Properties

Label 297.2.n.b.289.6
Level $297$
Weight $2$
Character 297.289
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(37,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 289.6
Character \(\chi\) \(=\) 297.289
Dual form 297.2.n.b.37.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0603978 + 0.574647i) q^{2} +(1.62972 - 0.346409i) q^{4} +(0.314048 - 2.98797i) q^{5} +(-0.779082 - 0.865259i) q^{7} +(0.654602 + 2.01466i) q^{8} +1.73599 q^{10} +(0.565602 - 3.26804i) q^{11} +(-3.60501 - 1.60505i) q^{13} +(0.450163 - 0.499957i) q^{14} +(1.92600 - 0.857509i) q^{16} +(-0.254185 - 0.184677i) q^{17} +(1.96794 + 6.05670i) q^{19} +(-0.523246 - 4.97835i) q^{20} +(1.91213 + 0.127639i) q^{22} +(-0.0427501 - 0.0740453i) q^{23} +(-3.93860 - 0.837174i) q^{25} +(0.704604 - 2.16855i) q^{26} +(-1.56942 - 1.14025i) q^{28} +(5.15218 + 5.72208i) q^{29} +(5.96439 + 2.65552i) q^{31} +(2.72743 + 4.72404i) q^{32} +(0.0907715 - 0.157221i) q^{34} +(-2.83004 + 2.05614i) q^{35} +(-1.92922 + 5.93753i) q^{37} +(-3.36160 + 1.49668i) q^{38} +(6.22531 - 1.32323i) q^{40} +(-3.88703 + 4.31698i) q^{41} +(3.39229 - 5.87562i) q^{43} +(-0.210303 - 5.52194i) q^{44} +(0.0399679 - 0.0290384i) q^{46} +(-0.320574 - 0.0681401i) q^{47} +(0.589996 - 5.61344i) q^{49} +(0.243197 - 2.31387i) q^{50} +(-6.43117 - 1.36699i) q^{52} +(-1.96000 + 1.42402i) q^{53} +(-9.58718 - 2.71632i) q^{55} +(1.23321 - 2.13598i) q^{56} +(-2.97699 + 3.30629i) q^{58} +(-2.24586 + 0.477372i) q^{59} +(-12.5039 + 5.56709i) q^{61} +(-1.16575 + 3.58780i) q^{62} +(0.861321 - 0.625787i) q^{64} +(-5.92799 + 10.2676i) q^{65} +(-5.83989 - 10.1150i) q^{67} +(-0.478226 - 0.212920i) q^{68} +(-1.35248 - 1.50208i) q^{70} +(7.05272 + 5.12410i) q^{71} +(0.910538 - 2.80235i) q^{73} +(-3.52850 - 0.750007i) q^{74} +(5.30529 + 9.18904i) q^{76} +(-3.26835 + 2.05668i) q^{77} +(0.928965 + 8.83851i) q^{79} +(-1.95735 - 6.02412i) q^{80} +(-2.71551 - 1.97293i) q^{82} +(-4.52916 + 2.01651i) q^{83} +(-0.631634 + 0.701501i) q^{85} +(3.58129 + 1.59449i) q^{86} +(6.95423 - 0.999772i) q^{88} -2.12862 q^{89} +(1.41981 + 4.36973i) q^{91} +(-0.0953208 - 0.105864i) q^{92} +(0.0197945 - 0.188332i) q^{94} +(18.7153 - 3.97805i) q^{95} +(0.00928623 + 0.0883526i) q^{97} +3.26138 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0603978 + 0.574647i 0.0427077 + 0.406337i 0.994902 + 0.100844i \(0.0321544\pi\)
−0.952195 + 0.305492i \(0.901179\pi\)
\(3\) 0 0
\(4\) 1.62972 0.346409i 0.814862 0.173204i
\(5\) 0.314048 2.98797i 0.140447 1.33626i −0.666442 0.745557i \(-0.732184\pi\)
0.806889 0.590704i \(-0.201150\pi\)
\(6\) 0 0
\(7\) −0.779082 0.865259i −0.294465 0.327037i 0.577699 0.816250i \(-0.303951\pi\)
−0.872164 + 0.489213i \(0.837284\pi\)
\(8\) 0.654602 + 2.01466i 0.231437 + 0.712289i
\(9\) 0 0
\(10\) 1.73599 0.548970
\(11\) 0.565602 3.26804i 0.170535 0.985352i
\(12\) 0 0
\(13\) −3.60501 1.60505i −0.999849 0.445161i −0.159495 0.987199i \(-0.550986\pi\)
−0.840354 + 0.542037i \(0.817653\pi\)
\(14\) 0.450163 0.499957i 0.120311 0.133619i
\(15\) 0 0
\(16\) 1.92600 0.857509i 0.481499 0.214377i
\(17\) −0.254185 0.184677i −0.0616490 0.0447906i 0.556534 0.830825i \(-0.312131\pi\)
−0.618183 + 0.786034i \(0.712131\pi\)
\(18\) 0 0
\(19\) 1.96794 + 6.05670i 0.451477 + 1.38950i 0.875222 + 0.483721i \(0.160715\pi\)
−0.423746 + 0.905781i \(0.639285\pi\)
\(20\) −0.523246 4.97835i −0.117001 1.11319i
\(21\) 0 0
\(22\) 1.91213 + 0.127639i 0.407668 + 0.0272126i
\(23\) −0.0427501 0.0740453i −0.00891401 0.0154395i 0.861534 0.507700i \(-0.169504\pi\)
−0.870448 + 0.492260i \(0.836171\pi\)
\(24\) 0 0
\(25\) −3.93860 0.837174i −0.787719 0.167435i
\(26\) 0.704604 2.16855i 0.138184 0.425287i
\(27\) 0 0
\(28\) −1.56942 1.14025i −0.296593 0.215487i
\(29\) 5.15218 + 5.72208i 0.956737 + 1.06256i 0.997987 + 0.0634149i \(0.0201991\pi\)
−0.0412506 + 0.999149i \(0.513134\pi\)
\(30\) 0 0
\(31\) 5.96439 + 2.65552i 1.07124 + 0.476945i 0.865111 0.501581i \(-0.167248\pi\)
0.206125 + 0.978526i \(0.433915\pi\)
\(32\) 2.72743 + 4.72404i 0.482146 + 0.835101i
\(33\) 0 0
\(34\) 0.0907715 0.157221i 0.0155672 0.0269632i
\(35\) −2.83004 + 2.05614i −0.478363 + 0.347551i
\(36\) 0 0
\(37\) −1.92922 + 5.93753i −0.317162 + 0.976124i 0.657694 + 0.753286i \(0.271532\pi\)
−0.974855 + 0.222838i \(0.928468\pi\)
\(38\) −3.36160 + 1.49668i −0.545324 + 0.242794i
\(39\) 0 0
\(40\) 6.22531 1.32323i 0.984308 0.209221i
\(41\) −3.88703 + 4.31698i −0.607052 + 0.674199i −0.965816 0.259229i \(-0.916532\pi\)
0.358764 + 0.933428i \(0.383198\pi\)
\(42\) 0 0
\(43\) 3.39229 5.87562i 0.517320 0.896024i −0.482478 0.875908i \(-0.660263\pi\)
0.999798 0.0201157i \(-0.00640347\pi\)
\(44\) −0.210303 5.52194i −0.0317043 0.832463i
\(45\) 0 0
\(46\) 0.0399679 0.0290384i 0.00589294 0.00428147i
\(47\) −0.320574 0.0681401i −0.0467605 0.00993925i 0.184472 0.982838i \(-0.440942\pi\)
−0.231233 + 0.972899i \(0.574276\pi\)
\(48\) 0 0
\(49\) 0.589996 5.61344i 0.0842852 0.801920i
\(50\) 0.243197 2.31387i 0.0343933 0.327230i
\(51\) 0 0
\(52\) −6.43117 1.36699i −0.891843 0.189567i
\(53\) −1.96000 + 1.42402i −0.269227 + 0.195605i −0.714205 0.699937i \(-0.753211\pi\)
0.444978 + 0.895541i \(0.353211\pi\)
\(54\) 0 0
\(55\) −9.58718 2.71632i −1.29274 0.366269i
\(56\) 1.23321 2.13598i 0.164795 0.285433i
\(57\) 0 0
\(58\) −2.97699 + 3.30629i −0.390899 + 0.434137i
\(59\) −2.24586 + 0.477372i −0.292386 + 0.0621485i −0.351769 0.936087i \(-0.614420\pi\)
0.0593835 + 0.998235i \(0.481087\pi\)
\(60\) 0 0
\(61\) −12.5039 + 5.56709i −1.60096 + 0.712792i −0.996480 0.0838297i \(-0.973285\pi\)
−0.604478 + 0.796622i \(0.706618\pi\)
\(62\) −1.16575 + 3.58780i −0.148050 + 0.455652i
\(63\) 0 0
\(64\) 0.861321 0.625787i 0.107665 0.0782233i
\(65\) −5.92799 + 10.2676i −0.735277 + 1.27354i
\(66\) 0 0
\(67\) −5.83989 10.1150i −0.713456 1.23574i −0.963552 0.267521i \(-0.913795\pi\)
0.250096 0.968221i \(-0.419538\pi\)
\(68\) −0.478226 0.212920i −0.0579934 0.0258203i
\(69\) 0 0
\(70\) −1.35248 1.50208i −0.161653 0.179533i
\(71\) 7.05272 + 5.12410i 0.837004 + 0.608119i 0.921532 0.388302i \(-0.126938\pi\)
−0.0845279 + 0.996421i \(0.526938\pi\)
\(72\) 0 0
\(73\) 0.910538 2.80235i 0.106570 0.327990i −0.883525 0.468383i \(-0.844837\pi\)
0.990096 + 0.140393i \(0.0448367\pi\)
\(74\) −3.52850 0.750007i −0.410180 0.0871865i
\(75\) 0 0
\(76\) 5.30529 + 9.18904i 0.608559 + 1.05405i
\(77\) −3.26835 + 2.05668i −0.372463 + 0.234381i
\(78\) 0 0
\(79\) 0.928965 + 8.83851i 0.104517 + 0.994410i 0.913572 + 0.406677i \(0.133313\pi\)
