Properties

Label 297.2.n.b.280.5
Level $297$
Weight $2$
Character 297.280
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(37,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 280.5
Character \(\chi\) \(=\) 297.280
Dual form 297.2.n.b.262.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190802 + 0.211907i) q^{2} +(0.200558 + 1.90818i) q^{4} +(-1.81250 - 2.01298i) q^{5} +(-3.72118 - 1.65677i) q^{7} +(-0.904002 - 0.656796i) q^{8} +0.772391 q^{10} +(-1.48164 + 2.96728i) q^{11} +(-3.76680 - 0.800659i) q^{13} +(1.06109 - 0.472427i) q^{14} +(-3.44186 + 0.731590i) q^{16} +(1.33502 - 4.10876i) q^{17} +(1.31246 + 0.953561i) q^{19} +(3.47762 - 3.86229i) q^{20} +(-0.346086 - 0.880131i) q^{22} +(-0.932117 + 1.61447i) q^{23} +(-0.244308 + 2.32444i) q^{25} +(0.888377 - 0.645443i) q^{26} +(2.41511 - 7.43295i) q^{28} +(-3.24614 - 1.44528i) q^{29} +(4.75829 + 1.01141i) q^{31} +(1.61909 - 2.80435i) q^{32} +(0.615950 + 1.06686i) q^{34} +(3.40956 + 10.4936i) q^{35} +(-6.26542 + 4.55210i) q^{37} +(-0.452486 + 0.0961788i) q^{38} +(0.316383 + 3.01018i) q^{40} +(-6.27802 + 2.79515i) q^{41} +(-0.492496 - 0.853027i) q^{43} +(-5.95925 - 2.23213i) q^{44} +(-0.164268 - 0.505566i) q^{46} +(0.613200 - 5.83421i) q^{47} +(6.41834 + 7.12829i) q^{49} +(-0.445949 - 0.495276i) q^{50} +(0.772339 - 7.34832i) q^{52} +(0.485721 + 1.49489i) q^{53} +(8.65855 - 2.39567i) q^{55} +(2.27579 + 3.94178i) q^{56} +(0.925632 - 0.412118i) q^{58} +(1.18770 + 11.3002i) q^{59} +(8.41938 - 1.78960i) q^{61} +(-1.12221 + 0.815335i) q^{62} +(-1.88937 - 5.81490i) q^{64} +(5.21561 + 9.03370i) q^{65} +(0.870282 - 1.50737i) q^{67} +(8.10800 + 1.72341i) q^{68} +(-2.87420 - 1.27968i) q^{70} +(1.77418 - 5.46036i) q^{71} +(3.27379 - 2.37855i) q^{73} +(0.230833 - 2.19623i) q^{74} +(-1.55634 + 2.69566i) q^{76} +(10.4296 - 8.58702i) q^{77} +(-2.86398 + 3.18077i) q^{79} +(7.71104 + 5.60240i) q^{80} +(0.605544 - 1.86367i) q^{82} +(-6.35814 + 1.35146i) q^{83} +(-10.6906 + 4.75975i) q^{85} +(0.274731 + 0.0583959i) q^{86} +(3.28830 - 1.70929i) q^{88} -9.26243 q^{89} +(12.6904 + 9.22014i) q^{91} +(-3.26765 - 1.45485i) q^{92} +(1.11931 + 1.24312i) q^{94} +(-0.459336 - 4.37029i) q^{95} +(-4.96005 + 5.50870i) q^{97} -2.73516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190802 + 0.211907i −0.134917 + 0.149841i −0.806817 0.590801i \(-0.798812\pi\)
0.671900 + 0.740642i \(0.265478\pi\)
\(3\) 0 0
\(4\) 0.200558 + 1.90818i 0.100279 + 0.954090i
