Properties

Label 297.2.n.b.37.4
Level $297$
Weight $2$
Character 297.37
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(37,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 37.4
Character \(\chi\) \(=\) 297.37
Dual form 297.2.n.b.289.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0694404 + 0.660681i) q^{2} +(1.52462 + 0.324067i) q^{4} +(0.116719 + 1.11051i) q^{5} +(-2.61265 + 2.90164i) q^{7} +(-0.730548 + 2.24840i) q^{8} -0.741796 q^{10} +(-3.27403 + 0.529836i) q^{11} +(2.44648 - 1.08924i) q^{13} +(-1.73564 - 1.92762i) q^{14} +(1.41310 + 0.629154i) q^{16} +(4.48727 - 3.26019i) q^{17} +(-1.58598 + 4.88115i) q^{19} +(-0.181927 + 1.73092i) q^{20} +(-0.122703 - 2.19988i) q^{22} +(1.05719 - 1.83110i) q^{23} +(3.67114 - 0.780324i) q^{25} +(0.549758 + 1.69198i) q^{26} +(-4.92362 + 3.57722i) q^{28} +(-0.724696 + 0.804856i) q^{29} +(-0.392973 + 0.174963i) q^{31} +(-2.87790 + 4.98467i) q^{32} +(1.84235 + 3.19104i) q^{34} +(-3.52724 - 2.56269i) q^{35} +(-2.69024 - 8.27970i) q^{37} +(-3.11475 - 1.38678i) q^{38} +(-2.58213 - 0.548848i) q^{40} +(1.95324 + 2.16930i) q^{41} +(1.11628 + 1.93346i) q^{43} +(-5.16335 - 0.253209i) q^{44} +(1.13637 + 0.825618i) q^{46} +(12.5550 - 2.66864i) q^{47} +(-0.861884 - 8.20028i) q^{49} +(0.260620 + 2.47964i) q^{50} +(4.08293 - 0.867854i) q^{52} +(4.56381 + 3.31581i) q^{53} +(-0.970527 - 3.57399i) q^{55} +(-4.61537 - 7.99405i) q^{56} +(-0.481430 - 0.534682i) q^{58} +(-2.32346 - 0.493867i) q^{59} +(-3.73133 - 1.66130i) q^{61} +(-0.0883065 - 0.271779i) q^{62} +(-0.590604 - 0.429099i) q^{64} +(1.49516 + 2.58969i) q^{65} +(4.87584 - 8.44521i) q^{67} +(7.89789 - 3.51637i) q^{68} +(1.93805 - 2.15242i) q^{70} +(5.11062 - 3.71308i) q^{71} +(-3.60705 - 11.1014i) q^{73} +(5.65706 - 1.20244i) q^{74} +(-3.99983 + 6.92792i) q^{76} +(7.01650 - 10.8843i) q^{77} +(-0.471916 + 4.48998i) q^{79} +(-0.533744 + 1.64269i) q^{80} +(-1.56885 + 1.13983i) q^{82} +(-0.440332 - 0.196049i) q^{83} +(4.14421 + 4.60261i) q^{85} +(-1.35492 + 0.603248i) q^{86} +(1.20056 - 7.74839i) q^{88} -16.0830 q^{89} +(-3.23120 + 9.94461i) q^{91} +(2.20521 - 2.44913i) q^{92} +(0.891300 + 8.48015i) q^{94} +(-5.60566 - 1.19152i) q^{95} +(-0.837864 + 7.97174i) q^{97} +5.47762 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0694404 + 0.660681i −0.0491018 + 0.467172i 0.942150 + 0.335191i \(0.108801\pi\)
−0.991252 + 0.131982i \(0.957866\pi\)
\(3\) 0 0
\(4\) 1.52462 + 0.324067i 0.762309 + 0.162034i
\(5\) 0.116719 + 1.11051i 0.0521983 + 0.496634i 0.989122 + 0.147099i \(0.0469936\pi\)
−0.936923 + 0.349535i \(0.886340\pi\)
\(6\) 0 0
\(7\) −2.61265 + 2.90164i −0.987488 + 1.09672i 0.00782061 + 0.999969i \(0.497511\pi\)
−0.995309 + 0.0967475i \(0.969156\pi\)
\(8\) −0.730548 + 2.24840i −0.258288 + 0.794928i
\(9\) 0 0
\(10\) −0.741796 −0.234576
\(11\) −3.27403 + 0.529836i −0.987157 + 0.159752i
\(12\) 0 0
\(13\) 2.44648 1.08924i 0.678531 0.302101i −0.0383829 0.999263i \(-0.512221\pi\)
0.716914 + 0.697162i \(0.245554\pi\)
\(14\) −1.73564 1.92762i −0.463868 0.515178i
\(15\) 0 0
\(16\) 1.41310 + 0.629154i 0.353276 + 0.157289i
\(17\) 4.48727 3.26019i 1.08832 0.790713i 0.109207 0.994019i \(-0.465169\pi\)
0.979115 + 0.203306i \(0.0651688\pi\)
\(18\) 0 0
\(19\) −1.58598 + 4.88115i −0.363849 + 1.11981i 0.586850 + 0.809696i \(0.300368\pi\)
−0.950699 + 0.310116i \(0.899632\pi\)
\(20\) −0.181927 + 1.73092i −0.0406802 + 0.387046i
\(21\) 0 0
\(22\) −0.122703 2.19988i −0.0261603 0.469017i
\(23\) 1.05719 1.83110i 0.220439 0.381812i −0.734502 0.678606i \(-0.762584\pi\)
0.954941 + 0.296795i \(0.0959176\pi\)
\(24\) 0 0
\(25\) 3.67114 0.780324i 0.734227 0.156065i
\(26\) 0.549758 + 1.69198i 0.107816 + 0.331825i
\(27\) 0 0
\(28\) −4.92362 + 3.57722i −0.930476 + 0.676030i
\(29\) −0.724696 + 0.804856i −0.134573 + 0.149458i −0.806664 0.591010i \(-0.798729\pi\)
0.672092 + 0.740468i \(0.265396\pi\)
\(30\) 0 0
\(31\) −0.392973 + 0.174963i −0.0705800 + 0.0314243i −0.441723 0.897151i \(-0.645633\pi\)
0.371143 + 0.928576i \(0.378966\pi\)
\(32\) −2.87790 + 4.98467i −0.508746 + 0.881173i
\(33\) 0 0
\(34\) 1.84235 + 3.19104i 0.315960 + 0.547259i
\(35\) −3.52724 2.56269i −0.596212 0.433173i
\(36\) 0 0
\(37\) −2.69024 8.27970i −0.442273 1.36118i −0.885447 0.464740i \(-0.846148\pi\)
0.443175 0.896435i \(-0.353852\pi\)
\(38\) −3.11475 1.38678i −0.505279 0.224965i
\(39\) 0 0
\(40\) −2.58213 0.548848i −0.408270 0.0867805i
\(41\) 1.95324 + 2.16930i 0.305045 + 0.338787i 0.876104 0.482122i \(-0.160134\pi\)
−0.571059 + 0.820909i \(0.693467\pi\)
\(42\) 0 0
\(43\) 1.11628 + 1.93346i 0.170232 + 0.294850i 0.938501 0.345277i \(-0.112215\pi\)
−0.768269 + 0.640127i \(0.778882\pi\)
\(44\) −5.16335 0.253209i −0.778404 0.0381728i
\(45\) 0 0
\(46\) 1.13637 + 0.825618i 0.167548 + 0.121731i
\(47\) 12.5550 2.66864i 1.83133 0.389262i 0.842549 0.538619i \(-0.181054\pi\)
0.988783 + 0.149357i \(0.0477205\pi\)
\(48\) 0 0
\(49\) −0.861884 8.20028i −0.123126 1.17147i
\(50\) 0.260620 + 2.47964i 0.0368573 + 0.350674i
\(51\) 0 0
\(52\) 4.08293 0.867854i 0.566201 0.120350i
\(53\) 4.56381 + 3.31581i 0.626888 + 0.455461i 0.855321 0.518099i \(-0.173360\pi\)
−0.228433 + 0.973560i \(0.573360\pi\)
\(54\) 0 0
\(55\) −0.970527 3.57399i −0.130866 0.481917i
\(56\) −4.61537 7.99405i −0.616755 1.06825i
\(57\) 0 0
\(58\) −0.481430 0.534682i −0.0632149 0.0702072i
\(59\) −2.32346 0.493867i −0.302489 0.0642960i 0.0541667 0.998532i \(-0.482750\pi\)
−0.356656 + 0.934236i \(0.616083\pi\)
\(60\) 0 0
\(61\) −3.73133 1.66130i −0.477748 0.212707i 0.153712 0.988116i \(-0.450877\pi\)
−0.631460 + 0.775408i \(0.717544\pi\)
\(62\) −0.0883065 0.271779i −0.0112149 0.0345160i
\(63\) 0 0
\(64\) −0.590604 0.429099i −0.0738255 0.0536374i
\(65\) 1.49516 + 2.58969i 0.185452 + 0.321212i
\(66\) 0 0
\(67\) 4.87584 8.44521i 0.595679 1.03175i −0.397772 0.917484i \(-0.630216\pi\)
0.993451 0.114262i \(-0.0364503\pi\)
\(68\) 7.89789 3.51637i 0.957760 0.426422i
\(69\) 0 0
\(70\) 1.93805 2.15242i 0.231641 0.257264i
\(71\) 5.11062 3.71308i 0.606519 0.440662i −0.241668 0.970359i \(-0.577694\pi\)
0.848187 + 0.529697i \(0.177694\pi\)
\(72\) 0 0
\(73\) −3.60705 11.1014i −0.422174 1.29932i −0.905675 0.423973i \(-0.860635\pi\)
0.483501 0.875344i \(-0.339365\pi\)
\(74\) 5.65706 1.20244i 0.657620 0.139781i
\(75\) 0 0
\(76\) −3.99983 + 6.92792i −0.458812 + 0.794686i
\(77\) 7.01650 10.8843i 0.799604 1.24038i
\(78\) 0 0