−0.809055 + 0.587733i \(0.800021\pi\)
\(80\) −1.95735 6.02412i −0.218839 0.673517i
\(81\) 0 0
\(82\) −2.71551 1.97293i −0.299878 0.217874i
\(83\) −4.52916 + 2.01651i −0.497140 + 0.221341i −0.639961 0.768408i \(-0.721049\pi\)
0.142821 + 0.989749i \(0.454383\pi\)
\(84\) 0 0
\(85\) −0.631634 + 0.701501i −0.0685104 + 0.0760885i
\(86\) 3.58129 + 1.59449i 0.386181 + 0.171939i
\(87\) 0 0
\(88\) 6.95423 0.999772i 0.741323 0.106576i
\(89\) −2.12862 −0.225634 −0.112817 0.993616i \(-0.535987\pi\)
−0.112817 + 0.993616i \(0.535987\pi\)
\(90\) 0 0
\(91\) 1.41981 + 4.36973i 0.148837 + 0.458072i
\(92\) −0.0953208 0.105864i −0.00993788 0.0110371i
\(93\) 0 0
\(94\) 0.0197945 0.188332i 0.00204165 0.0194250i
\(95\) 18.7153 3.97805i 1.92014 0.408139i
\(96\) 0 0
\(97\) 0.00928623 + 0.0883526i 0.000942874 + 0.00897084i 0.994983 0.100042i \(-0.0318977\pi\)
−0.994040 + 0.109013i \(0.965231\pi\)
\(98\) 3.26138 0.329449
\(99\) 0 0
\(100\) −6.70883 −0.670883
\(101\) −0.214961 2.04522i −0.0213894 0.203507i 0.978608 0.205733i \(-0.0659579\pi\)
−0.999998 + 0.00222652i \(0.999291\pi\)
\(102\) 0 0
\(103\) 2.95079 0.627210i 0.290750 0.0618009i −0.0602275 0.998185i \(-0.519183\pi\)
0.350978 + 0.936384i \(0.385849\pi\)
\(104\) 0.873787 8.31352i 0.0856818 0.815208i
\(105\) 0 0
\(106\) −0.936690 1.04030i −0.0909794 0.101043i
\(107\) −3.70600 11.4059i −0.358272 1.10265i −0.954088 0.299527i \(-0.903171\pi\)
0.595815 0.803121i \(-0.296829\pi\)
\(108\) 0 0
\(109\) 5.20013 0.498082 0.249041 0.968493i \(-0.419885\pi\)
0.249041 + 0.968493i \(0.419885\pi\)
\(110\) 0.981882 5.67330i 0.0936187 0.540928i
\(111\) 0 0
\(112\) −2.24248 0.998415i −0.211894 0.0943414i
\(113\) −12.8657 + 14.2889i −1.21031 + 1.34418i −0.288046 + 0.957617i \(0.593005\pi\)
−0.922262 + 0.386566i \(0.873661\pi\)
\(114\) 0 0
\(115\) −0.234671 + 0.104482i −0.0218832 + 0.00974301i
\(116\) 10.3788 + 7.54065i 0.963649 + 0.700132i
\(117\) 0 0
\(118\) −0.409965 1.26174i −0.0377403 0.116153i
\(119\) 0.0382384 + 0.363814i 0.00350531 + 0.0333508i
\(120\) 0 0
\(121\) −10.3602 3.69682i −0.941835 0.336074i
\(122\) −3.95432 6.84907i −0.358007 0.620086i
\(123\) 0 0
\(124\) 10.6402 + 2.26164i 0.955518 + 0.203102i
\(125\) 0.903736 2.78141i 0.0808326 0.248777i
\(126\) 0 0
\(127\) 10.6652 + 7.74873i 0.946384 + 0.687588i 0.949949 0.312405i \(-0.101135\pi\)
−0.00356461 + 0.999994i \(0.501135\pi\)
\(128\) 7.71165 + 8.56465i 0.681620 + 0.757015i
\(129\) 0 0
\(130\) −6.25827 2.78636i −0.548887 0.244380i
\(131\) −8.98588 15.5640i −0.785100 1.35983i −0.928939 0.370233i \(-0.879278\pi\)
0.143839 0.989601i \(-0.454055\pi\)
\(132\) 0 0
\(133\) 3.70742 6.42144i 0.321474 0.556810i
\(134\) 5.45983 3.96680i 0.471657 0.342679i
\(135\) 0 0
\(136\) 0.205670 0.632986i 0.0176360 0.0542781i
\(137\) 14.9837 6.67119i 1.28015 0.569958i 0.349864 0.936801i \(-0.386228\pi\)
0.930283 + 0.366842i \(0.119561\pi\)
\(138\) 0 0
\(139\) 11.6415 2.47448i 0.987421 0.209883i 0.314226 0.949348i \(-0.398255\pi\)
0.673195 + 0.739465i \(0.264922\pi\)
\(140\) −3.89991 + 4.33129i −0.329603 + 0.366061i
\(141\) 0 0
\(142\) −2.51858 + 4.36231i −0.211355 + 0.366077i
\(143\) −7.28438 + 10.8735i −0.609150 + 0.909287i
\(144\) 0 0
\(145\) 18.7154 13.5976i 1.55423 1.12922i
\(146\) 1.66535 + 0.353982i 0.137826 + 0.0292958i
\(147\) 0 0
\(148\) −1.08729 + 10.3448i −0.0893744 + 0.850340i
\(149\) −0.473693 + 4.50689i −0.0388065 + 0.369219i 0.957834 + 0.287321i \(0.0927647\pi\)
−0.996641 + 0.0818976i \(0.973902\pi\)
\(150\) 0 0
\(151\) 2.86682 + 0.609361i 0.233298 + 0.0495891i 0.323077 0.946373i \(-0.395283\pi\)
−0.0897788 + 0.995962i \(0.528616\pi\)
\(152\) −10.9140 + 7.92945i −0.885239 + 0.643164i
\(153\) 0 0
\(154\) −1.37927 1.75393i −0.111144 0.141336i
\(155\) 9.80771 16.9874i 0.787774 1.36446i
\(156\) 0 0
\(157\) −12.0802 + 13.4165i −0.964108 + 1.07075i 0.0333460 + 0.999444i \(0.489384\pi\)
−0.997454 + 0.0713070i \(0.977283\pi\)
\(158\) −5.02291 + 1.06765i −0.399602 + 0.0849379i
\(159\) 0 0
\(160\) 14.9718 6.66589i 1.18363 0.526985i
\(161\) −0.0307625 + 0.0946773i −0.00242443 + 0.00746161i
\(162\) 0 0
\(163\) 4.71129 3.42295i 0.369017 0.268106i −0.387786 0.921749i \(-0.626760\pi\)
0.756803 + 0.653643i \(0.226760\pi\)
\(164\) −4.83934 + 8.38199i −0.377889 + 0.654523i
\(165\) 0 0
\(166\) −1.43233 2.48087i −0.111171 0.192553i
\(167\) 4.58758 + 2.04252i 0.354997 + 0.158055i 0.576484 0.817108i \(-0.304424\pi\)
−0.221487 + 0.975163i \(0.571091\pi\)
\(168\) 0 0
\(169\) 1.72118 + 1.91157i 0.132399 + 0.147044i
\(170\) −0.441265 0.320598i −0.0338435 0.0245887i
\(171\) 0 0
\(172\) 3.49313 10.7508i 0.266349 0.819738i
\(173\) −15.2492 3.24131i −1.15937 0.246433i −0.412221 0.911084i \(-0.635247\pi\)
−0.747153 + 0.664652i \(0.768580\pi\)
\(174\) 0 0
\(175\) 2.34412 + 4.06013i 0.177199 + 0.306917i
\(176\) −1.71303 6.77925i −0.129124 0.511005i
\(177\) 0 0
\(178\) −0.128564 1.22321i −0.00963629 0.0916832i
\(179\) −2.17822 6.70387i −0.162808 0.501071i 0.836060 0.548638i \(-0.184853\pi\)
−0.998868 + 0.0475668i \(0.984853\pi\)
\(180\) 0 0
\(181\) −2.02068 1.46811i −0.150196 0.109124i 0.510149 0.860086i \(-0.329590\pi\)
−0.660345 + 0.750962i \(0.729590\pi\)
\(182\) −2.42530 + 1.07981i −0.179775 + 0.0800410i
\(183\) 0 0
\(184\) 0.121192 0.134597i 0.00893437 0.00992262i
\(185\) 17.1353 + 7.62912i 1.25981 + 0.560904i
\(186\) 0 0
\(187\) −0.747298 + 0.726235i −0.0546479 + 0.0531076i
\(188\) −0.546051 −0.0398249
\(189\) 0 0
\(190\) 3.41633 + 10.5144i 0.247847 + 0.762795i
\(191\) 7.91112 + 8.78619i 0.572428 + 0.635746i 0.957944 0.286955i \(-0.0926431\pi\)
−0.385516 + 0.922701i \(0.625976\pi\)
\(192\) 0 0
\(193\) −0.705218 + 6.70970i −0.0507627 + 0.482975i 0.939376 + 0.342887i \(0.111405\pi\)
−0.990139 + 0.140087i \(0.955262\pi\)
\(194\) −0.0502106 + 0.0106726i −0.00360491 + 0.000766248i
\(195\) 0 0
\(196\) −0.983012 9.35274i −0.0702152 0.668053i
\(197\) 20.6474 1.47107 0.735534 0.677488i \(-0.236931\pi\)
0.735534 + 0.677488i \(0.236931\pi\)
\(198\) 0 0
\(199\) −13.2862 −0.941832 −0.470916 0.882178i \(-0.656077\pi\)
−0.470916 + 0.882178i \(0.656077\pi\)
\(200\) −0.891593 8.48294i −0.0630451 0.599834i
\(201\) 0 0
\(202\) 1.16229 0.247053i 0.0817788 0.0173826i
\(203\) 0.937103 8.91594i 0.0657718 0.625777i
\(204\) 0 0
\(205\) 11.6783 + 12.9701i 0.815647 + 0.905868i
\(206\) 0.538646 + 1.65778i 0.0375292 + 0.115503i
\(207\) 0 0
\(208\) −8.31958 −0.576859
\(209\) 20.9066 3.00563i 1.44614 0.207904i
