1.23061 0.894092i −0.106309 0.0772378i
\(135\) 0 0
\(136\) −1.88301 5.79530i −0.161467 0.496943i
\(137\) −2.92382 1.30177i −0.249799 0.111218i 0.278018 0.960576i \(-0.410323\pi\)
−0.527817 + 0.849358i \(0.676989\pi\)
\(138\) 0 0
\(139\) 14.6660 + 3.11735i 1.24395 + 0.264411i 0.782442 0.622723i \(-0.213974\pi\)
0.461512 + 0.887134i \(0.347307\pi\)
\(140\) 6.85856 + 7.61721i 0.579654 + 0.643771i
\(141\) 0 0
\(142\) 1.72094 + 2.98075i 0.144418 + 0.250139i
\(143\) −3.88399 + 12.6780i −0.324795 + 1.06019i
\(144\) 0 0
\(145\) −2.33727 1.69812i −0.194099 0.141021i
\(146\) 7.21708 1.53404i 0.597290 0.126958i
\(147\) 0 0
\(148\) 0.563778 + 5.36399i 0.0463423 + 0.440917i
\(149\) 0.423458 + 4.02893i 0.0346910 + 0.330063i 0.998079 + 0.0619522i \(0.0197326\pi\)
−0.963388 + 0.268111i \(0.913601\pi\)
\(150\) 0 0
\(151\) 7.62367 1.62046i 0.620405 0.131871i 0.113023 0.993592i \(-0.463947\pi\)
0.507382 + 0.861721i \(0.330613\pi\)
\(152\) −6.59027 4.78811i −0.534541 0.388367i
\(153\) 0 0
\(154\) 5.54740 0.0936570i 0.447022 0.00754709i
\(155\) −3.32968 5.76717i −0.267446 0.463230i
\(156\) 0 0
\(157\) 0.206863 + 0.229745i 0.0165095 + 0.0183356i 0.751343 0.659912i \(-0.229406\pi\)
−0.734834 + 0.678248i \(0.762740\pi\)
\(158\) 1.91868 + 0.407829i 0.152642 + 0.0324451i
\(159\) 0 0
\(160\) −7.75610 3.45324i −0.613174 0.273003i
\(161\) −7.89590 24.3011i −0.622284 1.91519i
\(162\) 0 0
\(163\) −8.89442 6.46217i −0.696665 0.506157i 0.182179 0.983265i \(-0.441685\pi\)
−0.878844 + 0.477109i \(0.841685\pi\)
\(164\) −0.343855 0.595575i −0.0268506 0.0465066i
\(165\) 0 0
\(166\) −0.0306475 + 0.0530830i −0.00237871 + 0.00412004i
\(167\) 16.0545 7.14793i 1.24234 0.553124i 0.322926 0.946424i \(-0.395333\pi\)
0.919410 + 0.393300i \(0.128667\pi\)
\(168\) 0 0
\(169\) 1.99628 2.21709i 0.153560 0.170546i
\(170\) 2.23996 1.62742i 0.171797 0.124818i
\(171\) 0 0
\(172\) −5.22631 16.0849i −0.398503 1.22646i
\(173\) 12.0955 2.57098i 0.919605 0.195468i 0.276294 0.961073i \(-0.410894\pi\)
0.643311 + 0.765605i \(0.277560\pi\)
\(174\) 0 0
\(175\) 3.55058 6.14978i 0.268398 0.464880i
\(176\) 7.86060 3.65999i 0.592515 0.275882i
\(177\) 0 0
\(178\) −0.406743 + 3.86990i −0.0304867 + 0.290061i
\(179\) −6.76200 + 20.8113i −0.505416 + 1.55551i 0.294655 + 0.955604i \(0.404795\pi\)
−0.800071 + 0.599906i \(0.795205\pi\)
\(180\) 0 0
\(181\) 3.54364 2.57460i 0.263396 0.191369i −0.448247 0.893910i \(-0.647951\pi\)
0.711643 + 0.702541i \(0.247951\pi\)
\(182\) −6.10969 2.72021i −0.452880 0.201635i
\(183\) 0 0
\(184\) 9.24407 + 10.2666i 0.681482 + 0.756862i
\(185\) −4.78375 + 2.12986i −0.351708 + 0.156591i
\(186\) 0 0
\(187\) −0.961474 + 10.9178i −0.0703099 + 0.798387i
\(188\) −1.90062 −0.138617
\(189\) 0 0
\(190\) 1.14377 3.52018i 0.0829781 0.255380i
\(191\) −8.37399 + 9.30026i −0.605921 + 0.672943i −0.965570 0.260144i \(-0.916230\pi\)
0.359649 + 0.933088i \(0.382896\pi\)
\(192\) 0 0
\(193\) 1.31347 + 12.4969i 0.0945460 + 0.899545i 0.934278 + 0.356544i \(0.116045\pi\)
−0.839732 + 0.543000i \(0.817288\pi\)
\(194\) −0.164640 0.0349952i −0.0118204 0.00251251i
\(195\) 0 0
\(196\) 0.851805 8.10438i 0.0608432 0.578885i
\(197\) 10.3453 0.737075 0.368538 0.929613i \(-0.379859\pi\)
0.368538 + 0.929613i \(0.379859\pi\)
\(198\) 0 0
\(199\) 26.4773 1.87693 0.938464 0.345376i \(-0.112249\pi\)
0.938464 + 0.345376i \(0.112249\pi\)
\(200\) −0.401325 + 3.81836i −0.0283780 + 0.269999i
\(201\) 0 0
\(202\) 3.41388 + 0.725643i 0.240200 + 0.0510561i
\(203\) 0.602939 + 5.73658i 0.0423180 + 0.402629i
\(204\) 0 0
\(205\) 0.446767 0.496185i 0.0312036 0.0346551i
\(206\) −0.250742 + 0.771705i −0.0174700 + 0.0537672i
\(207\) 0 0
\(208\) −10.4521 −0.724721
\(209\) 7.53900 + 12.5633i 0.521483 + 0.869019i
\(210\) 0 0
\(211\) −6.65418 + 2.96263i −0.458092 + 0.203956i −0.622791 0.782388i \(-0.714001\pi\)
0.164699 + 0.986344i \(0.447335\pi\)
\(212\) −14.7911 16.4272i −1.01586 1.12822i
\(213\) 0 0
\(214\) −1.48175 0.659719i −0.101291 0.0450975i
\(215\) 13.2842 9.65153i 0.905974 0.658229i
\(216\) 0 0
\(217\) −4.10868 + 12.6452i −0.278916 + 0.858414i
\(218\) 0.282352 2.68640i 0.0191233 0.181946i
\(219\) 0 0
\(220\) 6.79383 + 7.29385i 0.458040 + 0.491751i
\(221\) 6.60572 11.4414i 0.444349 0.769635i
\(222\) 0 0
\(223\) −22.9963 + 4.88802i −1.53995 + 0.327326i −0.898199 0.439590i \(-0.855124\pi\)
−0.641748 + 0.766915i \(0.721791\pi\)
\(224\) 5.23822 + 16.1216i 0.349993 + 1.07717i
\(225\) 0 0
\(226\) −6.51148 + 4.73086i −0.433137 + 0.314692i
\(227\) 7.97750 8.85991i 0.529485 0.588053i −0.417762 0.908557i \(-0.637185\pi\)
0.947247 + 0.320503i \(0.103852\pi\)
\(228\) 0 0
\(229\) 2.79323 1.24363i 0.184582 0.0821811i −0.312365 0.949962i \(-0.601121\pi\)
0.496947 + 0.867781i \(0.334454\pi\)
\(230\) −3.13859 + 5.43620i −0.206953 + 0.358453i
\(231\) 0 0
\(232\) −1.55934 2.70086i −0.102376 0.177320i
\(233\) −19.8463 14.4192i −1.30017 0.944632i −0.300217 0.953871i \(-0.597059\pi\)
−0.999957 + 0.00923938i \(0.997059\pi\)
\(234\) 0 0
\(235\) −0.570221 1.75496i −0.0371971 0.114481i
\(236\) −5.87718 2.61669i −0.382572 0.170332i
\(237\) 0 0
\(238\) −5.40723 1.14934i −0.350499 0.0745008i
\(239\) 4.65088 + 5.16532i 0.300840 + 0.334117i 0.874544 0.484946i \(-0.161161\pi\)
−0.573704 + 0.819063i \(0.694494\pi\)
\(240\) 0 0