\(79\) −0.471916 + 4.48998i −0.0530946 + 0.505162i 0.935366 + 0.353682i \(0.115071\pi\)
−0.988460 + 0.151480i \(0.951596\pi\)
\(80\) −0.533744 + 1.64269i −0.0596744 + 0.183659i
\(81\) 0 0
\(82\) −1.56885 + 1.13983i −0.173250 + 0.125874i
\(83\) −0.440332 0.196049i −0.0483327 0.0215191i 0.382428 0.923985i \(-0.375088\pi\)
−0.430761 + 0.902466i \(0.641755\pi\)
\(84\) 0 0
\(85\) 4.14421 + 4.60261i 0.449503 + 0.499224i
\(86\) −1.35492 + 0.603248i −0.146104 + 0.0650499i
\(87\) 0 0
\(88\) 1.20056 7.74839i 0.127980 0.825981i
\(89\) −16.0830 −1.70480 −0.852399 0.522891i \(-0.824853\pi\)
−0.852399 + 0.522891i \(0.824853\pi\)
\(90\) 0 0
\(91\) −3.23120 + 9.94461i −0.338722 + 1.04248i
\(92\) 2.20521 2.44913i 0.229909 0.255340i
\(93\) 0 0
\(94\) 0.891300 + 8.48015i 0.0919306 + 0.874661i
\(95\) −5.60566 1.19152i −0.575128 0.122247i
\(96\) 0 0
\(97\) −0.837864 + 7.97174i −0.0850722 + 0.809408i 0.865918 + 0.500186i \(0.166735\pi\)
−0.950990 + 0.309222i \(0.899932\pi\)
\(98\) 5.47762 0.553323
\(99\) 0 0
\(100\) 5.84996 0.584996
\(101\) 0.184108 1.75167i 0.0183194 0.174297i −0.981536 0.191275i \(-0.938738\pi\)
0.999856 + 0.0169777i \(0.00540443\pi\)
\(102\) 0 0
\(103\) −2.62893 0.558797i −0.259036 0.0550599i 0.0765627 0.997065i \(-0.475605\pi\)
−0.335599 + 0.942005i \(0.608939\pi\)
\(104\) 0.661778 + 6.29640i 0.0648927 + 0.617412i
\(105\) 0 0
\(106\) −2.50760 + 2.78498i −0.243560 + 0.270501i
\(107\) 3.17558 9.77342i 0.306995 0.944833i −0.671931 0.740614i \(-0.734535\pi\)
0.978925 0.204219i \(-0.0654653\pi\)
\(108\) 0 0
\(109\) 2.36284 0.226319 0.113160 0.993577i \(-0.463903\pi\)
0.113160 + 0.993577i \(0.463903\pi\)
\(110\) 2.42866 0.393030i 0.231564 0.0374739i
\(111\) 0 0
\(112\) −5.51752 + 2.45656i −0.521357 + 0.232123i
\(113\) −1.02540 1.13882i −0.0964613 0.107131i 0.692981 0.720956i \(-0.256297\pi\)
−0.789442 + 0.613825i \(0.789630\pi\)
\(114\) 0 0
\(115\) 2.15685 + 0.960290i 0.201127 + 0.0895475i
\(116\) −1.36571 + 0.992247i −0.126803 + 0.0921279i
\(117\) 0 0
\(118\) 0.487631 1.50077i 0.0448901 0.138157i
\(119\) −2.26375 + 21.5382i −0.207518 + 1.97440i
\(120\) 0 0
\(121\) 10.4385 3.46940i 0.948959 0.315400i
\(122\) 1.35669 2.34986i 0.122829 0.212746i
\(123\) 0 0
\(124\) −0.655833 + 0.139402i −0.0588956 + 0.0125186i
\(125\) 3.02032 + 9.29560i 0.270146 + 0.831424i
\(126\) 0 0
\(127\) 6.19006 4.49734i 0.549279 0.399074i −0.278241 0.960511i \(-0.589751\pi\)
0.827519 + 0.561437i \(0.189751\pi\)
\(128\) −7.37825 + 8.19438i −0.652152 + 0.724288i
\(129\) 0 0
\(130\) −1.81479 + 0.807995i −0.159167 + 0.0708659i
\(131\) −2.67956 + 4.64113i −0.234114 + 0.405498i −0.959015 0.283356i \(-0.908552\pi\)
0.724901 + 0.688853i \(0.241886\pi\)
\(132\) 0 0
\(133\) −10.0197 17.3547i −0.868820 1.50484i
\(134\) 5.24101 + 3.80782i 0.452754 + 0.328945i
\(135\) 0 0
\(136\) 4.05203 + 12.4709i 0.347459 + 1.06937i
\(137\) −15.2847 6.80519i −1.30586 0.581407i −0.368455 0.929646i \(-0.620113\pi\)
−0.937406 + 0.348239i \(0.886780\pi\)
\(138\) 0 0
\(139\) −13.4399 2.85673i −1.13995 0.242305i −0.401011 0.916073i \(-0.631341\pi\)
−0.738943 + 0.673768i \(0.764675\pi\)
\(140\) −4.54720 5.05018i −0.384309 0.426818i
\(141\) 0 0
\(142\) 2.09828 + 3.63433i 0.176084 + 0.304986i
\(143\) −7.43273 + 4.86244i −0.621556 + 0.406618i
\(144\) 0 0
\(145\) −0.978384 0.710837i −0.0812503 0.0590318i
\(146\) 7.58494 1.61223i 0.627734 0.133429i
\(147\) 0 0
\(148\) −1.41840 13.4952i −0.116592 1.10930i
\(149\) 0.581142 + 5.52920i 0.0476090 + 0.452970i 0.992194 + 0.124703i \(0.0397978\pi\)
−0.944585 + 0.328267i \(0.893536\pi\)
\(150\) 0 0
\(151\) 0.160326 0.0340783i 0.0130471 0.00277325i −0.201384 0.979512i \(-0.564544\pi\)
0.214431 + 0.976739i \(0.431210\pi\)
\(152\) −9.81611 7.13182i −0.796192 0.578467i
\(153\) 0 0
\(154\) 6.70385 + 5.39148i 0.540211 + 0.434458i
\(155\) −0.240165 0.415978i −0.0192905 0.0334121i
\(156\) 0 0
\(157\) 15.9608 + 17.7262i 1.27381 + 1.41471i 0.864752 + 0.502200i \(0.167476\pi\)
0.409058 + 0.912509i \(0.365858\pi\)
\(158\) −2.93367 0.623572i −0.233391 0.0496087i
\(159\) 0 0
\(160\) −5.87141 2.61412i −0.464176 0.206664i
\(161\) 2.55114 + 7.85161i 0.201058 + 0.618794i
\(162\) 0 0
\(163\) 3.39466 + 2.46636i 0.265890 + 0.193180i 0.712740 0.701429i \(-0.247454\pi\)
−0.446850 + 0.894609i \(0.647454\pi\)
\(164\) 2.27495 + 3.94033i 0.177644 + 0.307688i
\(165\) 0 0
\(166\) 0.160102 0.277306i 0.0124264 0.0215231i
\(167\) −14.4709 + 6.44287i −1.11979 + 0.498564i −0.881289 0.472577i \(-0.843324\pi\)
−0.238504 + 0.971141i \(0.576657\pi\)
\(168\) 0 0
\(169\) −3.89989 + 4.33127i −0.299992 + 0.333174i
\(170\) −3.32864 + 2.41840i −0.255295 + 0.185482i
\(171\) 0 0
\(172\) 1.07533 + 3.30954i 0.0819935 + 0.252350i
\(173\) −2.54601 + 0.541171i −0.193569 + 0.0411445i −0.303676 0.952775i \(-0.598214\pi\)
0.110107 + 0.993920i \(0.464881\pi\)
\(174\) 0 0
\(175\) −7.32717 + 12.6910i −0.553882 + 0.959352i
\(176\) −4.95989 1.31116i −0.373866 0.0988322i
\(177\) 0 0
\(178\) 1.11681 10.6258i 0.0837087 0.796435i
\(179\) −2.34483 + 7.21663i −0.175261 + 0.539396i −0.999645 0.0266334i \(-0.991521\pi\)
0.824385 + 0.566030i \(0.191521\pi\)
\(180\) 0 0
\(181\) 1.94179 1.41080i 0.144332 0.104864i −0.513276 0.858224i \(-0.671568\pi\)
0.657608 + 0.753360i \(0.271568\pi\)
\(182\) −6.34584 2.82535i −0.470385 0.209429i
\(183\) 0 0
\(184\) 3.34472 + 3.71469i 0.246576 + 0.273850i
\(185\) 8.88066 3.95393i 0.652919 0.290698i
\(186\) 0 0
\(187\) −12.9641 + 13.0515i −0.948028 + 0.954419i
\(188\) 20.0064 1.45911
\(189\) 0 0
\(190\) 1.17647 3.62081i 0.0853504 0.262681i
\(191\) 11.0529 12.2754i 0.799757 0.888220i −0.195966 0.980611i \(-0.562784\pi\)
0.995723 + 0.0923909i \(0.0294509\pi\)
\(192\) 0 0
\(193\) 0.850335 + 8.09040i 0.0612085 + 0.582360i 0.981545 + 0.191232i \(0.0612482\pi\)
−0.920336 + 0.391128i \(0.872085\pi\)
\(194\) −5.20860 1.10712i −0.373956 0.0794867i
\(195\) 0 0
\(196\) 1.34340 12.7816i 0.0959571 0.912971i
\(197\) 22.9072 1.63207 0.816035 0.578003i \(-0.196168\pi\)
0.816035 + 0.578003i \(0.196168\pi\)
\(198\) 0 0
\(199\) 9.27177 0.657259 0.328629 0.944459i \(-0.393413\pi\)
0.328629 + 0.944459i \(0.393413\pi\)
\(200\) −0.927464 + 8.82423i −0.0655816 + 0.623967i
\(201\) 0 0
\(202\) 1.14451 + 0.243273i 0.0805273 + 0.0171166i
\(203\) −0.442028 4.20561i −0.0310243 0.295176i
\(204\) 0 0
\(205\) −2.18104 + 2.42229i −0.152330 + 0.169180i
\(206\) 0.551741 1.69808i 0.0384416 0.118311i
\(207\) 0 0
\(208\) 4.14243 0.287226