\(210\) 0 0
\(211\) −7.62355 3.39422i −0.524827 0.233668i 0.127182 0.991879i \(-0.459407\pi\)
−0.652009 + 0.758211i \(0.726074\pi\)
\(212\) −2.70097 + 2.99973i −0.185503 + 0.206022i
\(213\) 0 0
\(214\) 6.33052 2.81853i 0.432746 0.192671i
\(215\) −16.4908 11.9813i −1.12467 0.817117i
\(216\) 0 0
\(217\) −2.34904 7.22960i −0.159463 0.490778i
\(218\) 0.314076 + 2.98824i 0.0212719 + 0.202389i
\(219\) 0 0
\(220\) −16.5654 1.10578i −1.11684 0.0745514i
\(221\) 0.619925 + 1.07374i 0.0417007 + 0.0722277i
\(222\) 0 0
\(223\) 0.375272 + 0.0797665i 0.0251301 + 0.00534156i 0.220460 0.975396i \(-0.429244\pi\)
−0.195330 + 0.980738i \(0.562578\pi\)
\(224\) 1.96263 6.04035i 0.131134 0.403588i
\(225\) 0 0
\(226\) −8.98811 6.53024i −0.597880 0.434385i
\(227\) −12.0537 13.3870i −0.800035 0.888529i 0.195712 0.980661i \(-0.437298\pi\)
−0.995747 + 0.0921329i \(0.970632\pi\)
\(228\) 0 0
\(229\) 12.2670 + 5.46161i 0.810624 + 0.360913i 0.769826 0.638254i \(-0.220343\pi\)
0.0407985 + 0.999167i \(0.487010\pi\)
\(230\) −0.0742139 0.128542i −0.00489352 0.00847583i
\(231\) 0 0
\(232\) −8.15540 + 14.1256i −0.535428 + 0.927389i
\(233\) −2.72611 + 1.98063i −0.178593 + 0.129756i −0.673490 0.739196i \(-0.735206\pi\)
0.494897 + 0.868952i \(0.335206\pi\)
\(234\) 0 0
\(235\) −0.304276 + 0.936466i −0.0198488 + 0.0610883i
\(236\) −3.49476 + 1.55597i −0.227490 + 0.101285i
\(237\) 0 0
\(238\) −0.206755 + 0.0439472i −0.0134020 + 0.00284867i
\(239\) 15.5217 17.2386i 1.00401 1.11507i 0.0106638 0.999943i \(-0.496606\pi\)
0.993351 0.115128i \(-0.0367278\pi\)
\(240\) 0 0
\(241\) −7.58206 + 13.1325i −0.488404 + 0.845940i −0.999911 0.0133389i \(-0.995754\pi\)
0.511507 + 0.859279i \(0.329087\pi\)
\(242\) 1.49863 6.17673i 0.0963358 0.397055i
\(243\) 0 0
\(244\) −18.4494 + 13.4043i −1.18110 + 0.858120i
\(245\) −16.5875 3.52578i −1.05974 0.225254i
\(246\) 0 0
\(247\) 2.62688 24.9931i 0.167144 1.59027i
\(248\) −1.44566 + 13.7545i −0.0917993 + 0.873412i
\(249\) 0 0
\(250\) 1.65291 + 0.351338i 0.104539 + 0.0222205i
\(251\) −0.471095 + 0.342271i −0.0297353 + 0.0216039i −0.602554 0.798078i \(-0.705850\pi\)
0.572818 + 0.819682i \(0.305850\pi\)
\(252\) 0 0
\(253\) −0.266163 + 0.0978289i −0.0167335 + 0.00615045i
\(254\) −3.80863 + 6.59673i −0.238974 + 0.413916i
\(255\) 0 0
\(256\) −3.03110 + 3.36638i −0.189444 + 0.210399i
\(257\) −10.7317 + 2.28109i −0.669423 + 0.142290i −0.530072 0.847953i \(-0.677835\pi\)
−0.139351 + 0.990243i \(0.544502\pi\)
\(258\) 0 0
\(259\) 6.64052 2.95655i 0.412622 0.183711i
\(260\) −6.10421 + 18.7868i −0.378567 + 1.16511i
\(261\) 0 0
\(262\) 8.40108 6.10374i 0.519020 0.377090i
\(263\) −7.19768 + 12.4668i −0.443828 + 0.768733i −0.997970 0.0636896i \(-0.979713\pi\)
0.554142 + 0.832422i \(0.313047\pi\)
\(264\) 0 0
\(265\) 3.63940 + 6.30363i 0.223567 + 0.387229i
\(266\) 3.91398 + 1.74262i 0.239982 + 0.106847i
\(267\) 0 0
\(268\) −13.0213 14.4617i −0.795404 0.883386i
\(269\) 0.395590 + 0.287413i 0.0241195 + 0.0175239i 0.599780 0.800165i \(-0.295255\pi\)
−0.575660 + 0.817689i \(0.695255\pi\)
\(270\) 0 0
\(271\) 6.77950 20.8652i 0.411825 1.26747i −0.503234 0.864150i \(-0.667857\pi\)
0.915060 0.403318i \(-0.132143\pi\)
\(272\) −0.647922 0.137720i −0.0392861 0.00835051i
\(273\) 0 0
\(274\) 4.73856 + 8.20743i 0.286267 + 0.495829i
\(275\) −4.96360 + 12.3980i −0.299316 + 0.747627i
\(276\) 0 0
\(277\) −0.299947 2.85381i −0.0180221 0.171469i 0.981809 0.189874i \(-0.0608078\pi\)
−0.999831 + 0.0184051i \(0.994141\pi\)
\(278\) 2.12508 + 6.54031i 0.127454 + 0.392262i
\(279\) 0 0
\(280\) −5.99497 4.35560i −0.358268 0.260297i
\(281\) −16.6065 + 7.39368i −0.990660 + 0.441070i −0.837089 0.547067i \(-0.815744\pi\)
−0.153571 + 0.988138i \(0.549078\pi\)
\(282\) 0 0
\(283\) −13.7420 + 15.2620i −0.816878 + 0.907235i −0.997078 0.0763955i \(-0.975659\pi\)
0.180200 + 0.983630i \(0.442326\pi\)
\(284\) 13.2690 + 5.90775i 0.787372 + 0.350561i
\(285\) 0 0
\(286\) −6.68838 3.52921i −0.395492 0.208686i
\(287\) 6.76362 0.399244
\(288\) 0 0
\(289\) −5.22278 16.0741i −0.307223 0.945534i
\(290\) 8.94417 + 9.93350i 0.525219 + 0.583315i
\(291\) 0 0
\(292\) 0.513168 4.88247i 0.0300309 0.285725i
\(293\) 0.841272 0.178818i 0.0491476 0.0104467i −0.183272 0.983062i \(-0.558669\pi\)
0.232420 + 0.972616i \(0.425336\pi\)
\(294\) 0 0
\(295\) 0.721065 + 6.86047i 0.0419820 + 0.399432i
\(296\) −13.2250 −0.768685
\(297\) 0 0
\(298\) −2.61848 −0.151684
\(299\) 0.0352677 + 0.335550i 0.00203959 + 0.0194054i
\(300\) 0 0
\(301\) −7.72681 + 1.64238i −0.445366 + 0.0946654i
\(302\) −0.177018 + 1.68421i −0.0101862 + 0.0969155i
\(303\) 0 0
\(304\) 8.98392 + 9.97766i 0.515263 + 0.572258i
\(305\) 12.7075 + 39.1095i 0.727627 + 2.23941i
\(306\) 0 0
\(307\) 3.48920 0.199139 0.0995696 0.995031i \(-0.468253\pi\)
0.0995696 + 0.995031i \(0.468253\pi\)
\(308\) −4.61406 + 4.48401i −0.262910 + 0.255500i
\(309\) 0 0
\(310\) 10.3541 + 4.60996i 0.588076 + 0.261828i
\(311\) −7.25692 + 8.05963i −0.411502 + 0.457020i −0.912892 0.408202i \(-0.866156\pi\)
0.501389 + 0.865222i \(0.332822\pi\)
\(312\) 0 0
\(313\) −25.8360 + 11.5029i −1.46034 + 0.650185i −0.974607 0.223923i \(-0.928114\pi\)
−0.485732 + 0.874108i \(0.661447\pi\)
\(314\) −8.43935 6.13155i −0.476260 0.346023i
\(315\) 0 0
\(316\) 4.57569 + 14.0825i 0.257403 + 0.792204i
\(317\) −0.116291 1.10643i −0.00653154 0.0621434i 0.990771 0.135549i \(-0.0432799\pi\)
−0.997302 + 0.0734057i \(0.976613\pi\)
\(318\) 0 0
\(319\) 21.6141 13.6011i 1.21016 0.761517i
\(320\) −1.59933 2.77013i −0.0894055 0.154855i
\(321\) 0 0
\(322\) −0.0562640 0.0119593i −0.00313547 0.000666464i
\(323\) 0.618308 1.90296i 0.0344036 0.105883i
\(324\) 0 0
\(325\) 12.8550 + 9.33967i 0.713065 + 0.518072i
\(326\) 2.25154 + 2.50059i 0.124701 + 0.138495i
\(327\) 0 0
\(328\) −11.2417 5.00512i −0.620719 0.276362i
\(329\) 0.190795 + 0.330466i 0.0105188 + 0.0182192i
\(330\) 0 0
\(331\) 6.18915 10.7199i 0.340187 0.589221i −0.644281 0.764789i \(-0.722843\pi\)
0.984467 + 0.175569i \(0.0561764\pi\)
\(332\) −6.68275 + 4.85530i −0.366763 + 0.266469i
\(333\) 0 0
\(334\) −0.896648 + 2.75960i −0.0490624 + 0.150999i
\(335\) −32.0573 + 14.2728i −1.75148 + 0.779807i
\(336\) 0 0
\(337\) −13.1792 + 2.80132i −0.717916 + 0.152598i −0.552364 0.833603i \(-0.686274\pi\)
−0.165552 + 0.986201i \(0.552941\pi\)
\(338\) −0.994521 + 1.10453i −0.0540948 + 0.0600783i
\(339\) 0 0
\(340\) −0.786384 + 1.36206i −0.0426477 + 0.0738679i
\(341\) 12.0518 17.9899i 0.652642 0.974208i
\(342\) 0 0