\(241\) 3.88529 + 6.72952i 0.250274 + 0.433487i 0.963601 0.267344i \(-0.0861461\pi\)
−0.713327 + 0.700831i \(0.752813\pi\)
\(242\) 5.39236 0.182131i 0.346634 0.0117078i
\(243\) 0 0
\(244\) −5.48460 3.98480i −0.351116 0.255100i
\(245\) 7.73881 1.64494i 0.494415 0.105091i
\(246\) 0 0
\(247\) −1.84612 17.5647i −0.117466 1.11761i
\(248\) −0.751429 7.14937i −0.0477158 0.453985i
\(249\) 0 0
\(250\) −5.80410 + 1.23370i −0.367084 + 0.0780260i
\(251\) 0.264684 + 0.192304i 0.0167067 + 0.0121381i 0.596107 0.802905i \(-0.296713\pi\)
−0.579401 + 0.815043i \(0.696713\pi\)
\(252\) 0 0
\(253\) −8.07634 23.4990i −0.507755 1.47737i
\(254\) −2.64742 4.58547i −0.166114 0.287718i
\(255\) 0 0
\(256\) 0.0230840 + 0.0256374i 0.00144275 + 0.00160234i
\(257\) −13.4292 2.85445i −0.837688 0.178056i −0.230957 0.972964i \(-0.574186\pi\)
−0.606730 + 0.794908i \(0.707519\pi\)
\(258\) 0 0
\(259\) 9.55117 + 4.25245i 0.593481 + 0.264235i
\(260\) −3.71294 11.4273i −0.230267 0.708689i
\(261\) 0 0
\(262\) −8.39495 6.09928i −0.518641 0.376815i
\(263\) −8.42709 14.5961i −0.519637 0.900037i −0.999739 0.0228249i \(-0.992734\pi\)
0.480103 0.877212i \(-0.340599\pi\)
\(264\) 0 0
\(265\) 10.7306 18.5859i 0.659174 1.14172i
\(266\) −6.75113 + 3.00579i −0.413938 + 0.184297i
\(267\) 0 0
\(268\) −3.65098 + 4.05482i −0.223019 + 0.247688i
\(269\) 10.0297 7.28700i 0.611522 0.444296i −0.238428 0.971160i \(-0.576632\pi\)
0.849950 + 0.526864i \(0.176632\pi\)
\(270\) 0 0
\(271\) 5.95460 + 18.3264i 0.361716 + 1.11325i 0.952012 + 0.306061i \(0.0990112\pi\)
−0.590296 + 0.807187i \(0.700989\pi\)
\(272\) −8.45061 + 1.79623i −0.512393 + 0.108913i
\(273\) 0 0
\(274\) 0.784919 1.35952i 0.0474187 0.0821316i
\(275\) 3.35138 6.03790i 0.202096 0.364099i
\(276\) 0 0
\(277\) −1.08198 + 10.2944i −0.0650100 + 0.618529i 0.912709 + 0.408611i \(0.133987\pi\)
−0.977719 + 0.209919i \(0.932680\pi\)
\(278\) −2.27260 + 6.99435i −0.136302 + 0.419493i
\(279\) 0 0
\(280\) −8.69092 + 6.31432i −0.519382 + 0.377353i
\(281\) 15.0149 + 6.68504i 0.895711 + 0.398796i 0.802362 0.596837i \(-0.203576\pi\)
0.0933486 + 0.995633i \(0.470243\pi\)
\(282\) 0 0
\(283\) −0.846419 0.940044i −0.0503144 0.0558798i 0.717462 0.696597i \(-0.245304\pi\)
−0.767777 + 0.640718i \(0.778637\pi\)
\(284\) 11.2787 5.02160i 0.669268 0.297977i
\(285\) 0 0
\(286\) −5.98529 2.54464i −0.353918 0.150468i
\(287\) −1.33309 −0.0786896
\(288\) 0 0
\(289\) −1.87876 + 5.78222i −0.110515 + 0.340130i
\(290\) 0.948189 1.05307i 0.0556796 0.0618385i
\(291\) 0 0
\(292\) −2.76647 26.3212i −0.161896 1.54033i
\(293\) −23.5610 5.00805i −1.37645 0.292574i −0.540484 0.841354i \(-0.681759\pi\)
−0.835966 + 0.548780i \(0.815092\pi\)
\(294\) 0 0
\(295\) 0.652887 6.21181i 0.0380126 0.361665i
\(296\) −5.65274 −0.328559
\(297\) 0 0
\(298\) −1.98705 −0.115107
\(299\) −3.13089 + 29.7884i −0.181064 + 1.72271i
\(300\) 0 0
\(301\) −32.0679 6.81623i −1.84836 0.392881i
\(302\) 0.399602 + 3.80196i 0.0229945 + 0.218778i
\(303\) 0 0
\(304\) −7.72805 + 8.58287i −0.443234 + 0.492262i
\(305\) 2.03392 6.25977i 0.116462 0.358433i
\(306\) 0 0
\(307\) 16.2949 0.930001 0.465001 0.885310i \(-0.346054\pi\)
0.465001 + 0.885310i \(0.346054\pi\)
\(308\) 1.74587 19.8248i 0.0994800 1.12962i
\(309\) 0 0
\(310\) 2.98398 1.32855i 0.169479 0.0754568i
\(311\) −14.3002 15.8819i −0.810888 0.900582i 0.185743 0.982598i \(-0.440531\pi\)
−0.996631 + 0.0820162i \(0.973864\pi\)
\(312\) 0 0
\(313\) 2.84672 + 1.26744i 0.160906 + 0.0716401i 0.485609 0.874176i \(-0.338598\pi\)
−0.324703 + 0.945816i \(0.605264\pi\)
\(314\) −0.122677 + 0.0891301i −0.00692307 + 0.00502990i
\(315\) 0 0
\(316\) 2.17428 6.69176i 0.122313 0.376441i
\(317\) −1.90920 + 18.1648i −0.107231 + 1.02024i 0.800113 + 0.599849i \(0.204773\pi\)
−0.907345 + 0.420388i \(0.861894\pi\)
\(318\) 0 0
\(319\) 0.680426 + 5.56795i 0.0380966 + 0.311745i
\(320\) −2.38364 + 4.12859i −0.133250 + 0.230795i
\(321\) 0 0
\(322\) 12.2591 2.60575i 0.683171 0.145212i
\(323\) −4.51117 13.8840i −0.251008 0.772524i
\(324\) 0 0
\(325\) −6.73442 + 4.89284i −0.373558 + 0.271406i
\(326\) 3.60832 4.00744i 0.199846 0.221952i
\(327\) 0 0
\(328\) 0.658448 0.293160i 0.0363567 0.0161871i
\(329\) −1.84212 + 3.19065i −0.101560 + 0.175906i
\(330\) 0 0
\(331\) −1.88308 3.26159i −0.103503 0.179273i 0.809622 0.586951i \(-0.199672\pi\)
−0.913126 + 0.407678i \(0.866339\pi\)
\(332\) 0.177876 + 0.129235i 0.00976222 + 0.00709267i
\(333\) 0 0
\(334\) 2.66369 + 8.19799i 0.145751 + 0.448574i
\(335\) −4.83941 2.15465i −0.264405 0.117721i
\(336\) 0 0
\(337\) −5.83580 1.24044i −0.317896 0.0675710i 0.0462001 0.998932i \(-0.485289\pi\)
−0.364096 + 0.931361i \(0.618622\pi\)
\(338\) 0.979163 + 1.08747i 0.0532594 + 0.0591506i
\(339\) 0 0
\(340\) −4.96577 8.60097i −0.269307 0.466453i
\(341\) −3.78741 + 12.3628i −0.205100 + 0.669482i
\(342\) 0 0
\(343\) 6.53464 + 4.74769i 0.352837 + 0.256351i
\(344\) 17.3382 3.68534i 0.934811 0.198700i
\(345\) 0 0
\(346\) 0.633999 + 6.03209i 0.0340840 + 0.324287i
\(347\) 2.54520 + 24.2159i 0.136633 + 1.29998i 0.821036 + 0.570876i \(0.193396\pi\)
−0.684403 + 0.729104i \(0.739937\pi\)
\(348\) 0 0
\(349\) −16.3759 + 3.48081i −0.876583 + 0.186323i −0.624163 0.781294i \(-0.714560\pi\)
−0.252420 + 0.967618i \(0.581227\pi\)
\(350\) 2.81787 + 2.04730i 0.150621 + 0.109433i