\(209\) 2.60634 16.8213i 0.180284 1.16356i
\(210\) 0 0
\(211\) 3.84655 1.71260i 0.264808 0.117900i −0.270038 0.962850i \(-0.587036\pi\)
0.534846 + 0.844950i \(0.320370\pi\)
\(212\) 5.88353 + 6.53432i 0.404082 + 0.448779i
\(213\) 0 0
\(214\) 6.23661 + 2.77672i 0.426326 + 0.189812i
\(215\) −2.01683 + 1.46531i −0.137547 + 0.0999334i
\(216\) 0 0
\(217\) 0.519021 1.59738i 0.0352335 0.108437i
\(218\) −0.164077 + 1.56109i −0.0111127 + 0.105730i
\(219\) 0 0
\(220\) −0.321469 5.76348i −0.0216735 0.388574i
\(221\) 7.42687 12.8637i 0.499585 0.865307i
\(222\) 0 0
\(223\) 6.70917 1.42608i 0.449280 0.0954973i 0.0222853 0.999752i \(-0.492906\pi\)
0.426994 + 0.904254i \(0.359572\pi\)
\(224\) −6.94477 21.3738i −0.464017 1.42810i
\(225\) 0 0
\(226\) 0.823601 0.598381i 0.0547851 0.0398037i
\(227\) −18.8226 + 20.9046i −1.24930 + 1.38749i −0.358221 + 0.933637i \(0.616617\pi\)
−0.891078 + 0.453850i \(0.850050\pi\)
\(228\) 0 0
\(229\) −12.8213 + 5.70843i −0.847258 + 0.377223i −0.783990 0.620773i \(-0.786819\pi\)
−0.0632674 + 0.997997i \(0.520152\pi\)
\(230\) −0.784218 + 1.35831i −0.0517098 + 0.0895640i
\(231\) 0 0
\(232\) −1.28021 2.21739i −0.0840499 0.145579i
\(233\) −11.7385 8.52854i −0.769017 0.558723i 0.132646 0.991163i \(-0.457653\pi\)
−0.901663 + 0.432440i \(0.857653\pi\)
\(234\) 0 0
\(235\) 4.42895 + 13.6309i 0.288913 + 0.889182i
\(236\) −3.38235 1.50592i −0.220172 0.0980269i
\(237\) 0 0
\(238\) −14.0727 2.99124i −0.912196 0.193893i
\(239\) 16.8274 + 18.6887i 1.08847 + 1.20887i 0.976581 + 0.215151i \(0.0690244\pi\)
0.111892 + 0.993720i \(0.464309\pi\)
\(240\) 0 0
\(241\) −8.87110 15.3652i −0.571438 0.989759i −0.996419 0.0845570i \(-0.973053\pi\)
0.424981 0.905202i \(-0.360281\pi\)
\(242\) 1.56731 + 7.13747i 0.100750 + 0.458814i
\(243\) 0 0
\(244\) −5.15048 3.74205i −0.329726 0.239560i
\(245\) 9.00586 1.91426i 0.575364 0.122297i
\(246\) 0 0
\(247\) 1.43668 + 13.6691i 0.0914140 + 0.869746i
\(248\) −0.106300 1.01138i −0.00675006 0.0642225i
\(249\) 0 0
\(250\) −6.35116 + 1.34998i −0.401683 + 0.0853803i
\(251\) −17.6993 12.8593i −1.11717 0.811670i −0.133390 0.991064i \(-0.542586\pi\)
−0.983777 + 0.179394i \(0.942586\pi\)
\(252\) 0 0
\(253\) −2.49108 + 6.55523i −0.156613 + 0.412124i
\(254\) 2.54147 + 4.40195i 0.159466 + 0.276203i
\(255\) 0 0
\(256\) −5.87849 6.52873i −0.367406 0.408045i
\(257\) 5.05088 + 1.07360i 0.315065 + 0.0669691i 0.362730 0.931894i \(-0.381845\pi\)
−0.0476651 + 0.998863i \(0.515178\pi\)
\(258\) 0 0
\(259\) 31.0534 + 13.8259i 1.92956 + 0.859097i
\(260\) 1.44031 + 4.43283i 0.0893244 + 0.274912i
\(261\) 0 0
\(262\) −2.88024 2.09262i −0.177942 0.129282i
\(263\) −13.9491 24.1605i −0.860135 1.48980i −0.871798 0.489866i \(-0.837046\pi\)
0.0116625 0.999932i \(-0.496288\pi\)
\(264\) 0 0
\(265\) −3.14954 + 5.45516i −0.193475 + 0.335108i
\(266\) 12.1617 5.41473i 0.745680 0.331998i
\(267\) 0 0
\(268\) 10.1706 11.2956i 0.621269 0.689989i
\(269\) 2.44290 1.77487i 0.148946 0.108216i −0.510816 0.859690i \(-0.670657\pi\)
0.659763 + 0.751474i \(0.270657\pi\)
\(270\) 0 0
\(271\) −7.84125 24.1329i −0.476322 1.46597i −0.844167 0.536081i \(-0.819904\pi\)
0.367845 0.929887i \(-0.380096\pi\)
\(272\) 8.39214 1.78380i 0.508848 0.108159i
\(273\) 0 0
\(274\) 5.55744 9.62577i 0.335737 0.581514i
\(275\) −11.6060 + 4.49991i −0.699866 + 0.271355i
\(276\) 0 0
\(277\) 1.10428 10.5065i 0.0663497 0.631275i −0.909930 0.414762i \(-0.863865\pi\)
0.976280 0.216513i \(-0.0694684\pi\)
\(278\) 2.82066 8.68109i 0.169172 0.520657i
\(279\) 0 0
\(280\) 8.33875 6.05845i 0.498335 0.362062i
\(281\) 20.6192 + 9.18026i 1.23004 + 0.547648i 0.915776 0.401688i \(-0.131576\pi\)
0.314261 + 0.949336i \(0.398243\pi\)
\(282\) 0 0
\(283\) −3.93264 4.36763i −0.233771 0.259629i 0.614833 0.788657i \(-0.289223\pi\)
−0.848604 + 0.529028i \(0.822557\pi\)
\(284\) 8.99503 4.00484i 0.533757 0.237644i
\(285\) 0 0
\(286\) −2.69639 5.24831i −0.159441 0.310339i
\(287\) −11.3977 −0.672782
\(288\) 0 0
\(289\) 4.25344 13.0907i 0.250202 0.770044i
\(290\) 0.537576 0.597039i 0.0315676 0.0350593i
\(291\) 0 0
\(292\) −1.90178 18.0943i −0.111294 1.05889i
\(293\) 6.93909 + 1.47495i 0.405386 + 0.0861674i 0.406092 0.913832i \(-0.366891\pi\)
−0.000705925 1.00000i \(0.500225\pi\)
\(294\) 0 0
\(295\) 0.277251 2.63786i 0.0161422 0.153582i
\(296\) 20.5814 1.19627
\(297\) 0 0
\(298\) −3.69339 −0.213953
\(299\) 0.591873 5.63129i 0.0342289 0.325666i
\(300\) 0 0
\(301\) −8.52666 1.81240i −0.491469 0.104465i
\(302\) 0.0113818 + 0.108291i 0.000654949 + 0.00623143i
\(303\) 0 0
\(304\) −5.31215 + 5.89974i −0.304673 + 0.338373i
\(305\) 1.40936 4.33757i 0.0806999 0.248369i
\(306\) 0 0
\(307\) −18.5370 −1.05796 −0.528981 0.848633i \(-0.677426\pi\)
−0.528981 + 0.848633i \(0.677426\pi\)
\(308\) 14.2247 14.3206i 0.810529 0.815993i
\(309\) 0 0
\(310\) 0.291506 0.129787i 0.0165564 0.00737139i
\(311\) −4.60110 5.11004i −0.260905 0.289764i 0.598433 0.801173i \(-0.295790\pi\)
−0.859337 + 0.511409i \(0.829124\pi\)
\(312\) 0 0
\(313\) −23.1363 10.3009i −1.30774 0.582243i −0.369822 0.929103i \(-0.620581\pi\)
−0.937917 + 0.346860i \(0.887248\pi\)
\(314\) −12.8197 + 9.31407i −0.723459 + 0.525624i
\(315\) 0 0
\(316\) −2.17455 + 6.69256i −0.122328 + 0.376486i
\(317\) 1.14765 10.9191i 0.0644582 0.613279i −0.913840 0.406075i \(-0.866897\pi\)
0.978298 0.207204i \(-0.0664363\pi\)
\(318\) 0 0
\(319\) 1.94623 3.01909i 0.108968 0.169037i
\(320\) 0.407582 0.705953i 0.0227845 0.0394640i
\(321\) 0 0
\(322\) −5.36457 + 1.14027i −0.298956 + 0.0635450i
\(323\) 8.79675 + 27.0736i 0.489464 + 1.50642i
\(324\) 0 0
\(325\) 8.13140 5.90780i 0.451049 0.327706i
\(326\) −1.86520 + 2.07152i −0.103304 + 0.114731i
\(327\) 0 0
\(328\) −6.30437 + 2.80689i −0.348101 + 0.154984i
\(329\) −25.0583 + 43.4023i −1.38151 + 2.39284i
\(330\) 0 0
\(331\) 1.85513 + 3.21317i 0.101967 + 0.176612i 0.912495 0.409088i \(-0.134153\pi\)
−0.810528 + 0.585700i \(0.800820\pi\)
\(332\) −0.607805 0.441596i −0.0333576 0.0242357i
\(333\) 0 0
\(334\) −3.25182 10.0081i −0.177931 0.547617i
\(335\) 9.94756 + 4.42894i 0.543493 + 0.241979i
\(336\) 0 0
\(337\) 31.4916 + 6.69375i 1.71546 + 0.364632i 0.957670 0.287869i \(-0.0929469\pi\)
0.757788 + 0.652501i \(0.226280\pi\)
\(338\) −2.59078 2.87735i −0.140920 0.156507i
\(339\) 0 0
\(340\) 4.82678 + 8.36023i 0.261769 + 0.453397i
\(341\) 1.19390 0.781045i 0.0646535 0.0422960i
\(342\) 0 0
\(343\) 3.93417 + 2.85834i 0.212425 + 0.154336i