\(5\) −1.81250 2.01298i −0.810573 0.900233i 0.186034 0.982543i \(-0.440437\pi\)
−0.996607 + 0.0823107i \(0.973770\pi\)
\(6\) 0 0
\(7\) −3.72118 1.65677i −1.40647 0.626202i −0.443616 0.896217i \(-0.646305\pi\)
−0.962856 + 0.270015i \(0.912971\pi\)
\(8\) −0.904002 0.656796i −0.319613 0.232212i
\(9\) 0 0
\(10\) 0.772391 0.244251
\(11\) −1.48164 + 2.96728i −0.446732 + 0.894668i
\(12\) 0 0
\(13\) −3.76680 0.800659i −1.04472 0.222063i −0.346580 0.938021i \(-0.612657\pi\)
−0.698144 + 0.715958i \(0.745990\pi\)
\(14\) 1.06109 0.472427i 0.283588 0.126261i
\(15\) 0 0
\(16\) −3.44186 + 0.731590i −0.860465 + 0.182898i
\(17\) 1.33502 4.10876i 0.323789 0.996520i −0.648195 0.761474i \(-0.724476\pi\)
0.971984 0.235046i \(-0.0755241\pi\)
\(18\) 0 0
\(19\) 1.31246 + 0.953561i 0.301100 + 0.218762i 0.728068 0.685505i \(-0.240418\pi\)
−0.426968 + 0.904267i \(0.640418\pi\)
\(20\) 3.47762 3.86229i 0.777619 0.863634i
\(21\) 0 0
\(22\) −0.346086 0.880131i −0.0737859 0.187644i
\(23\) −0.932117 + 1.61447i −0.194360 + 0.336641i −0.946691 0.322145i \(-0.895596\pi\)
0.752331 + 0.658786i \(0.228930\pi\)
\(24\) 0 0
\(25\) −0.244308 + 2.32444i −0.0488616 + 0.464887i
\(26\) 0.888377 0.645443i 0.174225 0.126582i
\(27\) 0 0
\(28\) 2.41511 7.43295i 0.456413 1.40470i
\(29\) −3.24614 1.44528i −0.602793 0.268381i 0.0825663 0.996586i \(-0.473688\pi\)
−0.685360 + 0.728205i \(0.740355\pi\)
\(30\) 0 0
\(31\) 4.75829 + 1.01141i 0.854614 + 0.181654i 0.614330 0.789049i \(-0.289426\pi\)
0.240283 + 0.970703i \(0.422760\pi\)
\(32\) 1.61909 2.80435i 0.286218 0.495744i
\(33\) 0 0
\(34\) 0.615950 + 1.06686i 0.105634 + 0.182964i
\(35\) 3.40956 + 10.4936i 0.576321 + 1.77374i
\(36\) 0 0
\(37\) −6.26542 + 4.55210i −1.03003 + 0.748360i −0.968314 0.249734i \(-0.919657\pi\)
−0.0617145 + 0.998094i \(0.519657\pi\)
\(38\) −0.452486 + 0.0961788i −0.0734029 + 0.0156023i
\(39\) 0 0
\(40\) 0.316383 + 3.01018i 0.0500245 + 0.475951i
\(41\) −6.27802 + 2.79515i −0.980462 + 0.436530i −0.833444 0.552604i \(-0.813634\pi\)
−0.147018 + 0.989134i \(0.546967\pi\)
\(42\) 0 0
\(43\) −0.492496 0.853027i −0.0751049 0.130085i 0.826027 0.563631i \(-0.190596\pi\)
−0.901132 + 0.433545i \(0.857262\pi\)
\(44\) −5.95925 2.23213i −0.898391 0.336506i
\(45\) 0 0
\(46\) −0.164268 0.505566i −0.0242200 0.0745416i
\(47\) 0.613200 5.83421i 0.0894445 0.851007i −0.854177 0.519982i \(-0.825939\pi\)
0.943622 0.331026i \(-0.107395\pi\)
\(48\) 0 0