\(351\) 0 0
\(352\) 5.35793 + 15.5895i 0.285579 + 0.830924i
\(353\) −4.01566 6.95533i −0.213732 0.370195i 0.739148 0.673544i \(-0.235229\pi\)
−0.952880 + 0.303349i \(0.901895\pi\)
\(354\) 0 0
\(355\) 8.02056 + 8.90773i 0.425687 + 0.472773i
\(356\) 13.6529 + 2.90201i 0.723602 + 0.153806i
\(357\) 0 0
\(358\) −9.80521 4.36556i −0.518221 0.230727i
\(359\) 8.90742 + 27.4142i 0.470116 + 1.44687i 0.852433 + 0.522836i \(0.175126\pi\)
−0.382317 + 0.924031i \(0.624874\pi\)
\(360\) 0 0
\(361\) −0.417162 0.303086i −0.0219559 0.0159519i
\(362\) 1.07422 + 1.86061i 0.0564600 + 0.0977916i
\(363\) 0 0
\(364\) −11.9948 + 20.7756i −0.628700 + 1.08894i
\(365\) 23.4740 10.4513i 1.22868 0.547045i
\(366\) 0 0
\(367\) 14.9506 16.6044i 0.780417 0.866741i −0.213492 0.976945i \(-0.568484\pi\)
0.993909 + 0.110204i \(0.0351503\pi\)
\(368\) 15.8462 11.5129i 0.826038 0.600152i
\(369\) 0 0
\(370\) −0.793696 2.44275i −0.0412623 0.126992i
\(371\) −41.9127 + 8.90882i −2.17600 + 0.462523i
\(372\) 0 0
\(373\) −3.53936 + 6.13036i −0.183261 + 0.317418i −0.942989 0.332823i \(-0.891999\pi\)
0.759728 + 0.650241i \(0.225332\pi\)
\(374\) −5.27648 1.02877i −0.272840 0.0531967i
\(375\) 0 0
\(376\) 0.208217 1.98105i 0.0107380 0.102165i
\(377\) 2.08946 6.43070i 0.107613 0.331198i
\(378\) 0 0
\(379\) 19.6964 14.3103i 1.01174 0.735070i 0.0471638 0.998887i \(-0.484982\pi\)
0.964573 + 0.263818i \(0.0849817\pi\)
\(380\) −12.1289 5.40015i −0.622202 0.277022i
\(381\) 0 0
\(382\) −4.10739 4.56172i −0.210153 0.233398i
\(383\) 16.1130 7.17398i 0.823337 0.366573i 0.0485695 0.998820i \(-0.484534\pi\)
0.774767 + 0.632247i \(0.217867\pi\)
\(384\) 0 0
\(385\) 18.8292 4.33572i 0.959624 0.220969i
\(386\) −6.16341 −0.313709
\(387\) 0 0
\(388\) −0.186572 + 0.574210i −0.00947177 + 0.0291511i
\(389\) 11.9661 13.2897i 0.606703 0.673812i −0.359037 0.933323i \(-0.616895\pi\)
0.965740 + 0.259511i \(0.0835615\pi\)
\(390\) 0 0
\(391\) 2.58791 + 24.6223i 0.130876 + 1.24520i
\(392\) 8.35402 + 1.77570i 0.421942 + 0.0896865i
\(393\) 0 0
\(394\) −0.530412 + 5.04653i −0.0267218 + 0.254241i
\(395\) 6.83122 0.343716
\(396\) 0 0
\(397\) −21.9395 −1.10111 −0.550556 0.834798i \(-0.685584\pi\)
−0.550556 + 0.834798i \(0.685584\pi\)
\(398\) −1.35751 + 12.9158i −0.0680458 + 0.647412i
\(399\) 0 0
\(400\) 5.32452 + 1.13176i 0.266226 + 0.0565881i
\(401\) 0.565244 + 5.37793i 0.0282269 + 0.268561i 0.999528 + 0.0307093i \(0.00977662\pi\)
−0.971301 + 0.237852i \(0.923557\pi\)
\(402\) 0 0
\(403\) 10.4290 11.5826i 0.519508 0.576972i
\(404\) 3.86867 11.9065i 0.192473 0.592372i
\(405\) 0 0
\(406\) −2.82926 −0.140414
\(407\) 9.35669 + 3.97800i 0.463794 + 0.197182i
\(408\) 0 0
\(409\) 21.5781 9.60718i 1.06697 0.475044i 0.203305 0.979115i \(-0.434832\pi\)
0.863662 + 0.504071i \(0.168165\pi\)
\(410\) 0.219137 + 0.243376i 0.0108224 + 0.0120195i
\(411\) 0 0
\(412\) 2.65895 + 1.18384i 0.130997 + 0.0583236i
\(413\) −10.0890 + 7.33011i −0.496449 + 0.360691i
\(414\) 0 0
\(415\) −0.0659639 + 0.203016i −0.00323804 + 0.00996567i
\(416\) 2.07706 19.7619i 0.101836 0.968908i
\(417\) 0 0
\(418\) −6.51498 + 3.03345i −0.318658 + 0.148371i
\(419\) −9.06566 + 15.7022i −0.442886 + 0.767102i −0.997902 0.0647380i \(-0.979379\pi\)
0.555016 + 0.831840i \(0.312712\pi\)
\(420\) 0 0
\(421\) 12.5322 2.66381i 0.610783 0.129826i 0.107873 0.994165i \(-0.465596\pi\)
0.502910 + 0.864339i \(0.332263\pi\)
\(422\) −1.10403 3.39785i −0.0537432 0.165405i
\(423\) 0 0
\(424\) 18.7427 13.6174i 0.910226 0.661318i
\(425\) −4.60399 + 5.11325i −0.223326 + 0.248029i
\(426\) 0 0
\(427\) −12.0052 + 5.34507i −0.580973 + 0.258666i
\(428\) −2.90904 + 5.03861i −0.140614 + 0.243551i
\(429\) 0 0
\(430\) 4.02700 + 6.97496i 0.194199 + 0.336362i
\(431\) −5.32265 3.86713i −0.256383 0.186273i 0.452168 0.891933i \(-0.350651\pi\)
−0.708551 + 0.705660i \(0.750651\pi\)
\(432\) 0 0
\(433\) 4.32555 + 13.3127i 0.207873 + 0.639767i 0.999583 + 0.0288700i \(0.00919089\pi\)
−0.791710 + 0.610897i \(0.790809\pi\)
\(434\) −5.95778 2.65257i −0.285982 0.127328i
\(435\) 0 0
\(436\) −9.47753 2.01451i −0.453892 0.0964776i
\(437\) 22.1463 + 24.5959i 1.05940 + 1.17658i
\(438\) 0 0
\(439\) −12.5891 21.8050i −0.600846 1.04070i −0.992693 0.120665i \(-0.961497\pi\)
0.391848 0.920030i \(-0.371836\pi\)
\(440\) −8.34678 + 6.28227i −0.397917 + 0.299495i
\(441\) 0 0
\(442\) 5.24254 + 3.80893i 0.249362 + 0.181172i
\(443\) 26.2363 5.57671i 1.24653 0.264957i 0.463024 0.886346i \(-0.346765\pi\)
0.783502 + 0.621389i \(0.213431\pi\)
\(444\) 0 0
\(445\) 1.41651 + 13.4772i 0.0671490 + 0.638880i
\(446\) −1.20537 11.4684i −0.0570761 0.543043i
\(447\) 0 0
\(448\) 9.31029 1.97896i 0.439870 0.0934972i
\(449\) 11.4685 + 8.33234i 0.541231 + 0.393228i 0.824542 0.565801i \(-0.191433\pi\)
−0.283311 + 0.959028i \(0.591433\pi\)
\(450\) 0 0
\(451\) −1.29620 + 0.0218838i −0.0610357 + 0.00103047i
\(452\) 14.4353 + 25.0027i 0.678981 + 1.17603i
\(453\) 0 0
\(454\) 3.91292 + 4.34573i 0.183642 + 0.203955i
\(455\) −22.7820 4.84247i −1.06804 0.227019i
\(456\) 0 0
\(457\) 22.5109 + 10.0225i 1.05302 + 0.468833i 0.858899 0.512145i \(-0.171149\pi\)
0.194118 + 0.980978i \(0.437816\pi\)
\(458\) 0.463439 + 1.42632i 0.0216551 + 0.0666475i
\(459\) 0 0
\(460\) 18.2162 + 13.2348i 0.849334 + 0.617077i