\(344\) −5.16268 + 1.09736i −0.278353 + 0.0591658i
\(345\) 0 0
\(346\) −0.180746 1.71968i −0.00971694 0.0924505i
\(347\) −2.24971 21.4046i −0.120771 1.14906i −0.872167 0.489207i \(-0.837286\pi\)
0.751397 0.659851i \(-0.229381\pi\)
\(348\) 0 0
\(349\) 16.4524 3.49707i 0.880677 0.187194i 0.254686 0.967024i \(-0.418028\pi\)
0.625991 + 0.779830i \(0.284695\pi\)
\(350\) −7.87593 5.72219i −0.420986 0.305864i
\(351\) 0 0
\(352\) 6.78127 17.8448i 0.361443 0.951129i
\(353\) 1.56543 + 2.71140i 0.0833193 + 0.144313i 0.904674 0.426105i \(-0.140115\pi\)
−0.821355 + 0.570418i \(0.806781\pi\)
\(354\) 0 0
\(355\) 4.71991 + 5.24199i 0.250507 + 0.278216i
\(356\) −24.5205 5.21199i −1.29958 0.276235i
\(357\) 0 0
\(358\) −4.60507 2.05031i −0.243385 0.108362i
\(359\) −2.62315 8.07323i −0.138445 0.426089i 0.857665 0.514208i \(-0.171914\pi\)
−0.996110 + 0.0881197i \(0.971914\pi\)
\(360\) 0 0
\(361\) −5.93893 4.31489i −0.312575 0.227099i
\(362\) 0.797247 + 1.38087i 0.0419024 + 0.0725770i
\(363\) 0 0
\(364\) −8.14907 + 14.1146i −0.427127 + 0.739806i
\(365\) 11.9071 5.30140i 0.623248 0.277488i
\(366\) 0 0
\(367\) −7.36777 + 8.18274i −0.384595 + 0.427136i −0.904093 0.427336i \(-0.859452\pi\)
0.519498 + 0.854471i \(0.326119\pi\)
\(368\) 2.64596 1.92241i 0.137930 0.100212i
\(369\) 0 0
\(370\) 1.99561 + 6.14185i 0.103747 + 0.319300i
\(371\) −21.5449 + 4.57951i −1.11856 + 0.237756i
\(372\) 0 0
\(373\) −5.50342 + 9.53220i −0.284956 + 0.493558i −0.972599 0.232491i \(-0.925312\pi\)
0.687642 + 0.726050i \(0.258646\pi\)
\(374\) −7.72264 9.47143i −0.399328 0.489756i
\(375\) 0 0
\(376\) −3.17185 + 30.1781i −0.163576 + 1.55632i
\(377\) −0.896269 + 2.75843i −0.0461602 + 0.142067i
\(378\) 0 0
\(379\) −20.5384 + 14.9220i −1.05499 + 0.766492i −0.973154 0.230154i \(-0.926077\pi\)
−0.0818315 + 0.996646i \(0.526077\pi\)
\(380\) −8.16035 3.63322i −0.418617 0.186380i
\(381\) 0 0
\(382\) 7.34264 + 8.15483i 0.375682 + 0.417237i
\(383\) 11.0674 4.92751i 0.565516 0.251784i −0.104006 0.994577i \(-0.533166\pi\)
0.669521 + 0.742793i \(0.266499\pi\)
\(384\) 0 0
\(385\) 12.9061 + 6.52146i 0.657755 + 0.332364i
\(386\) −5.40422 −0.275068
\(387\) 0 0
\(388\) −3.86080 + 11.8823i −0.196003 + 0.603234i
\(389\) −9.60275 + 10.6649i −0.486879 + 0.540734i −0.935658 0.352909i \(-0.885192\pi\)
0.448779 + 0.893643i \(0.351859\pi\)
\(390\) 0 0
\(391\) −1.22586 11.6633i −0.0619945 0.589838i
\(392\) 19.0671 + 4.05284i 0.963035 + 0.204699i
\(393\) 0 0
\(394\) −1.59068 + 15.1344i −0.0801375 + 0.762458i
\(395\) −5.04123 −0.253652
\(396\) 0 0
\(397\) −5.03882 −0.252891 −0.126446 0.991974i \(-0.540357\pi\)
−0.126446 + 0.991974i \(0.540357\pi\)
\(398\) −0.643836 + 6.12569i −0.0322726 + 0.307053i
\(399\) 0 0
\(400\) 5.67864 + 1.20703i 0.283932 + 0.0603516i
\(401\) −1.90244 18.1005i −0.0950032 0.903895i −0.933401 0.358836i \(-0.883174\pi\)
0.838398 0.545059i \(-0.183493\pi\)
\(402\) 0 0
\(403\) −0.770823 + 0.856086i −0.0383974 + 0.0426447i
\(404\) 0.848352 2.61096i 0.0422071 0.129900i
\(405\) 0 0
\(406\) 2.80926 0.139421
\(407\) 13.1948 + 25.6826i 0.654042 + 1.27304i
\(408\) 0 0
\(409\) 15.0100 6.68287i 0.742195 0.330447i −0.000568948 1.00000i \(-0.500181\pi\)
0.742764 + 0.669553i \(0.233514\pi\)
\(410\) −1.44891 1.60917i −0.0715564 0.0794715i
\(411\) 0 0
\(412\) −3.82703 1.70390i −0.188544 0.0839453i
\(413\) 7.50342 5.45155i 0.369219 0.268253i
\(414\) 0 0
\(415\) 0.166318 0.511874i 0.00816423 0.0251269i
\(416\) −1.61121 + 15.3296i −0.0789960 + 0.751596i
\(417\) 0 0
\(418\) 10.9326 + 2.89004i 0.534729 + 0.141357i
\(419\) −8.70324 + 15.0745i −0.425181 + 0.736435i −0.996437 0.0843365i \(-0.973123\pi\)
0.571256 + 0.820772i \(0.306456\pi\)
\(420\) 0 0
\(421\) −4.44925 + 0.945717i −0.216843 + 0.0460914i −0.315052 0.949074i \(-0.602022\pi\)
0.0982090 + 0.995166i \(0.468689\pi\)
\(422\) 0.864374 + 2.66027i 0.0420771 + 0.129500i
\(423\) 0 0
\(424\) −10.7893 + 7.83890i −0.523976 + 0.380691i
\(425\) 13.9294 15.4701i 0.675674 0.750412i
\(426\) 0 0
\(427\) 14.5692 6.48660i 0.705051 0.313909i
\(428\) 8.00879 13.8716i 0.387120 0.670511i
\(429\) 0 0
\(430\) −0.828055 1.43423i −0.0399323 0.0691648i
\(431\) 10.1004 + 7.33838i 0.486520 + 0.353477i 0.803844 0.594840i \(-0.202784\pi\)
−0.317325 + 0.948317i \(0.602784\pi\)
\(432\) 0 0
\(433\) 8.86451 + 27.2822i 0.426001 + 1.31110i 0.902032 + 0.431668i \(0.142075\pi\)
−0.476031 + 0.879428i \(0.657925\pi\)
\(434\) 1.01932 + 0.453830i 0.0489289 + 0.0217846i
\(435\) 0 0
\(436\) 3.60243 + 0.765720i 0.172525 + 0.0366713i
\(437\) 7.26121 + 8.06439i 0.347351 + 0.385772i
\(438\) 0 0
\(439\) 2.05404 + 3.55769i 0.0980338 + 0.169799i 0.910871 0.412692i \(-0.135411\pi\)
−0.812837 + 0.582491i \(0.802078\pi\)
\(440\) 8.74476 + 0.428841i 0.416890 + 0.0204442i
\(441\) 0 0
\(442\) 7.98309 + 5.80005i 0.379717 + 0.275880i
\(443\) −20.7658 + 4.41390i −0.986612 + 0.209711i −0.672840 0.739788i \(-0.734926\pi\)
−0.313772 + 0.949498i \(0.601593\pi\)
\(444\) 0 0
\(445\) −1.87720 17.8603i −0.0889876 0.846660i
\(446\) 0.476296 + 4.53165i 0.0225533 + 0.214580i
\(447\) 0 0
\(448\) 2.78813 0.592635i 0.131727 0.0279994i
\(449\) 20.9494 + 15.2206i 0.988663 + 0.718306i 0.959628 0.281273i \(-0.0907566\pi\)
0.0290350 + 0.999578i \(0.490757\pi\)
\(450\) 0 0
\(451\) −7.54435 6.06744i −0.355249 0.285705i
\(452\) −1.19428 2.06856i −0.0561744 0.0972970i
\(453\) 0 0
\(454\) −12.5042 13.8874i −0.586853 0.651766i
\(455\) −11.4207 2.42754i −0.535410 0.113805i
\(456\) 0 0
\(457\) −9.41304 4.19096i −0.440323 0.196045i 0.174587 0.984642i \(-0.444141\pi\)
−0.614910 + 0.788597i \(0.710808\pi\)
\(458\) −2.88113 8.86721i −0.134626 0.414338i
\(459\) 0 0
\(460\) 2.97717 + 2.16304i 0.138811 + 0.100852i
\(461\) −12.7266 22.0432i −0.592738 1.02665i −0.993862 0.110628i \(-0.964714\pi\)
0.401124 0.916024i \(-0.368620\pi\)
\(462\) 0 0
\(463\) 19.9277 34.5158i 0.926119 1.60409i 0.136368 0.990658i \(-0.456457\pi\)
0.789751 0.613427i \(-0.210210\pi\)
\(464\) −1.53045 + 0.681400i −0.0710493 + 0.0316332i
\(465\) 0 0
\(466\) 6.44977 7.16320i 0.298780 0.331829i
\(467\) −14.0582 + 10.2139i −0.650537 + 0.472643i −0.863454 0.504427i \(-0.831704\pi\)
0.212917 + 0.977070i \(0.431704\pi\)
\(468\) 0 0
\(469\) 11.7661 + 36.2123i 0.543308 + 1.67213i
\(470\) −9.31323 + 1.97959i −0.429587 + 0.0913116i
\(471\) 0 0
\(472\) 2.80781 4.86327i 0.129240 0.223850i
\(473\) −4.67916 5.73876i −0.215148 0.263868i
\(474\) 0 0
\(475\) −2.01348 + 19.1569i −0.0923846 + 0.878980i