\(343\) −11.9104 + 8.65342i −0.643102 + 0.467241i
\(344\) 14.0580 + 2.98811i 0.757955 + 0.161108i
\(345\) 0 0
\(346\) 0.941593 8.95866i 0.0506204 0.481621i
\(347\) 1.01802 9.68582i 0.0546502 0.519962i −0.932614 0.360875i \(-0.882478\pi\)
0.987265 0.159087i \(-0.0508551\pi\)
\(348\) 0 0
\(349\) 4.34317 + 0.923168i 0.232484 + 0.0494161i 0.322680 0.946508i \(-0.395416\pi\)
−0.0901962 + 0.995924i \(0.528749\pi\)
\(350\) −2.19156 + 1.59226i −0.117144 + 0.0851100i
\(351\) 0 0
\(352\) 16.9810 6.24142i 0.905090 0.332669i
\(353\) 16.2618 28.1662i 0.865527 1.49914i −0.000996749 1.00000i \(-0.500317\pi\)
0.866523 0.499137i \(-0.166349\pi\)
\(354\) 0 0
\(355\) 17.5256 19.4641i 0.930160 1.03305i
\(356\) −3.46907 + 0.737373i −0.183860 + 0.0390807i
\(357\) 0 0
\(358\) 3.72080 1.65661i 0.196650 0.0875543i
\(359\) 8.58143 26.4109i 0.452911 1.39392i −0.420660 0.907218i \(-0.638201\pi\)
0.873571 0.486697i \(-0.161799\pi\)
\(360\) 0 0
\(361\) −17.4395 + 12.6705i −0.917868 + 0.666870i
\(362\) 0.721600 1.24985i 0.0379264 0.0656905i
\(363\) 0 0
\(364\) 3.82761 + 6.62962i 0.200621 + 0.347487i
\(365\) −8.08737 3.60073i −0.423312 0.188471i
\(366\) 0 0
\(367\) 0.784353 + 0.871112i 0.0409429 + 0.0454717i 0.763268 0.646082i \(-0.223593\pi\)
−0.722326 + 0.691553i \(0.756927\pi\)
\(368\) −0.145831 0.105952i −0.00760197 0.00552315i
\(369\) 0 0
\(370\) −3.34912 + 10.3075i −0.174112 + 0.535862i
\(371\) 2.75915 + 0.586475i 0.143248 + 0.0304483i
\(372\) 0 0
\(373\) −10.8834 18.8506i −0.563520 0.976046i −0.997186 0.0749719i \(-0.976113\pi\)
0.433665 0.901074i \(-0.357220\pi\)
\(374\) −0.462464 0.385570i −0.0239134 0.0199373i
\(375\) 0 0
\(376\) −0.0725693 0.690451i −0.00374248 0.0356073i
\(377\) −9.38942 28.8977i −0.483580 1.48831i
\(378\) 0 0
\(379\) 13.1440 + 9.54967i 0.675161 + 0.490533i 0.871749 0.489953i \(-0.162986\pi\)
−0.196588 + 0.980486i \(0.562986\pi\)
\(380\) 29.1227 12.9663i 1.49396 0.665155i
\(381\) 0 0
\(382\) −4.57114 + 5.07676i −0.233880 + 0.259750i
\(383\) −5.65791 2.51906i −0.289105 0.128718i 0.257060 0.966396i \(-0.417246\pi\)
−0.546165 + 0.837677i \(0.683913\pi\)
\(384\) 0 0
\(385\) 5.11888 + 10.4116i 0.260882 + 0.530626i
\(386\) −3.89830 −0.198418
\(387\) 0 0
\(388\) 0.0457401 + 0.140773i 0.00232210 + 0.00714669i
\(389\) 0.483924 + 0.537452i 0.0245359 + 0.0272499i 0.755288 0.655393i \(-0.227497\pi\)
−0.730752 + 0.682643i \(0.760830\pi\)
\(390\) 0 0
\(391\) −0.00280798 + 0.0267162i −0.000142006 + 0.00135110i
\(392\) 11.6954 2.48593i 0.590705 0.125558i
\(393\) 0 0
\(394\) 1.24706 + 11.8650i 0.0628259 + 0.597749i
\(395\) 26.7009 1.34347
\(396\) 0 0
\(397\) 4.08994 0.205268 0.102634 0.994719i \(-0.467273\pi\)
0.102634 + 0.994719i \(0.467273\pi\)
\(398\) −0.802456 7.63486i −0.0402235 0.382701i
\(399\) 0 0
\(400\) −8.30361 + 1.76499i −0.415180 + 0.0882493i
\(401\) −0.590196 + 5.61534i −0.0294730 + 0.280417i 0.969852 + 0.243693i \(0.0783588\pi\)
−0.999325 + 0.0367238i \(0.988308\pi\)
\(402\) 0 0
\(403\) −17.2394 19.1463i −0.858757 0.953746i
\(404\) −1.05881 3.25868i −0.0526777 0.162125i
\(405\) 0 0
\(406\) 5.18012 0.257085
\(407\) 18.3129 + 9.66305i 0.907738 + 0.478980i
\(408\) 0 0
\(409\) 8.63188 + 3.84316i 0.426819 + 0.190032i 0.608892 0.793253i \(-0.291614\pi\)
−0.182073 + 0.983285i \(0.558281\pi\)
\(410\) −6.74786 + 7.49426i −0.333253 + 0.370115i
\(411\) 0 0
\(412\) 4.59171 2.04436i 0.226217 0.100718i
\(413\) 2.16276 + 1.57134i 0.106422 + 0.0773204i
\(414\) 0 0
\(415\) 4.60290 + 14.1663i 0.225948 + 0.695395i
\(416\) −2.25006 21.4079i −0.110318 1.04961i
\(417\) 0 0
\(418\) 2.98989 + 11.8324i 0.146240 + 0.578741i
\(419\) 0.0757820 + 0.131258i 0.00370219 + 0.00641238i 0.867871 0.496790i \(-0.165488\pi\)
−0.864168 + 0.503203i \(0.832155\pi\)
\(420\) 0 0
\(421\) −16.6056 3.52962i −0.809306 0.172023i −0.215367 0.976533i \(-0.569095\pi\)
−0.593939 + 0.804510i \(0.702428\pi\)
\(422\) 1.49003 4.58585i 0.0725337 0.223236i
\(423\) 0 0
\(424\) −4.15194 3.01656i −0.201636 0.146497i
\(425\) 0.846527 + 0.940164i 0.0410626 + 0.0456047i
\(426\) 0 0
\(427\) 14.5585 + 6.48187i 0.704536 + 0.313680i
\(428\) −9.99085 17.3047i −0.482926 0.836453i
\(429\) 0 0
\(430\) 5.88900 10.2000i 0.283993 0.491890i
\(431\) −20.5242 + 14.9117i −0.988618 + 0.718273i −0.959618 0.281307i \(-0.909232\pi\)
−0.0289998 + 0.999579i \(0.509232\pi\)
\(432\) 0 0
\(433\) 5.10950 15.7254i 0.245547 0.755716i −0.749999 0.661439i \(-0.769946\pi\)
0.995546 0.0942769i \(-0.0300539\pi\)
\(434\) 4.01259 1.78652i 0.192611 0.0857558i
\(435\) 0 0
\(436\) 8.47477 1.80137i 0.405868 0.0862699i
\(437\) 0.364341 0.404641i 0.0174288 0.0193566i
\(438\) 0 0
\(439\) 19.6207 33.9840i 0.936443 1.62197i 0.164403 0.986393i \(-0.447430\pi\)
0.772040 0.635574i \(-0.219237\pi\)
\(440\) −0.803326 21.0930i −0.0382971 1.00557i
\(441\) 0 0
\(442\) −0.579580 + 0.421089i −0.0275678 + 0.0200292i
\(443\) 31.4859 + 6.69254i 1.49594 + 0.317972i 0.881951 0.471341i \(-0.156230\pi\)
0.613991 + 0.789313i \(0.289563\pi\)
\(444\) 0 0
\(445\) −0.668490 + 6.36026i −0.0316895 + 0.301505i
\(446\) −0.0231720 + 0.220466i −0.00109722 + 0.0104394i
\(447\) 0 0
\(448\) −1.21251 0.257726i −0.0572856 0.0121764i
\(449\) −20.9085 + 15.1909i −0.986731 + 0.716902i −0.959203 0.282719i \(-0.908764\pi\)
−0.0275281 + 0.999621i \(0.508764\pi\)
\(450\) 0 0
\(451\) 11.9096 + 15.1447i 0.560799 + 0.713134i
\(452\) −16.0178 + 27.7437i −0.753415 + 1.30495i
\(453\) 0 0
\(454\) 6.96480 7.73519i 0.326874 0.363030i
\(455\) 13.5025 2.87005i 0.633007 0.134550i
\(456\) 0 0
\(457\) −11.6169 + 5.17218i −0.543416 + 0.241944i −0.660038 0.751232i \(-0.729460\pi\)
0.116623 + 0.993176i \(0.462793\pi\)
\(458\) −2.39760 + 7.37904i −0.112032 + 0.344800i
\(459\) 0 0
\(460\) −0.346255 + 0.251569i −0.0161442 + 0.0117295i
\(461\) −9.51087 + 16.4733i −0.442965 + 0.767238i −0.997908 0.0646502i \(-0.979407\pi\)
0.554943 + 0.831889i \(0.312740\pi\)
\(462\) 0 0
\(463\) 11.4334 + 19.8032i 0.531353 + 0.920331i 0.999330 + 0.0365903i \(0.0116497\pi\)
−0.467977 + 0.883741i \(0.655017\pi\)
\(464\) 14.8298 + 6.60266i 0.688457 + 0.306521i
\(465\) 0 0
\(466\) −1.30281 1.44692i −0.0603517 0.0670274i
\(467\) 12.8819 + 9.35921i 0.596101 + 0.433093i 0.844493 0.535567i \(-0.179902\pi\)
−0.248392 + 0.968660i \(0.579902\pi\)
\(468\) 0 0
\(469\) −4.20232 + 12.9334i −0.194045 + 0.597210i
\(470\) −0.556515 0.118291i −0.0256701 0.00545635i
\(471\) 0 0
\(472\) −2.43188 4.21215i −0.111936 0.193880i
\(473\) −17.2831 14.4094i −0.794677 0.662545i