\(461\) −13.1227 22.7292i −0.611185 1.05860i −0.991041 0.133558i \(-0.957360\pi\)
0.379856 0.925046i \(-0.375973\pi\)
\(462\) 0 0
\(463\) −6.34609 + 10.9917i −0.294928 + 0.510830i −0.974968 0.222345i \(-0.928629\pi\)
0.680040 + 0.733175i \(0.261962\pi\)
\(464\) −4.03939 + 1.79845i −0.187524 + 0.0834910i
\(465\) 0 0
\(466\) 8.05131 8.94188i 0.372970 0.414225i
\(467\) −22.4130 + 16.2840i −1.03715 + 0.753534i −0.969727 0.244190i \(-0.921478\pi\)
−0.0674235 + 0.997724i \(0.521478\pi\)
\(468\) 0 0
\(469\) 3.26838 + 10.0591i 0.150920 + 0.464484i
\(470\) 0.885317 0.188180i 0.0408366 0.00868009i
\(471\) 0 0
\(472\) 3.37128 5.83923i 0.155176 0.268772i
\(473\) −31.2924 6.10120i −1.43883 0.280534i
\(474\) 0 0
\(475\) −0.961466 + 9.14774i −0.0441151 + 0.419727i
\(476\) −6.12756 + 18.8587i −0.280856 + 0.864386i
\(477\) 0 0
\(478\) −2.75813 + 2.00390i −0.126154 + 0.0916563i
\(479\) 14.2716 + 6.35412i 0.652086 + 0.290327i 0.705993 0.708219i \(-0.250501\pi\)
−0.0539074 + 0.998546i \(0.517168\pi\)
\(480\) 0 0
\(481\) −8.20070 9.10780i −0.373920 0.415280i
\(482\) −3.48191 + 1.55025i −0.158597 + 0.0706118i
\(483\) 0 0
\(484\) 1.37212 19.3049i 0.0623689 0.877494i
\(485\) −0.586177 −0.0266169
\(486\) 0 0
\(487\) 8.32090 25.6091i 0.377056 1.16046i −0.565025 0.825074i \(-0.691133\pi\)
0.942081 0.335386i \(-0.108867\pi\)
\(488\) 4.75427 5.28015i 0.215216 0.239021i
\(489\) 0 0
\(490\) 0.405638 + 3.85938i 0.0183248 + 0.174349i
\(491\) 38.1475 + 8.10850i 1.72157 + 0.365932i 0.959533 0.281598i \(-0.0908644\pi\)
0.762040 + 0.647529i \(0.224198\pi\)
\(492\) 0 0
\(493\) 0.584209 5.55837i 0.0263114 0.250337i
\(494\) 8.66283 0.389759
\(495\) 0 0
\(496\) −10.1922 −0.457642
\(497\) 2.50159 23.8010i 0.112212 1.06762i
\(498\) 0 0
\(499\) 23.5099 + 4.99718i 1.05245 + 0.223705i 0.701485 0.712685i \(-0.252521\pi\)
0.350963 + 0.936389i \(0.385854\pi\)
\(500\) 2.22485 + 21.1680i 0.0994981 + 0.946661i
\(501\) 0 0
\(502\) −0.107378 + 0.119255i −0.00479251 + 0.00532262i
\(503\) 7.41223 22.8125i 0.330495 1.01716i −0.638404 0.769701i \(-0.720405\pi\)
0.968899 0.247457i \(-0.0795949\pi\)
\(504\) 0 0
\(505\) 12.1547 0.540876
\(506\) 11.8771 2.73489i 0.528001 0.121581i
\(507\) 0 0
\(508\) −17.3507 + 7.72504i −0.769814 + 0.342743i
\(509\) −2.47502 2.74879i −0.109703 0.121838i 0.685792 0.727798i \(-0.259456\pi\)
−0.795495 + 0.605960i \(0.792789\pi\)
\(510\) 0 0
\(511\) −46.8678 20.8669i −2.07331 0.923096i
\(512\) −18.3128 + 13.3050i −0.809318 + 0.588004i
\(513\) 0 0
\(514\) 2.08094 6.40449i 0.0917865 0.282490i
\(515\) −0.295378 + 2.81034i −0.0130159 + 0.123838i
\(516\) 0 0
\(517\) −1.73877 + 3.13260i −0.0764712 + 0.137772i
\(518\) −2.56407 + 4.44110i −0.112659 + 0.195131i
\(519\) 0 0
\(520\) 12.3176 2.61818i 0.540162 0.114815i
\(521\) 1.98178 + 6.09929i 0.0868234 + 0.267215i 0.985037 0.172345i \(-0.0551344\pi\)
−0.898213 + 0.439560i \(0.855134\pi\)
\(522\) 0 0
\(523\) 2.21554 1.60969i 0.0968790 0.0703867i −0.538291 0.842759i \(-0.680930\pi\)
0.635170 + 0.772372i \(0.280930\pi\)
\(524\) −24.9061 + 27.6610i −1.08803 + 1.20838i
\(525\) 0 0
\(526\) 7.55217 3.36244i 0.329290 0.146609i
\(527\) 6.44147 11.1570i 0.280595 0.486005i
\(528\) 0 0
\(529\) −16.5651 28.6916i −0.720222 1.24746i
\(530\) 8.51617 + 6.18736i 0.369919 + 0.268762i
\(531\) 0 0
\(532\) 8.19149 + 25.2108i 0.355146 + 1.09303i
\(533\) 1.42759 + 0.635602i 0.0618356 + 0.0275310i
\(534\) 0 0
\(535\) −5.52522 1.17442i −0.238876 0.0507746i
\(536\) −3.82644 4.24969i −0.165277 0.183559i
\(537\) 0 0
\(538\) 3.04042 + 5.26617i 0.131082 + 0.227041i
\(539\) −12.5784 8.81819i −0.541788 0.379826i
\(540\) 0 0
\(541\) −16.9114 12.2869i −0.727079 0.528254i 0.161559 0.986863i \(-0.448348\pi\)
−0.888638 + 0.458609i \(0.848348\pi\)
\(542\) −9.24503 + 1.96509i −0.397108 + 0.0844080i
\(543\) 0 0
\(544\) −1.71684 16.3347i −0.0736091 0.700344i
\(545\) −0.983309 9.35556i −0.0421203 0.400748i
\(546\) 0 0
\(547\) 40.9613 8.70658i 1.75138 0.372267i 0.783051 0.621957i \(-0.213662\pi\)
0.968326 + 0.249690i \(0.0803288\pi\)
\(548\) −4.55562 3.30985i −0.194606 0.141390i
\(549\) 0 0
\(550\) 2.77350 + 1.94439i 0.118263 + 0.0829092i
\(551\) −3.73576 6.47053i −0.159149 0.275654i
\(552\) 0 0
\(553\) −9.12636 10.1358i −0.388092 0.431020i
\(554\) −4.96620 1.05560i −0.210993 0.0448480i
\(555\) 0 0
\(556\) 24.0994 + 10.7297i 1.02204 + 0.455042i
\(557\) 3.87025 + 11.9114i 0.163988 + 0.504702i 0.998960 0.0455895i \(-0.0145166\pi\)
−0.834973 + 0.550291i \(0.814517\pi\)
\(558\) 0 0
\(559\) 31.0911 + 22.5890i 1.31502 + 0.955415i
\(560\) 7.61538 + 13.1902i 0.321809 + 0.557389i
\(561\) 0 0
\(562\) −4.03083 + 6.98160i −0.170030 + 0.294501i
\(563\) 13.2544 5.90124i 0.558606 0.248707i −0.107958 0.994155i \(-0.534431\pi\)
0.666564 + 0.745448i \(0.267764\pi\)
\(564\) 0 0
\(565\) −18.7556 + 20.8302i −0.789056 + 0.876335i
\(566\) 0.501956 0.364693i 0.0210988 0.0153292i
\(567\) 0 0
\(568\) 3.99850 + 12.3061i 0.167773 + 0.516353i
\(569\) −27.3612 + 5.81579i −1.14704 + 0.243811i −0.741943 0.670463i \(-0.766095\pi\)
−0.405096 + 0.914274i \(0.632762\pi\)
\(570\) 0 0
\(571\) −4.52443 + 7.83654i −0.189341 + 0.327949i −0.945031 0.326981i \(-0.893969\pi\)
0.755689 + 0.654930i \(0.227302\pi\)
\(572\) −11.3219 + 20.3977i −0.473391 + 0.852870i
\(573\) 0 0
\(574\) 0.0683481 0.650289i 0.00285280 0.0271425i