\(476\) −10.4312 + 32.1039i −0.478112 + 1.47148i
\(477\) 0 0
\(478\) −13.5158 + 9.81979i −0.618197 + 0.449147i
\(479\) 20.0030 + 8.90589i 0.913959 + 0.406921i 0.809170 0.587574i \(-0.199917\pi\)
0.104788 + 0.994495i \(0.466584\pi\)
\(480\) 0 0
\(481\) −15.6002 17.3258i −0.711309 0.789988i
\(482\) 10.7675 4.79400i 0.490447 0.218361i
\(483\) 0 0
\(484\) 17.0391 1.90671i 0.774505 0.0866687i
\(485\) −8.95046 −0.406420
\(486\) 0 0
\(487\) 1.01084 3.11106i 0.0458057 0.140975i −0.925538 0.378655i \(-0.876387\pi\)
0.971344 + 0.237679i \(0.0763867\pi\)
\(488\) 6.46117 7.17586i 0.292483 0.324836i
\(489\) 0 0
\(490\) 0.639342 + 6.08293i 0.0288825 + 0.274799i
\(491\) −7.06604 1.50193i −0.318886 0.0677813i 0.0456879 0.998956i \(-0.485452\pi\)
−0.364574 + 0.931174i \(0.618785\pi\)
\(492\) 0 0
\(493\) −0.627919 + 5.97425i −0.0282801 + 0.269067i
\(494\) −9.13071 −0.410810
\(495\) 0 0
\(496\) −0.665390 −0.0298769
\(497\) −2.57822 + 24.5302i −0.115649 + 1.10033i
\(498\) 0 0
\(499\) −14.5103 3.08427i −0.649572 0.138071i −0.128670 0.991687i \(-0.541071\pi\)
−0.520902 + 0.853617i \(0.674404\pi\)
\(500\) 1.59244 + 15.1510i 0.0712159 + 0.677574i
\(501\) 0 0
\(502\) 9.72492 10.8006i 0.434044 0.482055i
\(503\) 10.1918 31.3671i 0.454430 1.39859i −0.417374 0.908735i \(-0.637049\pi\)
0.871803 0.489856i \(-0.162951\pi\)
\(504\) 0 0
\(505\) 1.96673 0.0875181
\(506\) −4.15794 2.10101i −0.184843 0.0934013i
\(507\) 0 0
\(508\) 10.8949 4.85073i 0.483383 0.215216i
\(509\) −25.8749 28.7370i −1.14688 1.27374i −0.956402 0.292052i \(-0.905662\pi\)
−0.190481 0.981691i \(-0.561005\pi\)
\(510\) 0 0
\(511\) 41.6361 + 18.5376i 1.84187 + 0.820055i
\(512\) −13.1198 + 9.53213i −0.579821 + 0.421264i
\(513\) 0 0
\(514\) −1.06004 + 3.26247i −0.0467564 + 0.143901i
\(515\) 0.313701 2.98467i 0.0138233 0.131520i
\(516\) 0 0
\(517\) −39.6915 + 15.3893i −1.74563 + 0.676821i
\(518\) −11.2908 + 19.5563i −0.496091 + 0.859255i
\(519\) 0 0
\(520\) −6.91494 + 1.46982i −0.303240 + 0.0644557i
\(521\) 5.40297 + 16.6286i 0.236708 + 0.728514i 0.996890 + 0.0788032i \(0.0251099\pi\)
−0.760182 + 0.649710i \(0.774890\pi\)
\(522\) 0 0
\(523\) −11.7211 + 8.51591i −0.512530 + 0.372375i −0.813782 0.581170i \(-0.802595\pi\)
0.301253 + 0.953544i \(0.402595\pi\)
\(524\) −5.58934 + 6.20760i −0.244172 + 0.271180i
\(525\) 0 0
\(526\) 16.9310 7.53816i 0.738226 0.328680i
\(527\) −1.19296 + 2.06627i −0.0519663 + 0.0900082i
\(528\) 0 0
\(529\) 9.26470 + 16.0469i 0.402813 + 0.697693i
\(530\) −3.38542 2.45965i −0.147053 0.106840i
\(531\) 0 0
\(532\) −9.65216 29.7063i −0.418474 1.28793i
\(533\) 7.14146 + 3.17958i 0.309331 + 0.137723i
\(534\) 0 0
\(535\) 11.2241 + 2.38576i 0.485260 + 0.103145i
\(536\) 15.4261 + 17.1325i 0.666307 + 0.740009i
\(537\) 0 0
\(538\) 1.00299 + 1.73722i 0.0432418 + 0.0748971i
\(539\) 7.16664 + 26.3913i 0.308689 + 1.13675i
\(540\) 0 0
\(541\) −26.7771 19.4547i −1.15124 0.836422i −0.162591 0.986694i \(-0.551985\pi\)
−0.988645 + 0.150272i \(0.951985\pi\)
\(542\) 16.4886 3.50477i 0.708248 0.150543i
\(543\) 0 0
\(544\) 3.33706 + 31.7500i 0.143075 + 1.36127i
\(545\) 0.275788 + 2.62395i 0.0118135 + 0.112398i
\(546\) 0 0
\(547\) −9.01278 + 1.91573i −0.385359 + 0.0819105i −0.396517 0.918027i \(-0.629781\pi\)
0.0111586 + 0.999938i \(0.496448\pi\)
\(548\) −21.0980 15.3286i −0.901262 0.654805i
\(549\) 0 0
\(550\) −2.16708 7.98032i −0.0924046 0.340282i
\(551\) −2.77927 4.81383i −0.118401 0.205076i
\(552\) 0 0
\(553\) −11.7953 13.1001i −0.501589 0.557071i
\(554\) 6.86477 + 1.45915i 0.291656 + 0.0619935i
\(555\) 0 0
\(556\) −19.5649 8.71084i −0.829735 0.369422i
\(557\) −11.4496 35.2384i −0.485137 1.49310i −0.831782 0.555102i \(-0.812679\pi\)
0.346645 0.937996i \(-0.387321\pi\)
\(558\) 0 0
\(559\) 4.83697 + 3.51427i 0.204582 + 0.148638i
\(560\) −3.37202 5.84052i −0.142494 0.246807i
\(561\) 0 0
\(562\) −7.49703 + 12.9852i −0.316243 + 0.547749i
\(563\) 24.6603 10.9795i 1.03931 0.462730i 0.185132 0.982714i \(-0.440729\pi\)
0.854176 + 0.519984i \(0.174062\pi\)
\(564\) 0 0
\(565\) 1.14498 1.27163i 0.0481698 0.0534980i
\(566\) 3.15870 2.29493i 0.132770 0.0964630i
\(567\) 0 0
\(568\) 4.61492 + 14.2033i 0.193638 + 0.595956i
\(569\) −26.8753 + 5.71252i −1.12667 + 0.239481i −0.733305 0.679900i \(-0.762023\pi\)
−0.393367 + 0.919382i \(0.628690\pi\)
\(570\) 0 0
\(571\) 19.5052 33.7840i 0.816266 1.41381i −0.0921492 0.995745i \(-0.529374\pi\)
0.908415 0.418069i \(-0.137293\pi\)
\(572\) −12.9078 + 5.00466i −0.539703 + 0.209256i
\(573\) 0 0
\(574\) 0.791458 7.53022i 0.0330348 0.314305i
\(575\) 2.45223 7.54719i 0.102265 0.314739i
\(576\) 0 0
\(577\) 23.5957 17.1433i 0.982302 0.713684i 0.0240800 0.999710i \(-0.492334\pi\)
0.958222 + 0.286026i \(0.0923344\pi\)
\(578\) 8.35345 + 3.71920i 0.347458 + 0.154698i
\(579\) 0 0
\(580\) −1.26130 1.40082i −0.0523727 0.0581658i
\(581\) 1.71930 0.765480i 0.0713284 0.0317575i
\(582\) 0 0
\(583\) −16.6989 8.43797i −0.691598 0.349465i
\(584\) 27.5954 1.14191
\(585\) 0 0
\(586\) −1.45632 + 4.48210i −0.0601602 + 0.185154i
\(587\) 3.40449 3.78107i 0.140518 0.156062i −0.668778 0.743463i \(-0.733182\pi\)
0.809296 + 0.587401i \(0.199849\pi\)
\(588\) 0 0
\(589\) −0.230772 2.19565i −0.00950878 0.0904700i
\(590\) 1.72353 + 0.366349i 0.0709568 + 0.0150823i
\(591\) 0 0
\(592\) 1.40762 13.3927i 0.0578530 0.550435i
\(593\) −3.46422 −0.142258 −0.0711292 0.997467i \(-0.522660\pi\)
−0.0711292 + 0.997467i \(0.522660\pi\)
\(594\) 0 0
\(595\) −24.1825 −0.991386
\(596\) −0.905814 + 8.61825i −0.0371036 + 0.353017i
\(597\) 0 0
\(598\) 3.67939 + 0.782079i 0.150461 + 0.0319816i
\(599\) 2.60013 + 24.7386i 0.106238 + 1.01079i 0.909653 + 0.415370i \(0.136348\pi\)
−0.803414 + 0.595421i \(0.796985\pi\)
\(600\) 0 0
\(601\) 7.40602 8.22522i 0.302098 0.335514i −0.572914 0.819616i \(-0.694187\pi\)
0.875012 + 0.484102i \(0.160854\pi\)
\(602\) 1.78951 5.50755i 0.0729351 0.224471i
\(603\) 0 0
\(604\) 0.255479 0.0103953
\(605\) 5.07116 + 11.1871i 0.206172 + 0.454821i
\(606\) 0 0
\(607\) −25.5436 + 11.3728i −1.03678 + 0.461606i −0.853302 0.521417i \(-0.825404\pi\)
−0.183483 + 0.983023i \(0.558737\pi\)
\(608\) −19.7666 21.9530i −0.801642 0.890313i
\(609\) 0 0
\(610\) 2.76789 + 1.23234i 0.112068 + 0.0498961i
\(611\) 27.8087 20.2042i 1.12502 0.817375i
\(612\) 0 0
\(613\) 3.39680 10.4543i 0.137196 0.422245i −0.858729 0.512429i \(-0.828746\pi\)
0.995925 + 0.0901845i \(0.0287457\pi\)