\(474\) 0 0
\(475\) −2.68041 25.5024i −0.122986 1.17013i
\(476\) 0.188347 + 0.579671i 0.00863285 + 0.0265692i
\(477\) 0 0
\(478\) 10.8436 + 7.87832i 0.495973 + 0.360346i
\(479\) 14.9730 6.66640i 0.684133 0.304596i −0.0350809 0.999384i \(-0.511169\pi\)
0.719214 + 0.694789i \(0.244502\pi\)
\(480\) 0 0
\(481\) 16.4849 18.3083i 0.751647 0.834788i
\(482\) −8.00450 3.56383i −0.364595 0.162328i
\(483\) 0 0
\(484\) −18.1649 2.43594i −0.825676 0.110724i
\(485\) 0.266911 0.0121198
\(486\) 0 0
\(487\) 7.04142 + 21.6713i 0.319077 + 0.982019i 0.974044 + 0.226361i \(0.0726828\pi\)
−0.654966 + 0.755658i \(0.727317\pi\)
\(488\) −19.4008 21.5468i −0.878234 0.975378i
\(489\) 0 0
\(490\) 1.02423 9.74490i 0.0462700 0.440230i
\(491\) −42.6893 + 9.07389i −1.92654 + 0.409499i −0.927147 + 0.374698i \(0.877747\pi\)
−0.999394 + 0.0348013i \(0.988920\pi\)
\(492\) 0 0
\(493\) −0.252876 2.40596i −0.0113890 0.108359i
\(494\) 14.5209 0.653324
\(495\) 0 0
\(496\) 13.7645 0.618045
\(497\) −1.06098 10.0945i −0.0475914 0.452801i
\(498\) 0 0
\(499\) 19.6642 4.17976i 0.880291 0.187112i 0.254472 0.967080i \(-0.418098\pi\)
0.625819 + 0.779969i \(0.284765\pi\)
\(500\) 0.509335 4.84600i 0.0227781 0.216720i
\(501\) 0 0
\(502\) −0.225138 0.250041i −0.0100484 0.0111599i
\(503\) 3.27815 + 10.0891i 0.146165 + 0.449850i 0.997159 0.0753254i \(-0.0239995\pi\)
−0.850994 + 0.525176i \(0.824000\pi\)
\(504\) 0 0
\(505\) −6.17856 −0.274942
\(506\) −0.0722927 0.147041i −0.00321380 0.00653676i
\(507\) 0 0
\(508\) 20.0656 + 8.93377i 0.890266 + 0.396372i
\(509\) 29.7551 33.0464i 1.31887 1.46476i 0.533399 0.845864i \(-0.320914\pi\)
0.785475 0.618894i \(-0.212419\pi\)
\(510\) 0 0
\(511\) −3.13414 + 1.39541i −0.138646 + 0.0617292i
\(512\) 16.5301 + 12.0098i 0.730534 + 0.530764i
\(513\) 0 0
\(514\) −1.95899 6.02915i −0.0864073 0.265934i
\(515\) −0.947394 9.01385i −0.0417472 0.397198i
\(516\) 0 0
\(517\) −0.404002 + 1.00911i −0.0177680 + 0.0443805i
\(518\) 2.10004 + 3.63738i 0.0922707 + 0.159817i
\(519\) 0 0
\(520\) −24.5661 5.22169i −1.07730 0.228986i
\(521\) −5.23819 + 16.1215i −0.229489 + 0.706296i 0.768315 + 0.640071i \(0.221095\pi\)
−0.997805 + 0.0662243i \(0.978905\pi\)
\(522\) 0 0
\(523\) −24.4438 17.7595i −1.06885 0.776567i −0.0931472 0.995652i \(-0.529693\pi\)
−0.975706 + 0.219085i \(0.929693\pi\)
\(524\) −20.0360 22.2523i −0.875277 0.972094i
\(525\) 0 0
\(526\) −7.59870 3.38316i −0.331319 0.147513i
\(527\) −1.02565 1.77648i −0.0446780 0.0773845i
\(528\) 0 0
\(529\) 11.4963 19.9123i 0.499841 0.865750i
\(530\) −3.40255 + 2.47210i −0.147797 + 0.107381i
\(531\) 0 0
\(532\) 3.81763 11.7495i 0.165515 0.509404i
\(533\) 20.9417 9.32386i 0.907087 0.403861i
\(534\) 0 0
\(535\) −35.2443 + 7.49141i −1.52374 + 0.323882i
\(536\) 16.5554 18.3867i 0.715086 0.794183i
\(537\) 0 0
\(538\) −0.141268 + 0.244683i −0.00609050 + 0.0105491i
\(539\) −18.0112 5.10310i −0.775799 0.219806i
\(540\) 0 0
\(541\) −9.57164 + 6.95421i −0.411517 + 0.298985i −0.774216 0.632922i \(-0.781855\pi\)
0.362699 + 0.931906i \(0.381855\pi\)
\(542\) 12.3996 + 2.63561i 0.532607 + 0.113209i
\(543\) 0 0
\(544\) 0.179148 1.70447i 0.00768089 0.0730788i
\(545\) 1.63309 15.5378i 0.0699539 0.665567i
\(546\) 0 0
\(547\) −2.49018 0.529304i −0.106472 0.0226314i 0.154367 0.988014i \(-0.450666\pi\)
−0.260840 + 0.965382i \(0.583999\pi\)
\(548\) 22.1084 16.0627i 0.944424 0.686164i
\(549\) 0 0
\(550\) −7.42425 2.10350i −0.316571 0.0896937i
\(551\) −24.5177 + 42.4659i −1.04449 + 1.80911i
\(552\) 0 0
\(553\) 6.92386 7.68972i 0.294432 0.327000i
\(554\) 1.62181 0.344727i 0.0689043 0.0146461i
\(555\) 0 0
\(556\) 18.1153 8.06545i 0.768260 0.342051i
\(557\) −2.98987 + 9.20189i −0.126685 + 0.389896i −0.994204 0.107507i \(-0.965713\pi\)
0.867519 + 0.497404i \(0.165713\pi\)
\(558\) 0 0
\(559\) −21.6599 + 15.7368i −0.916117 + 0.665598i
\(560\) −3.68748 + 6.38690i −0.155824 + 0.269896i
\(561\) 0 0
\(562\) −5.25175 9.09630i −0.221532 0.383704i
\(563\) 21.9134 + 9.75648i 0.923540 + 0.411187i 0.812720 0.582654i \(-0.197986\pi\)
0.110820 + 0.993840i \(0.464652\pi\)
\(564\) 0 0
\(565\) 38.6542 + 42.9298i 1.62619 + 1.80607i
\(566\) −9.60027 6.97501i −0.403530 0.293181i
\(567\) 0 0
\(568\) −5.70659 + 17.5631i −0.239443 + 0.736930i
\(569\) −36.7971 7.82146i −1.54261 0.327893i −0.643444 0.765493i \(-0.722495\pi\)
−0.899169 + 0.437601i \(0.855828\pi\)
\(570\) 0 0
\(571\) 7.37740 + 12.7780i 0.308735 + 0.534744i 0.978086 0.208202i \(-0.0667612\pi\)
−0.669351 + 0.742946i \(0.733428\pi\)
\(572\) −8.10485 + 20.2442i −0.338881 + 0.846451i
\(573\) 0 0
\(574\) 0.408508 + 3.88669i 0.0170508 + 0.162227i
\(575\) 0.106386 + 0.327424i 0.00443662 + 0.0136545i
\(576\) 0 0
\(577\) 18.0466 + 13.1116i 0.751289 + 0.545843i 0.896226 0.443598i \(-0.146298\pi\)
−0.144937 + 0.989441i \(0.546298\pi\)
\(578\) 8.92147 3.97210i 0.371084 0.165217i
\(579\) 0 0
\(580\) 25.7907 28.6435i 1.07090 1.18935i
\(581\) 5.27339 + 2.34787i 0.218777 + 0.0974059i
\(582\) 0 0
\(583\) 3.54519 + 7.21079i 0.146827 + 0.298640i
\(584\) 6.24181 0.258288
\(585\) 0 0
\(586\) 0.153568 + 0.472634i 0.00634384 + 0.0195243i
\(587\) 1.67294 + 1.85799i 0.0690496 + 0.0766873i 0.776680 0.629896i \(-0.216902\pi\)
−0.707630 + 0.706583i \(0.750236\pi\)
\(588\) 0 0
\(589\) −4.34610 + 41.3504i −0.179078 + 1.70381i
\(590\) −3.89880 + 0.828715i −0.160511 + 0.0341177i
\(591\) 0 0
\(592\) 1.37581 + 13.0900i 0.0565456 + 0.537995i
\(593\) 10.8953 0.447417 0.223708 0.974656i \(-0.428184\pi\)
0.223708 + 0.974656i \(0.428184\pi\)
\(594\) 0 0
\(595\) 1.09907 0.0450577
\(596\) 0.789236 + 7.50908i 0.0323284 + 0.307584i
\(597\) 0 0
\(598\) −0.190693 + 0.0405330i −0.00779800 + 0.00165752i
\(599\) −3.85063 + 36.6363i −0.157332 + 1.49692i 0.576225 + 0.817291i \(0.304525\pi\)
−0.733558 + 0.679627i \(0.762142\pi\)
\(600\) 0 0
\(601\) −10.3409 11.4848i −0.421815 0.468474i 0.494356 0.869259i \(-0.335404\pi\)
−0.916172 + 0.400786i \(0.868737\pi\)
\(602\) −1.41047 4.34099i −0.0574866 0.176925i
\(603\) 0 0
\(604\) 4.88321 0.198695
\(605\) −14.2996 + 29.7949i −0.581361 + 1.21134i
\(606\) 0 0
\(607\) −23.2743 10.3624i −0.944675 0.420596i −0.124186 0.992259i \(-0.539632\pi\)
−0.820489 + 0.571663i \(0.806299\pi\)
\(608\) −23.2447 + 25.8158i −0.942696 + 1.04697i
\(609\) 0 0
\(610\) −21.7067 + 9.66443i −0.878877 + 0.391301i
\(611\) 1.04630 + 0.760183i 0.0423289 + 0.0307537i
\(612\) 0 0
\(613\) −11.6728 35.9252i −0.471461 1.45101i −0.850672 0.525697i \(-0.823805\pi\)