\(575\) 4.82046 14.8359i 0.201027 0.618698i
\(576\) 0 0
\(577\) −31.0234 + 22.5398i −1.29152 + 0.938346i −0.999835 0.0181683i \(-0.994217\pi\)
−0.291687 + 0.956514i \(0.594217\pi\)
\(578\) −2.72428 1.21293i −0.113315 0.0504511i
\(579\) 0 0
\(580\) −3.40118 3.77740i −0.141226 0.156848i
\(581\) 0.389352 0.173351i 0.0161530 0.00719180i
\(582\) 0 0
\(583\) −40.6067 + 9.35034i −1.68176 + 0.387252i
\(584\) 27.7381 1.14781
\(585\) 0 0
\(586\) 3.65095 11.2365i 0.150819 0.464175i
\(587\) 0.483525 0.537009i 0.0199572 0.0221647i −0.733084 0.680139i \(-0.761920\pi\)
0.753041 + 0.657974i \(0.228586\pi\)
\(588\) 0 0
\(589\) −1.80022 17.1279i −0.0741767 0.705744i
\(590\) 2.99669 + 0.636966i 0.123372 + 0.0262235i
\(591\) 0 0
\(592\) −0.837737 + 7.97054i −0.0344308 + 0.327587i
\(593\) 39.6596 1.62863 0.814313 0.580426i \(-0.197114\pi\)
0.814313 + 0.580426i \(0.197114\pi\)
\(594\) 0 0
\(595\) −19.2517 −0.789244
\(596\) −0.745038 + 7.08856i −0.0305179 + 0.290359i
\(597\) 0 0
\(598\) −14.3705 3.05454i −0.587652 0.124909i
\(599\) −2.12996 20.2652i −0.0870276 0.828013i −0.947766 0.318965i \(-0.896665\pi\)
0.860739 0.509047i \(-0.170002\pi\)
\(600\) 0 0
\(601\) −32.3670 + 35.9472i −1.32028 + 1.46632i −0.538717 + 0.842487i \(0.681091\pi\)
−0.781560 + 0.623830i \(0.785576\pi\)
\(602\) 4.96914 15.2935i 0.202527 0.623315i
\(603\) 0 0
\(604\) 13.7129 0.557968
\(605\) 18.2370 4.52485i 0.741439 0.183961i
\(606\) 0 0
\(607\) −17.9989 + 8.01364i −0.730554 + 0.325264i −0.738085 0.674708i \(-0.764270\pi\)
0.00753068 + 0.999972i \(0.497603\pi\)
\(608\) −14.6921 16.3172i −0.595842 0.661750i
\(609\) 0 0
\(610\) 2.94928 + 1.31310i 0.119413 + 0.0531660i
\(611\) 3.49397 2.53852i 0.141351 0.102698i
\(612\) 0 0
\(613\) 1.76690 5.43796i 0.0713644 0.219637i −0.909013 0.416768i \(-0.863163\pi\)
0.980377 + 0.197131i \(0.0631626\pi\)
\(614\) −0.835451 + 7.94879i −0.0337161 + 0.320787i
\(615\) 0 0
\(616\) 20.4724 + 3.99159i 0.824858 + 0.160826i
\(617\) 3.05346 5.28875i 0.122928 0.212917i −0.797993 0.602666i \(-0.794105\pi\)
0.920921 + 0.389749i \(0.127438\pi\)
\(618\) 0 0
\(619\) 1.74084 0.370027i 0.0699704 0.0148727i −0.172793 0.984958i \(-0.555279\pi\)
0.242764 + 0.970085i \(0.421946\pi\)
\(620\) −3.62062 11.1431i −0.145408 0.447519i
\(621\) 0 0
\(622\) 8.48050 6.16144i 0.340037 0.247051i
\(623\) 18.1044 20.1070i 0.725337 0.805568i
\(624\) 0 0
\(625\) −9.36756 + 4.17071i −0.374702 + 0.166828i
\(626\) −0.764220 + 1.32367i −0.0305444 + 0.0529044i
\(627\) 0 0
\(628\) 0.271963 + 0.471055i 0.0108525 + 0.0187971i
\(629\) −8.19556 5.95442i −0.326778 0.237418i
\(630\) 0 0
\(631\) −13.8566 42.6461i −0.551621 1.69771i −0.704705 0.709501i \(-0.748921\pi\)
0.153084 0.988213i \(-0.451079\pi\)
\(632\) 6.73674 + 2.99939i 0.267973 + 0.119309i
\(633\) 0 0
\(634\) −8.76303 1.86264i −0.348024 0.0739748i
\(635\) −12.3385 13.7033i −0.489639 0.543799i
\(636\) 0 0
\(637\) 9.25852 + 16.0362i 0.366836 + 0.635379i
\(638\) −2.75097 + 0.0464448i −0.108912 + 0.00183877i
\(639\) 0 0
\(640\) −15.6290 11.3552i −0.617792 0.448852i
\(641\) −26.4193 + 5.61560i −1.04350 + 0.221803i −0.697614 0.716473i \(-0.745755\pi\)
−0.345887 + 0.938276i \(0.612422\pi\)
\(642\) 0 0
\(643\) 3.40317 + 32.3790i 0.134208 + 1.27690i 0.829634 + 0.558307i \(0.188549\pi\)
−0.695426 + 0.718597i \(0.744784\pi\)
\(644\) −4.69918 44.7097i −0.185174 1.76181i
\(645\) 0 0
\(646\) 7.00398 1.48874i 0.275568 0.0585738i
\(647\) −25.4705 18.5054i −1.00135 0.727523i −0.0389724 0.999240i \(-0.512408\pi\)
−0.962377 + 0.271717i \(0.912408\pi\)
\(648\) 0 0
\(649\) −9.68953 + 7.29290i −0.380347 + 0.286271i
\(650\) −2.04149 3.53596i −0.0800736 0.138692i
\(651\) 0 0
\(652\) −12.9431 14.3748i −0.506892 0.562961i
\(653\) −4.55794 0.968821i −0.178366 0.0379129i 0.117863 0.993030i \(-0.462396\pi\)
−0.296229 + 0.955117i \(0.595729\pi\)
\(654\) 0 0
\(655\) −33.0133 14.6985i −1.28994 0.574318i
\(656\) −0.315782 0.971878i −0.0123292 0.0379455i
\(657\) 0 0
\(658\) −1.46197 1.06219i −0.0569937 0.0414084i
\(659\) −16.0209 27.7490i −0.624086 1.08095i −0.988717 0.149797i \(-0.952138\pi\)
0.364631 0.931152i \(-0.381195\pi\)
\(660\) 0 0
\(661\) 20.3527 35.2519i 0.791627 1.37114i −0.133331 0.991072i \(-0.542567\pi\)
0.924959 0.380067i \(-0.124099\pi\)
\(662\) 1.68757 0.751356i 0.0655894 0.0292023i
\(663\) 0 0
\(664\) −0.154190 + 0.171245i −0.00598373 + 0.00664561i
\(665\) −20.8211 + 15.1274i −0.807406 + 0.586615i
\(666\) 0 0
\(667\) 3.91560 + 12.0510i 0.151613 + 0.466616i
\(668\) 30.2441 6.42857i 1.17018 0.248729i
\(669\) 0 0
\(670\) 1.29917 2.25023i 0.0501914 0.0869340i
\(671\) −11.5853 + 5.39424i −0.447245 + 0.208242i
\(672\) 0 0
\(673\) 3.94736 37.5567i 0.152160 1.44770i −0.605912 0.795532i \(-0.707192\pi\)
0.758072 0.652171i \(-0.226142\pi\)
\(674\) 0.904299 2.78315i 0.0348323 0.107203i
\(675\) 0 0
\(676\) 4.24655 3.08530i 0.163329 0.118665i
\(677\) −17.2666 7.68759i −0.663610 0.295458i 0.0471552 0.998888i \(-0.484984\pi\)
−0.710765 + 0.703429i \(0.751651\pi\)
\(678\) 0 0
\(679\) 0.783119 + 0.869742i 0.0300534 + 0.0333776i
\(680\) 9.50895 4.23366i 0.364652 0.162353i
\(681\) 0 0
\(682\) −5.83647 2.48137i −0.223490 0.0950167i
\(683\) −31.1053 −1.19021 −0.595105 0.803648i \(-0.702890\pi\)
−0.595105 + 0.803648i \(0.702890\pi\)
\(684\) 0 0