\(614\) 1.28722 12.2471i 0.0519479 0.494251i
\(615\) 0 0
\(616\) 19.3464 + 23.7274i 0.779489 + 0.956004i
\(617\) 9.31311 16.1308i 0.374932 0.649401i −0.615385 0.788227i \(-0.710999\pi\)
0.990317 + 0.138826i \(0.0443328\pi\)
\(618\) 0 0
\(619\) −2.62973 + 0.558967i −0.105698 + 0.0224668i −0.260457 0.965485i \(-0.583873\pi\)
0.154759 + 0.987952i \(0.450540\pi\)
\(620\) −0.231355 0.712036i −0.00929142 0.0285961i
\(621\) 0 0
\(622\) 3.69561 2.68502i 0.148180 0.107659i
\(623\) 42.0193 46.6672i 1.68347 1.86968i
\(624\) 0 0
\(625\) 7.17308 3.19366i 0.286923 0.127746i
\(626\) 8.41222 14.5704i 0.336220 0.582350i
\(627\) 0 0
\(628\) 18.5896 + 32.1981i 0.741805 + 1.28484i
\(629\) −39.0652 28.3826i −1.55763 1.13169i
\(630\) 0 0
\(631\) −12.1224 37.3089i −0.482585 1.48524i −0.835448 0.549569i \(-0.814792\pi\)
0.352863 0.935675i \(-0.385208\pi\)
\(632\) −9.75049 4.34120i −0.387853 0.172683i
\(633\) 0 0
\(634\) 7.13437 + 1.51646i 0.283342 + 0.0602262i
\(635\) 5.71682 + 6.34917i 0.226865 + 0.251959i
\(636\) 0 0
\(637\) −11.0407 19.1230i −0.437447 0.757681i
\(638\) 1.85951 + 1.49549i 0.0736187 + 0.0592069i
\(639\) 0 0
\(640\) −9.96109 7.23716i −0.393747 0.286074i
\(641\) 25.1863 5.35351i 0.994799 0.211451i 0.318376 0.947965i \(-0.396863\pi\)
0.676423 + 0.736514i \(0.263529\pi\)
\(642\) 0 0
\(643\) 1.39358 + 13.2590i 0.0549574 + 0.522885i 0.987021 + 0.160590i \(0.0513398\pi\)
−0.932064 + 0.362294i \(0.881993\pi\)
\(644\) 1.34507 + 12.7975i 0.0530030 + 0.504290i
\(645\) 0 0
\(646\) −18.4979 + 3.93185i −0.727789 + 0.154696i
\(647\) 19.2955 + 14.0190i 0.758585 + 0.551145i 0.898476 0.439022i \(-0.144675\pi\)
−0.139891 + 0.990167i \(0.544675\pi\)
\(648\) 0 0
\(649\) 7.86876 + 0.385882i 0.308876 + 0.0151472i
\(650\) 3.33853 + 5.78250i 0.130948 + 0.226808i
\(651\) 0 0
\(652\) 4.37628 + 4.86035i 0.171388 + 0.190346i
\(653\) 12.4469 + 2.64566i 0.487083 + 0.103533i 0.444906 0.895577i \(-0.353237\pi\)
0.0421776 + 0.999110i \(0.486570\pi\)
\(654\) 0 0
\(655\) −5.46676 2.43396i −0.213604 0.0951027i
\(656\) 1.39531 + 4.29433i 0.0544778 + 0.167666i
\(657\) 0 0
\(658\) −26.9350 19.5694i −1.05004 0.762896i
\(659\) −13.6263 23.6015i −0.530806 0.919383i −0.999354 0.0359452i \(-0.988556\pi\)
0.468547 0.883438i \(-0.344777\pi\)
\(660\) 0 0
\(661\) −21.8220 + 37.7968i −0.848777 + 1.47012i 0.0335234 + 0.999438i \(0.489327\pi\)
−0.882300 + 0.470687i \(0.844006\pi\)
\(662\) −2.25170 + 1.00252i −0.0875150 + 0.0389642i
\(663\) 0 0
\(664\) 0.762478 0.846818i 0.0295899 0.0328629i
\(665\) 18.1030 13.1526i 0.702003 0.510035i
\(666\) 0 0
\(667\) 0.707636 + 2.17788i 0.0273998 + 0.0843278i
\(668\) −24.1505 + 5.13336i −0.934413 + 0.198616i
\(669\) 0 0
\(670\) −3.61688 + 6.26462i −0.139732 + 0.242023i
\(671\) 13.0967 + 3.46214i 0.505593 + 0.133654i
\(672\) 0 0
\(673\) 2.78952 26.5405i 0.107528 1.02306i −0.799120 0.601172i \(-0.794701\pi\)
0.906648 0.421889i \(-0.138633\pi\)
\(674\) −6.60922 + 20.3411i −0.254578 + 0.783510i
\(675\) 0 0
\(676\) −7.34946 + 5.33970i −0.282672 + 0.205373i
\(677\) −24.7416 11.0157i −0.950897 0.423367i −0.128138 0.991756i \(-0.540900\pi\)
−0.822759 + 0.568390i \(0.807567\pi\)
\(678\) 0 0
\(679\) −20.9421 23.2585i −0.803683 0.892581i
\(680\) −13.3760 + 5.95540i −0.512948 + 0.228379i
\(681\) 0 0
\(682\) 0.433117 + 0.843026i 0.0165849 + 0.0322811i
\(683\) 16.7343 0.640322 0.320161 0.947363i \(-0.396263\pi\)
0.320161 + 0.947363i \(0.396263\pi\)
\(684\) 0 0
\(685\) 5.77319 17.7681i 0.220582 0.678883i
\(686\) −2.16165 + 2.40075i −0.0825320 + 0.0916611i
\(687\) 0 0
\(688\) 0.360980 + 3.43449i 0.0137622 + 0.130939i
\(689\) 14.7770 + 3.14095i 0.562958 + 0.119661i
\(690\) 0 0
\(691\) 3.92186 37.3140i 0.149195 1.41949i −0.622062 0.782968i \(-0.713705\pi\)
0.771256 0.636525i \(-0.219629\pi\)
\(692\) −4.05707 −0.154226
\(693\) 0 0
\(694\) 14.2978 0.542738
\(695\) 1.60373 15.2585i 0.0608330 0.578787i
\(696\) 0 0
\(697\) 15.8370 + 3.36627i 0.599871 + 0.127507i
\(698\) 1.16798 + 11.1126i 0.0442089 + 0.420619i
\(699\) 0 0
\(700\) −15.2839 + 16.9745i −0.577676 + 0.641575i
\(701\) −3.15219 + 9.70143i −0.119056 + 0.366418i −0.992771 0.120020i \(-0.961704\pi\)
0.873715 + 0.486438i \(0.161704\pi\)
\(702\) 0 0
\(703\) 44.6811 1.68518
\(704\) 2.16101 + 1.09196i 0.0814460 + 0.0411548i
\(705\) 0 0
\(706\) −1.90007 + 0.845967i −0.0715102 + 0.0318384i
\(707\) 4.60170 + 5.11070i 0.173065 + 0.192208i
\(708\) 0 0
\(709\) −13.2443 5.89673i −0.497399 0.221457i 0.142675 0.989770i \(-0.454430\pi\)
−0.640074 + 0.768313i \(0.721096\pi\)
\(710\) −3.79104 + 2.75435i −0.142275 + 0.103369i
\(711\) 0 0
\(712\) 11.7494 36.1610i 0.440329 1.35519i
\(713\) −0.0950714 + 0.904544i −0.00356045 + 0.0338754i
\(714\) 0 0
\(715\) −6.26732 7.68655i −0.234384 0.287461i
\(716\) −5.91364 + 10.2427i −0.221003 + 0.382789i
\(717\) 0 0
\(718\) 5.51598 1.17246i 0.205855 0.0437558i
\(719\) −5.94135 18.2856i −0.221575 0.681938i −0.998621 0.0524943i \(-0.983283\pi\)
0.777046 0.629444i \(-0.216717\pi\)
\(720\) 0 0
\(721\) 8.48991 6.16828i 0.316181 0.229719i
\(722\) 3.26317 3.62411i 0.121442 0.134876i
\(723\) 0 0
\(724\) 3.41768 1.52165i 0.127017 0.0565517i
\(725\) −2.03241 + 3.52023i −0.0754818 + 0.130738i
\(726\) 0 0
\(727\) −0.363414 0.629451i −0.0134783 0.0233450i 0.859208 0.511627i \(-0.170957\pi\)
−0.872686 + 0.488282i \(0.837624\pi\)
\(728\) −19.9989 14.5300i −0.741207 0.538519i
\(729\) 0 0
\(730\) 2.67570 + 8.23495i 0.0990320 + 0.304789i
\(731\) 11.3125 + 5.03666i 0.418408 + 0.186287i
\(732\) 0 0
\(733\) 1.83490 + 0.390019i 0.0677734 + 0.0144057i 0.241674 0.970358i \(-0.422304\pi\)
−0.173900 + 0.984763i \(0.555637\pi\)
\(734\) −4.89456 5.43596i −0.180662 0.200645i
\(735\) 0 0
\(736\) 6.08497 + 10.5395i 0.224295 + 0.388490i
\(737\) −11.4891 + 30.2333i −0.423206 + 1.11366i
\(738\) 0 0
\(739\) 42.5402 + 30.9073i 1.56487 + 1.13694i 0.931873 + 0.362784i \(0.118174\pi\)
0.632993 + 0.774157i \(0.281826\pi\)
\(740\) 14.8210 3.15029i 0.544829 0.115807i
\(741\) 0 0
\(742\) −1.52951 14.5523i −0.0561501 0.534233i
\(743\) −3.48423 33.1502i −0.127824 1.21616i −0.850875 0.525368i \(-0.823928\pi\)
0.723051 0.690795i \(-0.242739\pi\)
\(744\) 0 0
\(745\) −6.07238 + 1.29072i −0.222475 + 0.0472885i
\(746\) −5.91558 4.29792i −0.216585 0.157358i
\(747\) 0 0
\(748\) −23.9948 + 15.6973i −0.877338 + 0.573949i
\(749\) 20.0623 + 34.7489i 0.733060 + 1.26970i
\(750\) 0 0
\(751\) −15.6336 17.3629i −0.570479 0.633581i 0.387002 0.922079i \(-0.373511\pi\)