\(49\) 6.41834 + 7.12829i 0.916906 + 1.01833i
\(50\) −0.445949 0.495276i −0.0630667 0.0700426i
\(51\) 0 0
\(52\) 0.772339 7.34832i 0.107104 1.01903i
\(53\) 0.485721 + 1.49489i 0.0667189 + 0.205340i 0.978858 0.204541i \(-0.0655703\pi\)
−0.912139 + 0.409881i \(0.865570\pi\)
\(54\) 0 0
\(55\) 8.65855 2.39567i 1.16752 0.323032i
\(56\) 2.27579 + 3.94178i 0.304115 + 0.526743i
\(57\) 0 0
\(58\) 0.925632 0.412118i 0.121541 0.0541137i
\(59\) 1.18770 + 11.3002i 0.154626 + 1.47117i 0.746634 + 0.665235i \(0.231669\pi\)
−0.592008 + 0.805932i \(0.701665\pi\)
\(60\) 0 0
\(61\) 8.41938 1.78960i 1.07799 0.229134i 0.365498 0.930812i \(-0.380899\pi\)
0.712494 + 0.701678i \(0.247566\pi\)
\(62\) −1.12221 + 0.815335i −0.142521 + 0.103548i
\(63\) 0 0
\(64\) −1.88937 5.81490i −0.236172 0.726862i
\(65\) 5.21561 + 9.03370i 0.646916 + 1.12049i
\(66\) 0 0
\(67\) 0.870282 1.50737i 0.106322 0.184155i −0.807956 0.589243i \(-0.799426\pi\)
0.914277 + 0.405088i \(0.132759\pi\)
\(68\) 8.10800 + 1.72341i 0.983239 + 0.208994i
\(69\) 0 0
\(70\) −2.87420 1.27968i −0.343533 0.152951i
\(71\) 1.77418 5.46036i 0.210556 0.648026i −0.788883 0.614543i \(-0.789340\pi\)
0.999439 0.0334822i \(-0.0106597\pi\)
\(72\) 0 0
\(73\) 3.27379 2.37855i 0.383168 0.278388i −0.379482 0.925199i \(-0.623898\pi\)
0.762650 + 0.646811i \(0.223898\pi\)
\(74\) 0.230833 2.19623i 0.0268338 0.255307i
\(75\) 0 0
\(76\) −1.55634 + 2.69566i −0.178524 + 0.309213i
\(77\) 10.4296 8.58702i 1.18856 0.978582i
\(78\) 0 0
\(79\) −2.86398 + 3.18077i −0.322223 + 0.357864i −0.882393 0.470513i \(-0.844069\pi\)
0.560171 + 0.828377i \(0.310736\pi\)
\(80\) 7.71104 + 5.60240i 0.862120 + 0.626367i
\(81\) 0 0
\(82\) 0.605544 1.86367i 0.0668711 0.205808i
\(83\) −6.35814 + 1.35146i −0.697897 + 0.148343i −0.543180 0.839616i \(-0.682780\pi\)
−0.154717 + 0.987959i \(0.549446\pi\)
\(84\) 0 0
\(85\) −10.6906 + 4.75975i −1.15956 + 0.516267i
\(86\) 0.274731 + 0.0583959i 0.0296250 + 0.00629699i
\(87\) 0 0
\(88\) 3.28830 1.70929i 0.350534 0.182211i
\(89\) −9.26243 −0.981816 −0.490908 0.871211i \(-0.663335\pi\)
−0.490908 + 0.871211i \(0.663335\pi\)
\(90\) 0 0
\(91\) 12.6904 + 9.22014i 1.33032 + 0.966533i
\(92\) −3.26765 1.45485i −0.340676 0.151679i
\(93\) 0 0
\(94\) 1.11931 + 1.24312i 0.115448 + 0.128218i
\(95\) −0.459336 4.37029i −0.0471269 0.448382i
\(96\) 0 0
\(97\) −4.96005 + 5.50870i −0.503617 + 0.559323i −0.940324 0.340280i \(-0.889478\pi\)
0.436707 + 0.899604i \(0.356145\pi\)