\(685\) 1.68941 5.19948i 0.0645492 0.198662i
\(686\) −2.65099 + 2.94423i −0.101215 + 0.112411i
\(687\) 0 0
\(688\) −2.62692 24.9935i −0.100150 0.952868i
\(689\) 49.1314 + 10.4432i 1.87176 + 0.397854i
\(690\) 0 0
\(691\) −2.32172 + 22.0897i −0.0883225 + 0.840333i 0.857245 + 0.514908i \(0.172174\pi\)
−0.945568 + 0.325425i \(0.894493\pi\)
\(692\) 21.7565 0.827057
\(693\) 0 0
\(694\) −11.9432 −0.453358
\(695\) −2.67716 + 25.4715i −0.101551 + 0.966189i
\(696\) 0 0
\(697\) 1.26345 + 0.268554i 0.0478565 + 0.0101722i
\(698\) −0.858360 8.16675i −0.0324894 0.309116i
\(699\) 0 0
\(700\) 8.36004 9.28477i 0.315980 0.350931i
\(701\) 9.25374 28.4801i 0.349509 1.07568i −0.609616 0.792697i \(-0.708677\pi\)
0.959125 0.282981i \(-0.0913235\pi\)
\(702\) 0 0
\(703\) −13.5424 −0.510763
\(704\) 9.02018 2.07704i 0.339961 0.0782814i
\(705\) 0 0
\(706\) 3.59874 1.60226i 0.135440 0.0603020i
\(707\) −16.2384 18.0345i −0.610707 0.678258i
\(708\) 0 0
\(709\) 15.7182 + 6.99820i 0.590310 + 0.262823i 0.680078 0.733140i \(-0.261946\pi\)
−0.0897681 + 0.995963i \(0.528613\pi\)
\(710\) −4.75647 + 3.45578i −0.178507 + 0.129693i
\(711\) 0 0
\(712\) −4.52052 + 13.9127i −0.169414 + 0.521402i
\(713\) −3.05304 + 29.0477i −0.114337 + 1.08785i
\(714\) 0 0
\(715\) −22.2311 4.33449i −0.831398 0.162101i
\(716\) −19.2500 + 33.3420i −0.719407 + 1.24605i
\(717\) 0 0
\(718\) −13.8295 + 2.93956i −0.516114 + 0.109703i
\(719\) −1.46013 4.49382i −0.0544537 0.167591i 0.920131 0.391611i \(-0.128082\pi\)
−0.974585 + 0.224020i \(0.928082\pi\)
\(720\) 0 0
\(721\) 4.56446 3.31628i 0.169989 0.123505i
\(722\) 0.169236 0.187955i 0.00629829 0.00699496i
\(723\) 0 0
\(724\) 7.04028 3.13454i 0.261650 0.116494i
\(725\) −1.76074 + 3.04969i −0.0653923 + 0.113263i
\(726\) 0 0
\(727\) −2.60044 4.50410i −0.0964450 0.167048i 0.813766 0.581193i \(-0.197414\pi\)
−0.910211 + 0.414145i \(0.864081\pi\)
\(728\) −20.3408 14.7784i −0.753879 0.547725i
\(729\) 0 0
\(730\) 3.89468 + 11.9866i 0.144149 + 0.443644i
\(731\) 29.0195 + 12.9203i 1.07333 + 0.477876i
\(732\) 0 0
\(733\) 47.9910 + 10.2008i 1.77259 + 0.376775i 0.974257 0.225442i \(-0.0723826\pi\)
0.798332 + 0.602217i \(0.205716\pi\)
\(734\) 7.33320 + 8.14435i 0.270673 + 0.300613i
\(735\) 0 0
\(736\) 18.6187 + 32.2485i 0.686294 + 1.18870i
\(737\) 3.34308 + 9.72706i 0.123144 + 0.358301i
\(738\) 0 0
\(739\) 12.6160 + 9.16603i 0.464086 + 0.337178i 0.795132 0.606437i \(-0.207402\pi\)
−0.331046 + 0.943615i \(0.607402\pi\)
\(740\) −9.01179 + 1.91552i −0.331280 + 0.0704157i
\(741\) 0 0
\(742\) −2.19690 20.9021i −0.0806506 0.767339i
\(743\) 1.16387 + 11.0734i 0.0426981 + 0.406245i 0.994907 + 0.100798i \(0.0321395\pi\)
−0.952209 + 0.305448i \(0.901194\pi\)
\(744\) 0 0
\(745\) −6.76882 + 1.43876i −0.247990 + 0.0527119i
\(746\) −2.80897 2.04083i −0.102844 0.0747202i
\(747\) 0 0
\(748\) −5.64842 + 18.4374i −0.206527 + 0.674140i
\(749\) 5.63901 + 9.76705i 0.206045 + 0.356880i
\(750\) 0 0
\(751\) −5.41006 6.00848i −0.197416 0.219252i 0.636307 0.771436i \(-0.280461\pi\)
−0.833722 + 0.552184i \(0.813795\pi\)
\(752\) −2.76248 0.587184i −0.100737 0.0214124i
\(753\) 0 0
\(754\) 3.02981 + 1.34896i 0.110339 + 0.0491262i
\(755\) 4.11410 + 12.6619i 0.149727 + 0.460814i
\(756\) 0 0
\(757\) −24.1585 17.5522i −0.878056 0.637945i 0.0546803 0.998504i \(-0.482586\pi\)
−0.932737 + 0.360559i \(0.882586\pi\)
\(758\) 5.97081 + 10.3417i 0.216869 + 0.375629i
\(759\) 0 0
\(760\) 6.95742 12.0506i 0.252372 0.437121i
\(761\) −31.8760 + 14.1921i −1.15550 + 0.514463i −0.892817 0.450419i \(-0.851275\pi\)
−0.262685 + 0.964882i \(0.584608\pi\)
\(762\) 0 0
\(763\) −12.5677 + 13.9578i −0.454980 + 0.505306i
\(764\) −17.8134 + 12.9422i −0.644468 + 0.468233i
\(765\) 0 0
\(766\) 2.67339 + 8.22786i 0.0965936 + 0.297284i
\(767\) 14.2991 3.03937i 0.516312 0.109745i
\(768\) 0 0
\(769\) 2.80362 4.85600i 0.101101 0.175112i −0.811038 0.584994i \(-0.801097\pi\)
0.912139 + 0.409882i \(0.134430\pi\)
\(770\) 1.14961 + 9.40730i 0.0414291 + 0.339016i
\(771\) 0 0
\(772\) −2.31095 + 21.9872i −0.0831728 + 0.791337i
\(773\) 3.34979 10.3096i 0.120483 0.370810i −0.872568 0.488493i \(-0.837547\pi\)
0.993051 + 0.117683i \(0.0375467\pi\)
\(774\) 0 0
\(775\) −6.56697 + 4.77118i −0.235893 + 0.171386i
\(776\) −0.578070 0.257373i −0.0207515 0.00923916i
\(777\) 0 0
\(778\) 5.86928 + 6.51849i 0.210424 + 0.233699i
\(779\) 1.57746 0.702332i 0.0565185 0.0251636i
\(780\) 0 0
\(781\) 2.04166 23.1835i 0.0730562 0.829572i
\(782\) −12.1436 −0.434255
\(783\) 0 0
\(784\) 3.74186 11.5163i 0.133638 0.411295i
\(785\) −0.353359 + 0.392445i −0.0126119 + 0.0140070i
\(786\) 0 0
\(787\) 0.258858 + 2.46286i 0.00922727 + 0.0877916i 0.998166 0.0605308i \(-0.0192793\pi\)
−0.988939 + 0.148322i \(0.952613\pi\)
\(788\) 17.8040 + 3.78436i 0.634242 + 0.134812i
\(789\) 0 0
\(790\) −0.350241 + 3.33232i −0.0124610 + 0.118559i
\(791\) 55.9640 1.98985
\(792\) 0 0
\(793\) 15.4047 0.547037
\(794\) 1.12485 10.7022i 0.0399195 0.379808i
\(795\) 0 0
\(796\) 45.5667 + 9.68549i 1.61507 + 0.343293i
\(797\) −1.01180 9.62666i −0.0358399 0.340994i −0.997718 0.0675160i \(-0.978493\pi\)
0.961878 0.273478i \(-0.0881740\pi\)
\(798\) 0 0
\(799\) 2.38866 2.65287i 0.0845047 0.0938520i
\(800\) −3.19795 + 9.84226i −0.113064 + 0.347977i
\(801\) 0 0
\(802\) −2.65237 −0.0936586