0.379211 0.925310i \(-0.376195\pi\)
\(614\) 0.210740 + 2.00506i 0.00850478 + 0.0809175i
\(615\) 0 0
\(616\) −6.28298 5.23830i −0.253148 0.211057i
\(617\) 20.9464 + 36.2802i 0.843271 + 1.46059i 0.887115 + 0.461549i \(0.152706\pi\)
−0.0438437 + 0.999038i \(0.513960\pi\)
\(618\) 0 0
\(619\) 5.85872 + 1.24531i 0.235482 + 0.0500532i 0.324141 0.946009i \(-0.394925\pi\)
−0.0886590 + 0.996062i \(0.528258\pi\)
\(620\) 10.0993 31.0823i 0.405596 1.24830i
\(621\) 0 0
\(622\) −5.06974 3.68338i −0.203278 0.147690i
\(623\) 1.65837 + 1.84181i 0.0664413 + 0.0737905i
\(624\) 0 0
\(625\) −26.4193 11.7626i −1.05677 0.470505i
\(626\) −8.17057 14.1518i −0.326562 0.565621i
\(627\) 0 0
\(628\) −15.0399 + 26.0498i −0.600157 + 1.03950i
\(629\) 1.58690 1.15295i 0.0632739 0.0459712i
\(630\) 0 0
\(631\) −6.64368 + 20.4471i −0.264481 + 0.813988i 0.727332 + 0.686286i \(0.240760\pi\)
−0.991813 + 0.127702i \(0.959240\pi\)
\(632\) −17.1985 + 7.65725i −0.684118 + 0.304589i
\(633\) 0 0
\(634\) 0.628784 0.133652i 0.0249722 0.00530801i
\(635\) 26.5024 29.4338i 1.05171 1.16805i
\(636\) 0 0
\(637\) −11.1368 + 19.2895i −0.441256 + 0.764278i
\(638\) 9.12129 + 11.5990i 0.361115 + 0.459208i
\(639\) 0 0
\(640\) 28.0127 20.3525i 1.10730 0.804501i
\(641\) 12.5565 + 2.66896i 0.495951 + 0.105418i 0.449095 0.893484i \(-0.351746\pi\)
0.0468561 + 0.998902i \(0.485080\pi\)
\(642\) 0 0
\(643\) −2.96396 + 28.2002i −0.116887 + 1.11211i 0.766103 + 0.642718i \(0.222193\pi\)
−0.882990 + 0.469391i \(0.844473\pi\)
\(644\) −0.0173374 + 0.164954i −0.000683189 + 0.00650011i
\(645\) 0 0
\(646\) 1.13087 + 0.240374i 0.0444936 + 0.00945741i
\(647\) −14.1536 + 10.2832i −0.556436 + 0.404274i −0.830153 0.557536i \(-0.811747\pi\)
0.273717 + 0.961810i \(0.411747\pi\)
\(648\) 0 0
\(649\) 0.289810 + 7.60956i 0.0113760 + 0.298701i
\(650\) −4.59060 + 7.95116i −0.180058 + 0.311870i
\(651\) 0 0
\(652\) 6.49236 7.21050i 0.254261 0.282385i
\(653\) −28.6619 + 6.09227i −1.12163 + 0.238409i −0.731159 0.682207i \(-0.761020\pi\)
−0.390468 + 0.920617i \(0.627687\pi\)
\(654\) 0 0
\(655\) −49.3268 + 21.9617i −1.92736 + 0.858114i
\(656\) −3.78455 + 11.6477i −0.147762 + 0.454764i
\(657\) 0 0
\(658\) −0.178378 + 0.129599i −0.00695388 + 0.00505229i
\(659\) 13.7935 23.8911i 0.537319 0.930664i −0.461728 0.887021i \(-0.652771\pi\)
0.999047 0.0436422i \(-0.0138961\pi\)
\(660\) 0 0
\(661\) −14.8776 25.7688i −0.578672 1.00229i −0.995632 0.0933649i \(-0.970238\pi\)
0.416960 0.908925i \(-0.363096\pi\)
\(662\) 6.53398 + 2.90912i 0.253950 + 0.113066i
\(663\) 0 0
\(664\) −7.02738 7.80469i −0.272715 0.302881i
\(665\) −18.0228 13.0943i −0.698893 0.507775i
\(666\) 0 0
\(667\) 0.203437 0.626115i 0.00787711 0.0242433i
\(668\) 8.18403 + 1.73957i 0.316650 + 0.0673060i
\(669\) 0 0
\(670\) −10.1380 17.5596i −0.391666 0.678385i
\(671\) 11.1213 + 44.0120i 0.429331 + 1.69906i
\(672\) 0 0
\(673\) −1.00908 9.60079i −0.0388973 0.370083i −0.996604 0.0823384i \(-0.973761\pi\)
0.957707 0.287745i \(-0.0929055\pi\)
\(674\) −2.40577 7.40418i −0.0926666 0.285198i
\(675\) 0 0
\(676\) 3.46724 + 2.51910i 0.133355 + 0.0968883i
\(677\) 0.0896326 0.0399070i 0.00344486 0.00153375i −0.405013 0.914311i \(-0.632733\pi\)
0.408458 + 0.912777i \(0.366067\pi\)
\(678\) 0 0
\(679\) 0.0692131 0.0768689i 0.00265615 0.00294996i
\(680\) −1.82675 0.813323i −0.0700528 0.0311895i
\(681\) 0 0
\(682\) 11.0657 + 5.83898i 0.423729 + 0.223586i
\(683\) −30.5246 −1.16799 −0.583996 0.811756i \(-0.698512\pi\)
−0.583996 + 0.811756i \(0.698512\pi\)
\(684\) 0 0
\(685\) −15.2277 46.8660i −0.581820 1.79066i
\(686\) −5.69202 6.32163i −0.217323 0.241361i
\(687\) 0 0
\(688\) 1.49514 14.2253i 0.0570018 0.542336i
\(689\) 9.35145 1.98771i 0.356262 0.0757258i
\(690\) 0 0
\(691\) −3.42871 32.6220i −0.130434 1.24100i −0.842426 0.538812i \(-0.818873\pi\)
0.711992 0.702188i \(-0.247793\pi\)
\(692\) −25.9748 −0.987413
\(693\) 0 0
\(694\) 5.62741 0.213614
\(695\) −3.73768 35.5616i −0.141778 1.34893i
\(696\) 0 0
\(697\) 1.78527 0.379471i 0.0676220 0.0143735i
\(698\) −0.268178 + 2.55154i −0.0101507 + 0.0965773i
\(699\) 0 0
\(700\) 5.22673 + 5.80487i 0.197552 + 0.219404i
\(701\) 2.70365 + 8.32098i 0.102115 + 0.314279i 0.989043 0.147630i \(-0.0471646\pi\)
−0.886927 + 0.461909i \(0.847165\pi\)
\(702\) 0 0
\(703\) −39.7584 −1.49952
\(704\) −1.55793 3.16878i −0.0587168 0.119428i
\(705\) 0 0
\(706\) 17.1678 + 7.64360i 0.646119 + 0.287671i
\(707\) −1.60217 + 1.77939i −0.0602558 + 0.0669208i
\(708\) 0 0
\(709\) 24.4610 10.8907i 0.918651 0.409010i 0.107740 0.994179i \(-0.465639\pi\)
0.810911 + 0.585169i \(0.198972\pi\)
\(710\) 12.2435 + 8.89542i 0.459490 + 0.333839i
\(711\) 0 0
\(712\) −1.39340 4.28845i −0.0522199 0.160716i
\(713\) −0.0583495 0.555159i −0.00218521 0.0207909i
\(714\) 0 0
\(715\) 30.2020 + 25.1803i 1.12949 + 0.941690i
\(716\) −5.87217 10.1709i −0.219453 0.380105i
\(717\) 0 0
\(718\) 15.6953 + 3.33613i 0.585742 + 0.124503i
\(719\) 4.63672 14.2703i 0.172920 0.532194i −0.826612 0.562772i \(-0.809735\pi\)
0.999532 + 0.0305782i \(0.00973486\pi\)
\(720\) 0 0
\(721\) −2.84161 2.06455i −0.105827 0.0768879i
\(722\) −8.33438 9.25627i −0.310174 0.344483i
\(723\) 0 0
\(724\) −3.80172 1.69263i −0.141290 0.0629062i
\(725\) −15.5020 26.8502i −0.575730 0.997193i
\(726\) 0 0
\(727\) −13.7663 + 23.8438i −0.510562 + 0.884319i 0.489363 + 0.872080i \(0.337229\pi\)
−0.999925 + 0.0122391i \(0.996104\pi\)
\(728\) −7.87410 + 5.72087i −0.291834 + 0.212029i
\(729\) 0 0
\(730\) 1.58069 4.86486i 0.0585039 0.180057i
\(731\) −1.94736 + 0.867021i −0.0720257 + 0.0320679i
\(732\) 0 0
\(733\) −46.6964 + 9.92564i −1.72477 + 0.366612i −0.960500 0.278281i \(-0.910235\pi\)
−0.764273 + 0.644893i \(0.776902\pi\)
\(734\) −0.453208 + 0.503339i −0.0167282 + 0.0185786i
\(735\) 0 0
\(736\) 0.233195 0.403906i 0.00859570 0.0148882i
\(737\) −36.3593 + 13.3640i −1.33931 + 0.492267i
\(738\) 0 0
\(739\) −1.20421 + 0.874910i −0.0442976 + 0.0321841i −0.609714 0.792622i \(-0.708716\pi\)
0.565416 + 0.824806i \(0.308716\pi\)
\(740\) 30.5686 + 6.49755i 1.12372 + 0.238855i
\(741\) 0 0
\(742\) −0.170370 + 1.62096i −0.00625446 + 0.0595072i
\(743\) −1.89825 + 18.0607i −0.0696402 + 0.662582i 0.902901 + 0.429850i \(0.141433\pi\)
−0.972541 + 0.232733i \(0.925233\pi\)
\(744\) 0 0
\(745\) 13.3177 + 2.83076i 0.487922 + 0.103711i
\(746\) 10.1751 7.39264i 0.372537 0.270664i
\(747\) 0 0
\(748\) −0.966316 + 1.44243i −0.0353320 + 0.0527406i
\(749\) −6.98177 + 12.0928i −0.255108 + 0.441860i
\(750\) 0 0