−0.957480 + 0.288498i \(0.906844\pi\)
\(752\) 19.4205 + 4.12795i 0.708192 + 0.150531i
\(753\) 0 0
\(754\) −1.76021 0.783695i −0.0641030 0.0285405i
\(755\) 0.0565572 + 0.174065i 0.00205833 + 0.00633488i
\(756\) 0 0
\(757\) 27.3472 + 19.8689i 0.993952 + 0.722148i 0.960783 0.277302i \(-0.0894401\pi\)
0.0331687 + 0.999450i \(0.489440\pi\)
\(758\) −8.43250 14.6055i −0.306282 0.530496i
\(759\) 0 0
\(760\) 6.77421 11.7333i 0.245726 0.425611i
\(761\) −18.3731 + 8.18025i −0.666026 + 0.296534i −0.711763 0.702420i \(-0.752103\pi\)
0.0457371 + 0.998954i \(0.485436\pi\)
\(762\) 0 0
\(763\) −6.17328 + 6.85612i −0.223488 + 0.248208i
\(764\) 20.8294 15.1335i 0.753583 0.547510i
\(765\) 0 0
\(766\) 2.48699 + 7.65417i 0.0898586 + 0.276556i
\(767\) −6.22224 + 1.32258i −0.224672 + 0.0477555i
\(768\) 0 0
\(769\) −0.313500 + 0.542997i −0.0113051 + 0.0195810i −0.871623 0.490178i \(-0.836932\pi\)
0.860318 + 0.509759i \(0.170265\pi\)
\(770\) −5.20481 + 8.07395i −0.187568 + 0.290965i
\(771\) 0 0
\(772\) −1.32540 + 12.6103i −0.0477021 + 0.453856i
\(773\) −8.88046 + 27.3313i −0.319408 + 0.983037i 0.654494 + 0.756067i \(0.272882\pi\)
−0.973902 + 0.226970i \(0.927118\pi\)
\(774\) 0 0
\(775\) −1.30613 + 0.948959i −0.0469176 + 0.0340876i
\(776\) −17.3115 7.70759i −0.621448 0.276686i
\(777\) 0 0
\(778\) −6.37930 7.08493i −0.228709 0.254007i
\(779\) −13.6865 + 6.09360i −0.490368 + 0.218326i
\(780\) 0 0
\(781\) −14.7650 + 14.8645i −0.528333 + 0.531895i
\(782\) 7.79085 0.278600
\(783\) 0 0
\(784\) 3.94131 12.1301i 0.140761 0.433218i
\(785\) −17.8222 + 19.7935i −0.636101 + 0.706462i
\(786\) 0 0
\(787\) 1.47416 + 14.0257i 0.0525481 + 0.499962i 0.988866 + 0.148808i \(0.0475437\pi\)
−0.936318 + 0.351153i \(0.885790\pi\)
\(788\) 34.9247 + 7.42347i 1.24414 + 0.264450i
\(789\) 0 0
\(790\) 0.350065 3.33065i 0.0124548 0.118499i
\(791\) 5.98345 0.212747
\(792\) 0 0
\(793\) −10.9382 −0.388426
\(794\) 0.349898 3.32906i 0.0124174 0.118144i
\(795\) 0 0
\(796\) 14.1359 + 3.00468i 0.501034 + 0.106498i
\(797\) 2.73391 + 26.0114i 0.0968400 + 0.921371i 0.929807 + 0.368048i \(0.119974\pi\)
−0.832967 + 0.553323i \(0.813359\pi\)
\(798\) 0 0
\(799\) 47.6373 52.9066i 1.68529 1.87170i
\(800\) −6.67551 + 20.5451i −0.236015 + 0.726379i
\(801\) 0 0
\(802\) 12.0908 0.426939
\(803\) 17.6915 + 34.4351i 0.624320 + 1.21519i
\(804\) 0 0
\(805\) −8.42150 + 3.74949i −0.296819 + 0.132152i
\(806\) −0.512074 0.568715i −0.0180370 0.0200321i
\(807\) 0 0
\(808\) 3.80394 + 1.69362i 0.133822 + 0.0595814i
\(809\) 12.8256 9.31836i 0.450925 0.327616i −0.339036 0.940773i \(-0.610101\pi\)
0.789961 + 0.613157i \(0.210101\pi\)
\(810\) 0 0
\(811\) −11.2255 + 34.5484i −0.394179 + 1.21316i 0.535420 + 0.844586i \(0.320154\pi\)
−0.929599 + 0.368573i \(0.879846\pi\)
\(812\) 0.688979 6.55520i 0.0241784 0.230042i
\(813\) 0 0
\(814\) −17.8843 + 6.93415i −0.626844 + 0.243042i
\(815\) −2.34269 + 4.05766i −0.0820608 + 0.142134i
\(816\) 0 0
\(817\) −11.2079 + 2.38231i −0.392115 + 0.0833466i
\(818\) 3.37295 + 10.3809i 0.117932 + 0.362958i
\(819\) 0 0
\(820\) −4.11023 + 2.98626i −0.143535 + 0.104285i
\(821\) 10.9448 12.1554i 0.381976 0.424227i −0.521242 0.853409i \(-0.674531\pi\)
0.903218 + 0.429181i \(0.141198\pi\)
\(822\) 0 0
\(823\) −23.9116 + 10.6461i −0.833506 + 0.371101i −0.778700 0.627396i \(-0.784121\pi\)
−0.0548060 + 0.998497i \(0.517454\pi\)
\(824\) 3.17696 5.50265i 0.110675 0.191694i
\(825\) 0 0
\(826\) 3.08070 + 5.33592i 0.107191 + 0.185661i
\(827\) 4.48139 + 3.25592i 0.155833 + 0.113219i 0.662969 0.748647i \(-0.269296\pi\)
−0.507136 + 0.861866i \(0.669296\pi\)
\(828\) 0 0
\(829\) 5.71784 + 17.5977i 0.198589 + 0.611194i 0.999916 + 0.0129672i \(0.00412771\pi\)
−0.801327 + 0.598227i \(0.795872\pi\)
\(830\) 0.326637 + 0.145428i 0.0113377 + 0.00504788i
\(831\) 0 0
\(832\) −1.91229 0.406470i −0.0662968 0.0140918i
\(833\) −30.6020 33.9869i −1.06030 1.17758i
\(834\) 0 0
\(835\) −8.84388 15.3180i −0.306055 0.530103i
\(836\) 9.42492 24.8015i 0.325968 0.857776i
\(837\) 0 0
\(838\) −9.35505 6.79684i −0.323165 0.234793i
\(839\) −17.5727 + 3.73519i −0.606677 + 0.128953i −0.501000 0.865447i \(-0.667034\pi\)
−0.105677 + 0.994400i \(0.533701\pi\)
\(840\) 0 0
\(841\) 2.90872 + 27.6746i 0.100301 + 0.954296i
\(842\) −0.315860 3.00520i −0.0108852 0.103566i
\(843\) 0 0
\(844\) 6.41952 1.36451i 0.220969 0.0469684i
\(845\) −5.26509 3.82531i −0.181125 0.131595i
\(846\) 0 0
\(847\) −17.2053 + 39.3532i −0.591182 + 1.35219i
\(848\) 4.36299 + 7.55692i 0.149826 + 0.259506i
\(849\) 0 0
\(850\) 9.25357 + 10.2771i 0.317395 + 0.352503i
\(851\) −18.0051 3.82710i −0.617207 0.131191i
\(852\) 0 0
\(853\) 25.4999 + 11.3533i 0.873099 + 0.388729i 0.793841 0.608125i \(-0.208078\pi\)
0.0792581 + 0.996854i \(0.474745\pi\)
\(854\) 3.27389 + 10.0760i 0.112030 + 0.344794i
\(855\) 0 0
\(856\) 19.6546 + 14.2799i 0.671781 + 0.488077i
\(857\) −4.24983 7.36093i −0.145172 0.251445i 0.784265 0.620426i \(-0.213040\pi\)
−0.929437 + 0.368981i \(0.879707\pi\)
\(858\) 0 0
\(859\) −13.9259 + 24.1203i −0.475145 + 0.822974i −0.999595 0.0284667i \(-0.990938\pi\)
0.524450 + 0.851441i \(0.324271\pi\)
\(860\) −3.54975 + 1.58045i −0.121046 + 0.0538929i
\(861\) 0 0
\(862\) −5.54971 + 6.16357i −0.189024 + 0.209932i
\(863\) 10.9978 7.99035i 0.374368 0.271995i −0.384652 0.923062i \(-0.625678\pi\)
0.759020 + 0.651067i \(0.225678\pi\)
\(864\) 0 0
\(865\) −0.898141 2.76419i −0.0305377 0.0939854i
\(866\) −18.6404 + 3.96213i −0.633425 + 0.134639i
\(867\) 0 0
\(868\) 1.30897 2.26720i 0.0444293 0.0769538i
\(869\) −0.833885 14.9504i −0.0282876 0.507156i
\(870\) 0 0
\(871\) 2.72977 25.9720i 0.0924946 0.880028i
\(872\) −1.72617 + 5.31260i −0.0584555 + 0.179907i
\(873\) 0 0
\(874\) −5.83221 + 4.23735i −0.197278 + 0.143331i
\(875\) −34.8635 15.5222i −1.17860 0.524748i
\(876\) 0 0
\(877\) 24.2078 + 26.8855i 0.817439 + 0.907858i 0.997118 0.0758674i \(-0.0241726\pi\)
−0.179679 + 0.983725i \(0.557506\pi\)
\(878\) −2.49314 + 1.11002i −0.0841392 + 0.0374612i
\(879\) 0 0
\(880\) 0.877135 5.66103i 0.0295682 0.190833i
\(881\) −26.6423 −0.897601 −0.448800 0.893632i \(-0.648149\pi\)
−0.448800 + 0.893632i \(0.648149\pi\)
\(882\) 0 0
\(883\) −6.32757 + 19.4743i −0.212940 + 0.655361i 0.786354 + 0.617776i \(0.211966\pi\)
−0.999293 + 0.0375844i \(0.988034\pi\)
\(884\) 15.4918 17.2054i 0.521047 0.578681i
\(885\) 0 0
\(886\) −1.47420 14.0261i −0.0495267 0.471215i