\(803\) −45.9135 19.5201i −1.62025 0.688850i
\(804\) 0 0
\(805\) 39.8733 17.7527i 1.40535 0.625702i
\(806\) 5.11539 + 5.68121i 0.180182 + 0.200112i
\(807\) 0 0
\(808\) 11.9866 + 5.33676i 0.421686 + 0.187747i
\(809\) −6.36318 + 4.62312i −0.223717 + 0.162540i −0.693998 0.719976i \(-0.744153\pi\)
0.470281 + 0.882517i \(0.344153\pi\)
\(810\) 0 0
\(811\) 12.2076 37.5712i 0.428668 1.31930i −0.470770 0.882256i \(-0.656024\pi\)
0.899438 0.437048i \(-0.143976\pi\)
\(812\) −1.06082 + 10.0930i −0.0372275 + 0.354196i
\(813\) 0 0
\(814\) −2.42022 + 4.36030i −0.0848286 + 0.152829i
\(815\) 9.38994 16.2639i 0.328915 0.569698i
\(816\) 0 0
\(817\) 41.5375 8.82907i 1.45321 0.308890i
\(818\) 3.58013 + 11.0185i 0.125176 + 0.385253i
\(819\) 0 0
\(820\) 0.950378 0.690490i 0.0331886 0.0241130i
\(821\) 2.24401 2.49222i 0.0783165 0.0869792i −0.702713 0.711473i \(-0.748028\pi\)
0.781029 + 0.624494i \(0.214695\pi\)
\(822\) 0 0
\(823\) 14.7097 6.54920i 0.512749 0.228291i −0.134017 0.990979i \(-0.542788\pi\)
0.646766 + 0.762688i \(0.276121\pi\)
\(824\) −1.52523 + 2.64177i −0.0531339 + 0.0920306i
\(825\) 0 0
\(826\) −3.05841 5.29732i −0.106416 0.184317i
\(827\) 12.3703 + 8.98751i 0.430156 + 0.312526i 0.781711 0.623641i \(-0.214347\pi\)
−0.351555 + 0.936167i \(0.614347\pi\)
\(828\) 0 0
\(829\) −13.0239 40.0835i −0.452340 1.39216i −0.874230 0.485512i \(-0.838633\pi\)
0.421890 0.906647i \(-0.361367\pi\)
\(830\) −0.0956507 0.0425864i −0.00332008 0.00147820i
\(831\) 0 0
\(832\) −10.9138 2.31980i −0.378369 0.0804247i
\(833\) 10.2415 + 11.3743i 0.354847 + 0.394098i
\(834\) 0 0
\(835\) 15.0096 + 25.9975i 0.519430 + 0.899679i
\(836\) 8.37869 + 24.3788i 0.289783 + 0.843157i
\(837\) 0 0
\(838\) −7.19483 5.22735i −0.248541 0.180576i
\(839\) 2.58954 0.550423i 0.0894008 0.0190027i −0.162994 0.986627i \(-0.552115\pi\)
0.252395 + 0.967624i \(0.418782\pi\)
\(840\) 0 0
\(841\) 2.73233 + 25.9963i 0.0942181 + 0.896426i
\(842\) 0.656889 + 6.24988i 0.0226379 + 0.215385i
\(843\) 0 0
\(844\) −12.5354 + 2.66447i −0.431485 + 0.0917150i
\(845\) 4.12288 + 2.99545i 0.141831 + 0.103047i
\(846\) 0 0
\(847\) −31.0780 21.0141i −1.06785 0.722053i
\(848\) −16.4232 28.4458i −0.563976 0.976834i
\(849\) 0 0
\(850\) −2.25823 2.50802i −0.0774567 0.0860244i
\(851\) 22.4651 + 4.77510i 0.770093 + 0.163688i
\(852\) 0 0
\(853\) 8.46891 + 3.77060i 0.289970 + 0.129103i 0.546567 0.837416i \(-0.315935\pi\)
−0.256597 + 0.966519i \(0.582601\pi\)
\(854\) −1.99185 6.13027i −0.0681596 0.209774i
\(855\) 0 0
\(856\) −4.93314 3.58414i −0.168611 0.122503i
\(857\) −10.2678 17.7844i −0.350742 0.607502i 0.635638 0.771987i \(-0.280737\pi\)
−0.986380 + 0.164485i \(0.947404\pi\)
\(858\) 0 0
\(859\) −18.0139 + 31.2010i −0.614626 + 1.06456i 0.375824 + 0.926691i \(0.377360\pi\)
−0.990450 + 0.137872i \(0.955974\pi\)
\(860\) 26.3922 11.7506i 0.899968 0.400691i
\(861\) 0 0
\(862\) 2.15931 2.39816i 0.0735464 0.0816815i
\(863\) 3.49209 2.53715i 0.118872 0.0863656i −0.526761 0.850014i \(-0.676594\pi\)
0.645633 + 0.763648i \(0.276594\pi\)
\(864\) 0 0
\(865\) 6.52733 + 20.0890i 0.221936 + 0.683048i
\(866\) −6.71579 + 1.42749i −0.228212 + 0.0485079i
\(867\) 0 0
\(868\) −11.6966 + 20.2591i −0.397008 + 0.687637i
\(869\) −9.04022 9.70557i −0.306668 0.329239i
\(870\) 0 0
\(871\) 1.29598 12.3304i 0.0439127 0.417801i
\(872\) 3.13804 9.65790i 0.106268 0.327058i
\(873\) 0 0
\(874\) −13.1335 + 9.54206i −0.444248 + 0.322765i
\(875\) 37.6919 + 16.7815i 1.27422 + 0.567319i
\(876\) 0 0
\(877\) 20.8207 + 23.1237i 0.703064 + 0.780832i 0.983861 0.178935i \(-0.0572653\pi\)
−0.280797 + 0.959767i \(0.590599\pi\)
\(878\) 11.2821 5.02310i 0.380752 0.169522i
\(879\) 0 0
\(880\) 7.62119 + 12.7002i 0.256910 + 0.428125i
\(881\) −43.9267 −1.47993 −0.739964 0.672647i \(-0.765157\pi\)
−0.739964 + 0.672647i \(0.765157\pi\)
\(882\) 0 0
\(883\) −1.81685 + 5.59170i −0.0611420 + 0.188176i −0.976962 0.213413i \(-0.931542\pi\)
0.915820 + 0.401589i \(0.131542\pi\)
\(884\) 15.5535 17.2740i 0.523122 0.580986i
\(885\) 0 0
\(886\) 1.37520 + 13.0842i 0.0462009 + 0.439572i
\(887\) −7.52695 1.59990i −0.252730 0.0537195i 0.0798043 0.996811i \(-0.474570\pi\)
−0.332534 + 0.943091i \(0.607904\pi\)
\(888\) 0 0
\(889\) −3.84835 + 36.6146i −0.129070 + 1.22801i
\(890\) −6.64689 −0.222804
\(891\) 0 0
\(892\) −41.3640 −1.38497
\(893\) 0.498831 4.74606i 0.0166927 0.158821i
\(894\) 0 0
\(895\) −36.5620 7.77150i −1.22213 0.259773i
\(896\) 4.03178 + 38.3598i 0.134692 + 1.28151i
\(897\) 0 0
\(898\) −4.65257 + 5.16720i −0.155258 + 0.172432i
\(899\) 2.03751 6.27081i 0.0679547 0.209143i
\(900\) 0 0
\(901\) 41.5180 1.38316
\(902\) 0.0557818 0.633417i 0.00185733 0.0210905i
\(903\) 0 0
\(904\) −27.6422 + 12.3071i −0.919365 + 0.409328i
\(905\) 5.00651 + 5.56030i 0.166422 + 0.184830i
\(906\) 0 0
\(907\) −17.3487 7.72415i −0.576055 0.256476i 0.0979642 0.995190i \(-0.468767\pi\)
−0.674019 + 0.738714i \(0.735434\pi\)
\(908\) 16.9700 12.3294i 0.563170 0.409167i
\(909\) 0 0
\(910\) 3.53024 10.8650i 0.117026 0.360170i
\(911\) 5.23011 49.7612i 0.173281 1.64866i −0.469734 0.882808i \(-0.655650\pi\)
0.643015 0.765853i \(-0.277683\pi\)
\(912\) 0 0
\(913\) 0.375733 0.174946i 0.0124349 0.00578985i
\(914\) −6.04320 + 10.4671i −0.199891 + 0.346222i
\(915\) 0 0