\(751\) −2.94060 + 3.26586i −0.107304 + 0.119173i −0.794404 0.607390i \(-0.792217\pi\)
0.687100 + 0.726563i \(0.258883\pi\)
\(752\) −0.675855 + 0.143657i −0.0246459 + 0.00523865i
\(753\) 0 0
\(754\) 16.0389 7.14096i 0.584101 0.260058i
\(755\) 2.72107 8.37459i 0.0990299 0.304783i
\(756\) 0 0
\(757\) 11.1369 8.09140i 0.404776 0.294087i −0.366708 0.930336i \(-0.619515\pi\)
0.771483 + 0.636249i \(0.219515\pi\)
\(758\) −4.69382 + 8.12993i −0.170487 + 0.295292i
\(759\) 0 0
\(760\) 20.2655 + 35.1008i 0.735105 + 1.27324i
\(761\) 28.4168 + 12.6520i 1.03011 + 0.458634i 0.850984 0.525192i \(-0.176006\pi\)
0.179126 + 0.983826i \(0.442673\pi\)
\(762\) 0 0
\(763\) −4.05133 4.49945i −0.146668 0.162891i
\(764\) 15.9365 + 11.5786i 0.576564 + 0.418898i
\(765\) 0 0
\(766\) 1.10585 3.40344i 0.0399558 0.122971i
\(767\) 8.86254 + 1.88379i 0.320008 + 0.0680197i
\(768\) 0 0
\(769\) −10.9677 18.9966i −0.395504 0.685034i 0.597661 0.801749i \(-0.296097\pi\)
−0.993165 + 0.116715i \(0.962764\pi\)
\(770\) −5.67384 + 3.57039i −0.204471 + 0.128668i
\(771\) 0 0
\(772\) 1.17499 + 11.1793i 0.0422887 + 0.402350i
\(773\) 3.92965 + 12.0942i 0.141340 + 0.434999i 0.996522 0.0833281i \(-0.0265549\pi\)
−0.855182 + 0.518327i \(0.826555\pi\)
\(774\) 0 0
\(775\) −21.2682 15.4522i −0.763976 0.555061i
\(776\) −0.171921 + 0.0765443i −0.00617162 + 0.00274778i
\(777\) 0 0
\(778\) −0.279617 + 0.310546i −0.0100248 + 0.0111336i
\(779\) −33.7961 15.0470i −1.21087 0.539114i
\(780\) 0 0
\(781\) 20.7348 20.1504i 0.741950 0.721038i
\(782\) −0.0155220 −0.000555064
\(783\) 0 0
\(784\) −3.67724 11.3174i −0.131330 0.404193i
\(785\) 36.2942 + 40.3088i 1.29540 + 1.43868i
\(786\) 0 0
\(787\) 1.80433 17.1671i 0.0643176 0.611941i −0.914127 0.405429i \(-0.867122\pi\)
0.978444 0.206512i \(-0.0662112\pi\)
\(788\) 33.6496 7.15244i 1.19872 0.254795i
\(789\) 0 0
\(790\) 1.61268 + 15.3436i 0.0573765 + 0.545901i
\(791\) 22.3870 0.795991
\(792\) 0 0
\(793\) 54.0120 1.91802
\(794\) 0.247023 + 2.35027i 0.00876652 + 0.0834079i
\(795\) 0 0
\(796\) −21.6528 + 4.60245i −0.767463 + 0.163129i
\(797\) 3.67956 35.0087i 0.130337 1.24007i −0.712411 0.701762i \(-0.752397\pi\)
0.842748 0.538309i \(-0.180936\pi\)
\(798\) 0 0
\(799\) 0.0689013 + 0.0765227i 0.00243755 + 0.00270718i
\(800\) −6.78739 20.8894i −0.239970 0.738553i
\(801\) 0 0
\(802\) −3.26248 −0.115202
\(803\) −8.64318 4.56069i −0.305011 0.160943i
\(804\) 0 0
\(805\) 0.273232 + 0.121651i 0.00963016 + 0.00428762i
\(806\) 9.96114 11.0630i 0.350866 0.389677i
\(807\) 0 0
\(808\) 3.97970 1.77188i 0.140005 0.0623344i
\(809\) −15.4367 11.2154i −0.542725 0.394313i 0.282371 0.959305i \(-0.408879\pi\)
−0.825096 + 0.564992i \(0.808879\pi\)
\(810\) 0 0
\(811\) −9.59769 29.5387i −0.337020 1.03724i −0.965718 0.259593i \(-0.916412\pi\)
0.628698 0.777650i \(-0.283588\pi\)
\(812\) −1.56134 14.8551i −0.0547923 0.521314i
\(813\) 0 0
\(814\) −4.44678 + 11.1071i −0.155860 + 0.389303i
\(815\) −8.74810 15.1522i −0.306433 0.530757i
\(816\) 0 0
\(817\) 42.2627 + 8.98321i 1.47858 + 0.314283i
\(818\) −1.68711 + 5.19240i −0.0589885 + 0.181548i
\(819\) 0 0
\(820\) 23.5253 + 17.0922i 0.821540 + 0.596884i
\(821\) −22.7561 25.2732i −0.794195 0.882042i 0.201037 0.979584i \(-0.435569\pi\)
−0.995231 + 0.0975412i \(0.968902\pi\)
\(822\) 0 0
\(823\) 14.2111 + 6.32720i 0.495368 + 0.220552i 0.639186 0.769052i \(-0.279271\pi\)
−0.143818 + 0.989604i \(0.545938\pi\)
\(824\) 3.19521 + 5.53426i 0.111310 + 0.192795i
\(825\) 0 0
\(826\) −0.772337 + 1.33773i −0.0268730 + 0.0465455i
\(827\) 12.9667 9.42084i 0.450895 0.327595i −0.339054 0.940767i \(-0.610107\pi\)
0.789949 + 0.613172i \(0.210107\pi\)
\(828\) 0 0
\(829\) 5.90205 18.1646i 0.204987 0.630884i −0.794727 0.606967i \(-0.792386\pi\)
0.999714 0.0239173i \(-0.00761382\pi\)
\(830\) −7.86260 + 3.50065i −0.272915 + 0.121509i
\(831\) 0 0
\(832\) −4.10949 + 0.873499i −0.142471 + 0.0302831i
\(833\) −1.18664 + 1.31790i −0.0411146 + 0.0456624i
\(834\) 0 0
\(835\) 7.54371 13.0661i 0.261061 0.452171i
\(836\) 33.0308 12.1406i 1.14240 0.419891i
\(837\) 0 0
\(838\) −0.0708501 + 0.0514756i −0.00244747 + 0.00177819i
\(839\) 1.45541 + 0.309356i 0.0502462 + 0.0106802i 0.232966 0.972485i \(-0.425157\pi\)
−0.182720 + 0.983165i \(0.558490\pi\)
\(840\) 0 0
\(841\) −3.16588 + 30.1213i −0.109168 + 1.03867i
\(842\) 1.02535 9.75552i 0.0353358 0.336198i
\(843\) 0 0
\(844\) −13.6001 2.89079i −0.468134 0.0995049i
\(845\) 6.25224 4.54252i 0.215084 0.156267i
\(846\) 0 0
\(847\) 4.87274 + 11.8444i 0.167429 + 0.406977i
\(848\) −2.55384 + 4.42338i −0.0876993 + 0.151900i
\(849\) 0 0
\(850\) −0.489134 + 0.543238i −0.0167772 + 0.0186329i
\(851\) 0.522121 0.110980i 0.0178981 0.00380435i
\(852\) 0 0
\(853\) 34.5339 15.3755i 1.18242 0.526447i 0.281132 0.959669i \(-0.409290\pi\)
0.901287 + 0.433222i \(0.142624\pi\)
\(854\) −2.84548 + 8.75750i −0.0973704 + 0.299675i
\(855\) 0 0
\(856\) 20.5530 14.9326i 0.702487 0.510387i
\(857\) 9.91348 17.1706i 0.338638 0.586538i −0.645539 0.763727i \(-0.723367\pi\)
0.984177 + 0.177189i \(0.0567005\pi\)
\(858\) 0 0
\(859\) 7.85764 + 13.6098i 0.268099 + 0.464362i 0.968371 0.249515i \(-0.0802711\pi\)
−0.700272 + 0.713876i \(0.746938\pi\)
\(860\) −31.0259 13.8136i −1.05798 0.471041i
\(861\) 0 0
\(862\) −9.80860 10.8936i −0.334082 0.371036i
\(863\) 6.57548 + 4.77736i 0.223832 + 0.162623i 0.694050 0.719927i \(-0.255825\pi\)
−0.470218 + 0.882550i \(0.655825\pi\)
\(864\) 0 0
\(865\) −14.4739 + 44.5462i −0.492128 + 1.51462i
\(866\) 9.34517 + 1.98638i 0.317562 + 0.0674998i
\(867\) 0 0
\(868\) −6.33269 10.9685i −0.214945 0.372296i
\(869\) 29.4100 + 1.96318i 0.997667 + 0.0665963i
\(870\) 0 0
\(871\) 4.81776 + 45.8379i 0.163244 + 1.55316i
\(872\) 3.40401 + 10.4765i 0.115274 + 0.354778i
\(873\) 0 0
\(874\) 0.254531 + 0.184928i 0.00860964 + 0.00625527i
\(875\) −3.11073 + 1.38498i −0.105162 + 0.0468210i
\(876\) 0 0
\(877\) −1.69526 + 1.88278i −0.0572449 + 0.0635769i −0.771087 0.636730i \(-0.780287\pi\)
0.713842 + 0.700307i \(0.246953\pi\)
\(878\) 20.7138 + 9.22239i 0.699058 + 0.311241i
\(879\) 0 0
\(880\) −20.7942 + 2.98947i −0.700971 + 0.100775i
\(881\) 47.4109 1.59731 0.798657 0.601786i \(-0.205544\pi\)
0.798657 + 0.601786i \(0.205544\pi\)
\(882\) 0 0
\(883\) 8.19295 + 25.2153i 0.275715 + 0.848563i 0.989029 + 0.147719i \(0.0471930\pi\)
−0.713315 + 0.700844i \(0.752807\pi\)
\(884\) 1.38226 + 1.53515i 0.0464904 + 0.0516328i
\(885\) 0 0
\(886\) −1.94417 + 18.4975i −0.0653156 + 0.621436i