\(887\) −31.3019 6.65342i −1.05101 0.223400i −0.350149 0.936694i \(-0.613869\pi\)
−0.700865 + 0.713294i \(0.747202\pi\)
\(888\) 0 0
\(889\) −3.12278 + 29.7113i −0.104735 + 0.996484i
\(890\) 11.9303 0.399906
\(891\) 0 0
\(892\) 10.6911 0.357963
\(893\) −6.88592 + 65.5151i −0.230428 + 2.19238i
\(894\) 0 0
\(895\) −8.28780 1.76163i −0.277031 0.0588847i
\(896\) −4.50036 42.8181i −0.150347 1.43045i
\(897\) 0 0
\(898\) −11.5107 + 12.7839i −0.384118 + 0.426606i
\(899\) 0.143966 0.443082i 0.00480153 0.0147776i
\(900\) 0 0
\(901\) 31.2892 1.04239
\(902\) 4.53253 4.56308i 0.150917 0.151934i
\(903\) 0 0
\(904\) 3.30962 1.47354i 0.110076 0.0490091i
\(905\) 1.79334 + 1.99171i 0.0596127 + 0.0662066i
\(906\) 0 0
\(907\) −44.8096 19.9505i −1.48788 0.662447i −0.507877 0.861430i \(-0.669569\pi\)
−0.980003 + 0.198983i \(0.936236\pi\)
\(908\) −35.4717 + 25.7717i −1.17717 + 0.855265i
\(909\) 0 0
\(910\) 2.39689 7.37687i 0.0794561 0.244541i
\(911\) −2.44401 + 23.2532i −0.0809736 + 0.770413i 0.876405 + 0.481576i \(0.159935\pi\)
−0.957378 + 0.288837i \(0.906731\pi\)
\(912\) 0 0
\(913\) 1.54553 + 0.408565i 0.0511497 + 0.0135215i
\(914\) 3.42253 5.92800i 0.113207 0.196081i
\(915\) 0 0
\(916\) −21.3975 + 4.54819i −0.706995 + 0.150276i
\(917\) −6.46615 19.9008i −0.213531 0.657181i
\(918\) 0 0
\(919\) 6.14797 4.46676i 0.202803 0.147345i −0.481749 0.876309i \(-0.659998\pi\)
0.684551 + 0.728965i \(0.259998\pi\)
\(920\) −3.73479 + 4.14791i −0.123132 + 0.136752i
\(921\) 0 0
\(922\) 15.4472 6.87755i 0.508728 0.226500i
\(923\) 8.45857 14.6507i 0.278417 0.482233i
\(924\) 0 0
\(925\) −16.3371 28.2967i −0.537160 0.930389i
\(926\) 21.4202 + 15.5627i 0.703910 + 0.511421i
\(927\) 0 0
\(928\) −1.92634 5.92866i −0.0632352 0.194618i
\(929\) 13.5906 + 6.05092i 0.445893 + 0.198524i 0.617385 0.786661i \(-0.288192\pi\)
−0.171492 + 0.985185i \(0.554859\pi\)
\(930\) 0 0
\(931\) 41.3937 + 8.79850i 1.35662 + 0.288359i
\(932\) −15.1329 16.8068i −0.495696 0.550526i
\(933\) 0 0
\(934\) −5.77192 9.99727i −0.188863 0.327121i
\(935\) −16.0069 12.8733i −0.523482 0.421003i
\(936\) 0 0
\(937\) −14.4192 10.4762i −0.471056 0.342242i 0.326797 0.945095i \(-0.394031\pi\)
−0.797853 + 0.602853i \(0.794031\pi\)
\(938\) −24.7418 + 5.25904i −0.807850 + 0.171714i
\(939\) 0 0
\(940\) 2.33512 + 22.2172i 0.0761633 + 0.724645i
\(941\) 4.45909 + 42.4254i 0.145362 + 1.38303i 0.787441 + 0.616391i \(0.211406\pi\)
−0.642078 + 0.766639i \(0.721928\pi\)
\(942\) 0 0
\(943\) 6.03716 1.28324i 0.196597 0.0417879i
\(944\) −2.97257 2.15970i −0.0967491 0.0702923i
\(945\) 0 0
\(946\) 4.11641 2.69293i 0.133836 0.0875548i
\(947\) 3.44670 + 5.96986i 0.112003 + 0.193994i 0.916578 0.399857i \(-0.130940\pi\)
−0.804575 + 0.593851i \(0.797607\pi\)
\(948\) 0 0
\(949\) −20.9167 23.2303i −0.678984 0.754088i
\(950\) −12.5168 2.66053i −0.406099 0.0863190i
\(951\) 0 0
\(952\) −46.7725 20.8245i −1.51591 0.674925i
\(953\) 7.31766 + 22.5214i 0.237042 + 0.729541i 0.996844 + 0.0793863i \(0.0252960\pi\)
−0.759802 + 0.650155i \(0.774704\pi\)
\(954\) 0 0
\(955\) 14.9220 + 10.8415i 0.482866 + 0.350822i
\(956\) 19.5989 + 33.9463i 0.633874 + 1.09790i
\(957\) 0 0
\(958\) −7.27297 + 12.5972i −0.234979 + 0.406996i
\(959\) 59.6798 26.5712i 1.92716 0.858027i
\(960\) 0 0
\(961\) −20.6192 + 22.9000i −0.665137 + 0.738709i
\(962\) 12.5301 9.10366i 0.403987 0.293514i
\(963\) 0 0
\(964\) −8.54567 26.3009i −0.275238 0.847094i
\(965\) −8.88519 + 1.88860i −0.286024 + 0.0607963i
\(966\) 0 0
\(967\) 15.5700 26.9680i 0.500696 0.867231i −0.499303 0.866427i \(-0.666411\pi\)
1.00000 0.000804082i \(-0.000255947\pi\)
\(968\) 0.174718 + 26.0045i 0.00561565 + 0.835818i
\(969\) 0 0
\(970\) 0.621524 5.91340i 0.0199559 0.189868i
\(971\) −4.12687 + 12.7012i −0.132438 + 0.407601i −0.995183 0.0980383i \(-0.968743\pi\)
0.862745 + 0.505639i \(0.168743\pi\)
\(972\) 0 0
\(973\) 43.4028 31.5340i 1.39143 1.01093i
\(974\) 1.98522 + 0.883879i 0.0636107 + 0.0283213i
\(975\) 0 0
\(976\) −4.22755 4.69517i −0.135321 0.150289i
\(977\) 8.14511 3.62644i 0.260585 0.116020i −0.272286 0.962216i \(-0.587780\pi\)
0.532871 + 0.846196i \(0.321113\pi\)
\(978\) 0 0
\(979\) 52.6564 8.52137i 1.68290 0.272344i
\(980\) 14.3508 0.458421
\(981\) 0 0
\(982\) 1.48297 4.56411i 0.0473234 0.145647i
\(983\) 11.2806 12.5283i 0.359794 0.399592i −0.535886 0.844290i \(-0.680022\pi\)
0.895680 + 0.444698i \(0.146689\pi\)
\(984\) 0 0
\(985\) 2.67370 + 25.4386i 0.0851912 + 0.810541i
\(986\) −3.90347 0.829709i −0.124312 0.0264233i
\(987\) 0 0
\(988\) −2.23933 + 21.3058i −0.0712425 + 0.677827i
\(989\) 4.72049 0.150103
\(990\) 0 0
\(991\) −33.5356 −1.06529 −0.532647 0.846338i \(-0.678803\pi\)
−0.532647 + 0.846338i \(0.678803\pi\)
\(992\) 0.258805 2.46237i 0.00821707 0.0781802i
\(993\) 0 0
\(994\) −16.0276 3.40677i −0.508364 0.108056i
\(995\) 1.08219 + 10.2964i 0.0343078 + 0.326417i
\(996\) 0 0
\(997\) −2.17044 + 2.41052i −0.0687385 + 0.0763419i −0.776533 0.630076i \(-0.783024\pi\)
0.707795 + 0.706418i \(0.249690\pi\)
\(998\) 3.04532 9.37254i 0.0963980 0.296682i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.37.4 72
3.2 odd 2 99.2.m.b.4.6 72
9.2 odd 6 99.2.m.b.70.4 yes 72
9.4 even 3 891.2.f.e.730.4 36
9.5 odd 6 891.2.f.f.730.6 36
9.7 even 3 inner 297.2.n.b.235.6 72
11.3 even 5 inner 297.2.n.b.91.6 72
33.5 odd 10 1089.2.e.p.364.11 36
33.14 odd 10 99.2.m.b.58.4 yes 72
33.17 even 10 1089.2.e.o.364.8 36
99.5 odd 30 9801.2.a.cm.1.8 18
99.14 odd 30 891.2.f.f.487.6 36
99.25 even 15 inner 297.2.n.b.289.4 72
99.38 odd 30 1089.2.e.p.727.11 36
99.47 odd 30 99.2.m.b.25.6 yes 72
99.49 even 15 9801.2.a.cp.1.11 18
99.50 even 30 9801.2.a.co.1.11 18
99.58 even 15 891.2.f.e.487.4 36
99.83 even 30 1089.2.e.o.727.8 36
99.94 odd 30 9801.2.a.cn.1.8 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.6 72 3.2 odd 2
99.2.m.b.25.6 yes 72 99.47 odd 30
99.2.m.b.58.4 yes 72 33.14 odd 10
99.2.m.b.70.4 yes 72 9.2 odd 6
297.2.n.b.37.4 72 1.1 even 1 trivial
297.2.n.b.91.6 72 11.3 even 5 inner
297.2.n.b.235.6 72 9.7 even 3 inner
297.2.n.b.289.4 72 99.25 even 15 inner
891.2.f.e.487.4 36 99.58 even 15
891.2.f.e.730.4 36 9.4 even 3
891.2.f.f.487.6 36 99.14 odd 30
891.2.f.f.730.6 36 9.5 odd 6
1089.2.e.o.364.8 36 33.17 even 10
1089.2.e.o.727.8 36 99.83 even 30
1089.2.e.p.364.11 36 33.5 odd 10
1089.2.e.p.727.11 36 99.38 odd 30
9801.2.a.cm.1.8 18 99.5 odd 30
9801.2.a.cn.1.8 18 99.94 odd 30
9801.2.a.co.1.11 18 99.50 even 30
9801.2.a.cp.1.11 18 99.49 even 15