\(916\) 5.26198 1.11847i 0.173861 0.0369552i
\(917\) 22.2961 + 68.6205i 0.736284 + 2.26605i
\(918\) 0 0
\(919\) −2.48708 + 1.80697i −0.0820411 + 0.0596063i −0.628050 0.778173i \(-0.716147\pi\)
0.546009 + 0.837780i \(0.316147\pi\)
\(920\) −15.7905 + 17.5371i −0.520598 + 0.578182i
\(921\) 0 0
\(922\) 11.7603 5.23600i 0.387303 0.172439i
\(923\) −14.0270 + 24.2955i −0.461705 + 0.799696i
\(924\) 0 0
\(925\) 3.19142 + 5.52769i 0.104933 + 0.181749i
\(926\) −5.03648 3.65922i −0.165509 0.120249i
\(927\) 0 0
\(928\) −2.59765 7.99474i −0.0852720 0.262440i
\(929\) 0.827283 + 0.368330i 0.0271423 + 0.0120845i 0.420263 0.907402i \(-0.361938\pi\)
−0.393121 + 0.919487i \(0.628605\pi\)
\(930\) 0 0
\(931\) 20.0140 + 4.25410i 0.655931 + 0.139422i
\(932\) −28.8803 32.0748i −0.946004 1.05064i
\(933\) 0 0
\(934\) −6.79433 11.7681i −0.222317 0.385065i
\(935\) −18.7190 + 0.316034i −0.612177 + 0.0103354i
\(936\) 0 0
\(937\) 17.8423 + 12.9632i 0.582881 + 0.423488i 0.839762 0.542955i \(-0.182695\pi\)
−0.256881 + 0.966443i \(0.582695\pi\)
\(938\) −5.07445 + 1.07861i −0.165687 + 0.0352178i
\(939\) 0 0
\(940\) −0.339362 3.22882i −0.0110688 0.105312i
\(941\) 0.570822 + 5.43101i 0.0186083 + 0.177046i 0.999878 0.0155906i \(-0.00496286\pi\)
−0.981270 + 0.192636i \(0.938296\pi\)
\(942\) 0 0
\(943\) −2.86444 + 0.608856i −0.0932791 + 0.0198271i
\(944\) −7.73386 5.61898i −0.251716 0.182882i
\(945\) 0 0
\(946\) 4.58059 14.9519i 0.148928 0.486127i
\(947\) 16.2203 + 28.0944i 0.527089 + 0.912945i 0.999502 + 0.0315677i \(0.0100500\pi\)
−0.472412 + 0.881378i \(0.656617\pi\)
\(948\) 0 0
\(949\) 40.2410 + 44.6921i 1.30628 + 1.45077i
\(950\) −4.41304 0.938020i −0.143178 0.0304334i
\(951\) 0 0
\(952\) −18.9854 8.45287i −0.615322 0.273959i
\(953\) 16.6278 + 51.1752i 0.538628 + 1.65773i 0.735677 + 0.677333i \(0.236864\pi\)
−0.197049 + 0.980394i \(0.563136\pi\)
\(954\) 0 0
\(955\) −17.2947 12.5653i −0.559642 0.406604i
\(956\) 6.11452 + 10.5907i 0.197758 + 0.342527i
\(957\) 0 0
\(958\) −3.83130 + 6.63600i −0.123784 + 0.214400i
\(959\) −9.97177 + 4.43972i −0.322005 + 0.143366i
\(960\) 0 0
\(961\) −10.5733 + 11.7429i −0.341075 + 0.378802i
\(962\) 4.86330 3.53339i 0.156799 0.113921i
\(963\) 0 0
\(964\) 4.22478 + 13.0025i 0.136071 + 0.418784i
\(965\) −20.9954 + 4.46271i −0.675866 + 0.143660i
\(966\) 0 0
\(967\) 14.4075 24.9546i 0.463315 0.802486i −0.535809 0.844340i \(-0.679993\pi\)
0.999124 + 0.0418540i \(0.0133264\pi\)
\(968\) 19.9715 + 3.54507i 0.641908 + 0.113943i
\(969\) 0 0
\(970\) 0.0300537 0.285941i 0.000964965 0.00918102i
\(971\) −1.66685 + 5.13005i −0.0534919 + 0.164631i −0.974233 0.225542i \(-0.927585\pi\)
0.920742 + 0.390173i \(0.127585\pi\)
\(972\) 0 0
\(973\) 41.3700 30.0571i 1.32626 0.963586i
\(974\) 12.0657 + 5.37199i 0.386609 + 0.172130i
\(975\) 0 0
\(976\) −6.74058 7.48618i −0.215761 0.239627i
\(977\) 3.02599 1.34726i 0.0968100 0.0431026i −0.357760 0.933813i \(-0.616460\pi\)
0.454570 + 0.890711i \(0.349793\pi\)
\(978\) 0 0
\(979\) 17.2734 19.8478i 0.552059 0.634338i
\(980\) 13.9200 0.444657
\(981\) 0 0
\(982\) −5.91123 + 18.1929i −0.188635 + 0.580559i
\(983\) −22.6649 + 25.1719i −0.722897 + 0.802859i −0.986843 0.161679i \(-0.948309\pi\)
0.263946 + 0.964537i \(0.414976\pi\)
\(984\) 0 0
\(985\) 1.84719 + 17.5749i 0.0588565 + 0.559982i
\(986\) 2.68146 + 0.569962i 0.0853951 + 0.0181513i
\(987\) 0 0
\(988\) 3.24810 30.9036i 0.103336 0.983174i
\(989\) −72.0183 −2.29005
\(990\) 0 0
\(991\) 8.66640 0.275297 0.137649 0.990481i \(-0.456046\pi\)
0.137649 + 0.990481i \(0.456046\pi\)
\(992\) 2.02542 19.2706i 0.0643071 0.611841i
\(993\) 0 0
\(994\) 11.4821 + 2.44059i 0.364189 + 0.0774107i
\(995\) 4.72761 + 44.9802i 0.149875 + 1.42597i
\(996\) 0 0
\(997\) −20.2515 + 22.4916i −0.641372 + 0.712316i −0.972925 0.231121i \(-0.925761\pi\)
0.331553 + 0.943437i \(0.392427\pi\)
\(998\) −3.64303 + 11.2121i −0.115318 + 0.354912i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.37.5 72
3.2 odd 2 99.2.m.b.4.5 72
9.2 odd 6 99.2.m.b.70.5 yes 72
9.4 even 3 891.2.f.e.730.5 36
9.5 odd 6 891.2.f.f.730.5 36
9.7 even 3 inner 297.2.n.b.235.5 72
11.3 even 5 inner 297.2.n.b.91.5 72
33.5 odd 10 1089.2.e.p.364.10 36
33.14 odd 10 99.2.m.b.58.5 yes 72
33.17 even 10 1089.2.e.o.364.9 36
99.5 odd 30 9801.2.a.cm.1.9 18
99.14 odd 30 891.2.f.f.487.5 36
99.25 even 15 inner 297.2.n.b.289.5 72
99.38 odd 30 1089.2.e.p.727.10 36
99.47 odd 30 99.2.m.b.25.5 yes 72
99.49 even 15 9801.2.a.cp.1.10 18
99.50 even 30 9801.2.a.co.1.10 18
99.58 even 15 891.2.f.e.487.5 36
99.83 even 30 1089.2.e.o.727.9 36
99.94 odd 30 9801.2.a.cn.1.9 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.5 72 3.2 odd 2
99.2.m.b.25.5 yes 72 99.47 odd 30
99.2.m.b.58.5 yes 72 33.14 odd 10
99.2.m.b.70.5 yes 72 9.2 odd 6
297.2.n.b.37.5 72 1.1 even 1 trivial
297.2.n.b.91.5 72 11.3 even 5 inner
297.2.n.b.235.5 72 9.7 even 3 inner
297.2.n.b.289.5 72 99.25 even 15 inner
891.2.f.e.487.5 36 99.58 even 15
891.2.f.e.730.5 36 9.4 even 3
891.2.f.f.487.5 36 99.14 odd 30
891.2.f.f.730.5 36 9.5 odd 6
1089.2.e.o.364.9 36 33.17 even 10
1089.2.e.o.727.9 36 99.83 even 30
1089.2.e.p.364.10 36 33.5 odd 10
1089.2.e.p.727.10 36 99.38 odd 30
9801.2.a.cm.1.9 18 99.5 odd 30
9801.2.a.cn.1.9 18 99.94 odd 30
9801.2.a.co.1.10 18 99.50 even 30
9801.2.a.cp.1.10 18 99.49 even 15