\(887\) −46.7841 + 9.94428i −1.57086 + 0.333896i −0.909347 0.416039i \(-0.863418\pi\)
−0.661511 + 0.749935i \(0.730085\pi\)
\(888\) 0 0
\(889\) −1.60442 15.2651i −0.0538106 0.511974i
\(890\) −3.69528 −0.123866
\(891\) 0 0
\(892\) 0.639221 0.0214027
\(893\) −0.218166 2.07571i −0.00730066 0.0694612i
\(894\) 0 0
\(895\) −20.7150 + 4.40311i −0.692427 + 0.147180i
\(896\) 1.40263 13.3451i 0.0468586 0.445830i
\(897\) 0 0
\(898\) −9.99221 11.0975i −0.333445 0.370328i
\(899\) 15.5345 + 47.8104i 0.518106 + 1.59457i
\(900\) 0 0
\(901\) 0.761187 0.0253588
\(902\) −7.98352 + 7.75850i −0.265822 + 0.258330i
\(903\) 0 0
\(904\) −37.2091 16.5666i −1.23756 0.550995i
\(905\) −5.02126 + 5.57667i −0.166912 + 0.185375i
\(906\) 0 0
\(907\) 43.3554 19.3030i 1.43959 0.640947i 0.469333 0.883021i \(-0.344494\pi\)
0.970258 + 0.242074i \(0.0778277\pi\)
\(908\) −24.2817 17.6417i −0.805815 0.585459i
\(909\) 0 0
\(910\) 2.46479 + 7.58583i 0.0817068 + 0.251468i
\(911\) −2.97198 28.2765i −0.0984660 0.936841i −0.926533 0.376213i \(-0.877226\pi\)
0.828067 0.560629i \(-0.189440\pi\)
\(912\) 0 0
\(913\) 4.02834 + 15.9420i 0.133319 + 0.527604i
\(914\) −3.67381 6.36322i −0.121519 0.210477i
\(915\) 0 0
\(916\) 21.8837 + 4.65153i 0.723059 + 0.153691i
\(917\) −6.46615 + 19.9008i −0.213531 + 0.657181i
\(918\) 0 0
\(919\) −31.0442 22.5550i −1.02406 0.744020i −0.0569449 0.998377i \(-0.518136\pi\)
−0.967110 + 0.254358i \(0.918136\pi\)
\(920\) −0.364112 0.404387i −0.0120044 0.0133322i
\(921\) 0 0
\(922\) −10.0408 4.47044i −0.330675 0.147226i
\(923\) −17.2007 29.7924i −0.566167 0.980629i
\(924\) 0 0
\(925\) 12.5692 21.7704i 0.413272 0.715808i
\(926\) −10.6893 + 7.76621i −0.351271 + 0.255214i
\(927\) 0 0
\(928\) −12.9791 + 39.9457i −0.426061 + 1.31128i
\(929\) −12.2302 + 5.44526i −0.401261 + 0.178653i −0.597437 0.801916i \(-0.703814\pi\)
0.196176 + 0.980569i \(0.437148\pi\)
\(930\) 0 0
\(931\) 35.1600 7.47348i 1.15232 0.244934i
\(932\) −3.75669 + 4.17223i −0.123055 + 0.136666i
\(933\) 0 0
\(934\) −4.60021 + 7.96779i −0.150523 + 0.260714i
\(935\) 1.93528 + 2.46098i 0.0632905 + 0.0804826i
\(936\) 0 0
\(937\) 19.9588 14.5010i 0.652027 0.473725i −0.211934 0.977284i \(-0.567976\pi\)
0.863961 + 0.503559i \(0.167976\pi\)
\(938\) −7.68596 1.63370i −0.250956 0.0533422i
\(939\) 0 0
\(940\) −0.171486 + 1.63158i −0.00559327 + 0.0532164i
\(941\) 0.867827 8.25682i 0.0282903 0.269165i −0.971229 0.238149i \(-0.923459\pi\)
0.999519 0.0310154i \(-0.00987409\pi\)
\(942\) 0 0
\(943\) 0.485823 + 0.103265i 0.0158206 + 0.00336277i
\(944\) −3.91616 + 2.84526i −0.127460 + 0.0926053i
\(945\) 0 0
\(946\) 7.23646 10.8020i 0.235278 0.351202i
\(947\) 18.9748 32.8653i 0.616598 1.06798i −0.373503 0.927629i \(-0.621844\pi\)
0.990102 0.140351i \(-0.0448231\pi\)
\(948\) 0 0
\(949\) −7.78041 + 8.64102i −0.252563 + 0.280499i
\(950\) 14.4930 3.08058i 0.470214 0.0999472i
\(951\) 0 0
\(952\) −0.707930 + 0.315191i −0.0229442 + 0.0102154i
\(953\) 15.0400 46.2884i 0.487194 1.49943i −0.341583 0.939852i \(-0.610963\pi\)
0.828778 0.559578i \(-0.189037\pi\)
\(954\) 0 0
\(955\) 28.7373 20.8789i 0.929918 0.675625i
\(956\) 19.3245 33.4710i 0.624998 1.08253i
\(957\) 0 0
\(958\) 4.73516 + 8.20154i 0.152986 + 0.264980i
\(959\) −17.4459 7.76740i −0.563356 0.250822i
\(960\) 0 0
\(961\) 7.77911 + 8.63958i 0.250939 + 0.278696i
\(962\) 11.5165 + 8.36721i 0.371306 + 0.269770i
\(963\) 0 0
\(964\) −7.80746 + 24.0289i −0.251461 + 0.773918i
\(965\) 19.8269 + 4.21434i 0.638250 + 0.135664i
\(966\) 0 0
\(967\) −5.48901 9.50724i −0.176515 0.305732i 0.764170 0.645015i \(-0.223149\pi\)
−0.940684 + 0.339283i \(0.889816\pi\)
\(968\) 0.666025 23.2922i 0.0214069 0.748639i
\(969\) 0 0
\(970\) 0.0161208 + 0.153380i 0.000517609 + 0.00492472i
\(971\) −4.03687 12.4242i −0.129549 0.398712i 0.865153 0.501508i \(-0.167221\pi\)
−0.994702 + 0.102796i \(0.967221\pi\)
\(972\) 0 0
\(973\) −11.2108 8.14510i −0.359401 0.261120i
\(974\) −12.0280 + 5.35523i −0.385403 + 0.171592i
\(975\) 0 0
\(976\) −19.3086 + 21.4444i −0.618053 + 0.686418i
\(977\) 10.1187 + 4.50514i 0.323726 + 0.144132i 0.562164 0.827025i \(-0.309969\pi\)
−0.238438 + 0.971158i \(0.576635\pi\)
\(978\) 0 0
\(979\) −1.20395 + 6.95643i −0.0384785 + 0.222328i
\(980\) −28.2544 −0.902554
\(981\) 0 0
\(982\) −7.79262 23.9832i −0.248673 0.765336i
\(983\) 17.6861 + 19.6424i 0.564100 + 0.626496i 0.955949 0.293533i \(-0.0948312\pi\)
−0.391849 + 0.920029i \(0.628165\pi\)
\(984\) 0 0
\(985\) 6.48429 61.6939i 0.206607 1.96573i
\(986\) 1.36730 0.290629i 0.0435438 0.00925552i
\(987\) 0 0
\(988\) −4.37673 41.6418i −0.139242 1.32480i
\(989\) −0.580083 −0.0184456
\(990\) 0 0
\(991\) −18.9911 −0.603272 −0.301636 0.953423i \(-0.597533\pi\)
−0.301636 + 0.953423i \(0.597533\pi\)
\(992\) 3.72266 + 35.4188i 0.118195 + 1.12455i
\(993\) 0 0
\(994\) 5.73671 1.21937i 0.181957 0.0386762i
\(995\) −4.17250 + 39.6987i −0.132277 + 1.25853i
\(996\) 0 0
\(997\) 14.7966 + 16.4333i 0.468613 + 0.520447i 0.930401 0.366543i \(-0.119459\pi\)
−0.461788 + 0.886990i \(0.652792\pi\)
\(998\) 3.58956 + 11.0475i 0.113625 + 0.349703i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.289.6 72
3.2 odd 2 99.2.m.b.25.4 yes 72
9.2 odd 6 891.2.f.f.487.4 36
9.4 even 3 inner 297.2.n.b.91.4 72
9.5 odd 6 99.2.m.b.58.6 yes 72
9.7 even 3 891.2.f.e.487.6 36
11.4 even 5 inner 297.2.n.b.235.4 72
33.2 even 10 1089.2.e.o.727.11 36
33.20 odd 10 1089.2.e.p.727.8 36
33.26 odd 10 99.2.m.b.70.6 yes 72
99.2 even 30 9801.2.a.co.1.8 18
99.4 even 15 inner 297.2.n.b.37.6 72
99.20 odd 30 9801.2.a.cm.1.11 18
99.59 odd 30 99.2.m.b.4.4 72
99.68 even 30 1089.2.e.o.364.11 36
99.70 even 15 891.2.f.e.730.6 36
99.79 odd 30 9801.2.a.cn.1.11 18
99.86 odd 30 1089.2.e.p.364.8 36
99.92 odd 30 891.2.f.f.730.4 36
99.97 even 15 9801.2.a.cp.1.8 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.4 72 99.59 odd 30
99.2.m.b.25.4 yes 72 3.2 odd 2
99.2.m.b.58.6 yes 72 9.5 odd 6
99.2.m.b.70.6 yes 72 33.26 odd 10
297.2.n.b.37.6 72 99.4 even 15 inner
297.2.n.b.91.4 72 9.4 even 3 inner
297.2.n.b.235.4 72 11.4 even 5 inner
297.2.n.b.289.6 72 1.1 even 1 trivial
891.2.f.e.487.6 36 9.7 even 3
891.2.f.e.730.6 36 99.70 even 15
891.2.f.f.487.4 36 9.2 odd 6
891.2.f.f.730.4 36 99.92 odd 30
1089.2.e.o.364.11 36 99.68 even 30
1089.2.e.o.727.11 36 33.2 even 10
1089.2.e.p.364.8 36 99.86 odd 30
1089.2.e.p.727.8 36 33.20 odd 10
9801.2.a.cm.1.11 18 99.20 odd 30
9801.2.a.cn.1.11 18 99.79 odd 30
9801.2.a.co.1.8 18 99.2 even 30
9801.2.a.cp.1.8 18 99.97 even 15