\(98\) −2.73516 −0.276293
\(99\) 0 0
\(100\) −4.48444 −0.448444
\(101\) 9.17887 10.1942i 0.913332 1.01436i −0.0865045 0.996251i \(-0.527570\pi\)
0.999836 0.0181060i \(-0.00576362\pi\)
\(102\) 0 0
\(103\) −0.530508 5.04744i −0.0522725 0.497339i −0.989068 0.147462i \(-0.952890\pi\)
0.936795 0.349878i \(-0.113777\pi\)
\(104\) 2.87933 + 3.19782i 0.282341 + 0.313572i
\(105\) 0 0
\(106\) −0.409454 0.182301i −0.0397697 0.0177066i
\(107\) −2.24824 1.63344i −0.217346 0.157911i 0.473785 0.880640i \(-0.342887\pi\)
−0.691131 + 0.722730i \(0.742887\pi\)
\(108\) 0 0
\(109\) −17.3573 −1.66253 −0.831263 0.555879i \(-0.812382\pi\)
−0.831263 + 0.555879i \(0.812382\pi\)
\(110\) −1.14441 + 2.29190i −0.109115 + 0.218524i
\(111\) 0 0
\(112\) 14.0199 + 2.98001i 1.32475 + 0.281585i
\(113\) −0.862071 + 0.383819i −0.0810968 + 0.0361066i −0.446884 0.894592i \(-0.647466\pi\)
0.365787 + 0.930698i \(0.380800\pi\)
\(114\) 0 0
\(115\) 4.93937 1.04989i 0.460598 0.0979032i
\(116\) 2.10681 6.48408i 0.195612 0.602032i
\(117\) 0 0
\(118\) −2.62121 1.90442i −0.241302 0.175316i
\(119\) −11.7751 + 13.0776i −1.07942 + 1.19882i
\(120\) 0 0
\(121\) −6.60948 8.79288i −0.600862 0.799353i
\(122\) −1.22720 + 2.12558i −0.111106 + 0.192441i
\(123\) 0 0
\(124\) −0.975631 + 9.28251i −0.0876143 + 0.833594i
\(125\) −5.83521 + 4.23953i −0.521917 + 0.379195i
\(126\) 0 0
\(127\) 0.757216 2.33047i 0.0671920 0.206796i −0.911823 0.410583i \(-0.865325\pi\)
0.979015 + 0.203787i \(0.0653251\pi\)
\(128\) 7.50917 + 3.34330i 0.663723 + 0.295508i
\(129\) 0 0
\(130\) −2.90945 0.618422i −0.255175 0.0542392i
\(131\) 1.99869 3.46183i 0.174626 0.302461i −0.765406 0.643548i \(-0.777462\pi\)
0.940032 + 0.341087i \(0.110795\pi\)
\(132\) 0 0
\(133\) −3.30407 5.72282i −0.286500 0.496232i
\(134\) 0.153371 + 0.472027i 0.0132492 + 0.0407769i
\(135\) 0 0
\(136\) −3.90547 + 2.83749i −0.334892 + 0.243313i
\(137\) 1.06545 0.226469i 0.0910278 0.0193486i −0.162173 0.986762i \(-0.551850\pi\)
0.253200 + 0.967414i \(0.418517\pi\)
\(138\) 0 0
\(139\) −0.301557 2.86912i −0.0255777 0.243356i −0.999839 0.0179347i \(-0.994291\pi\)
0.974261 0.225421i \(-0.0723758\pi\)
\(140\) −19.3398 + 8.61062i −1.63451 + 0.727731i
\(141\) 0 0
\(142\) 0.818570 + 1.41780i 0.0686929 + 0.118980i
\(143\) 7.95683 9.99087i 0.665383 0.835478i
\(144\) 0 0
\(145\) 2.97431 + 9.15398i 0.247003 + 0.760197i
\(146\) −0.120614 + 1.14757i −0.00998210 + 0.0949733i
\(147\) 0 0
\(148\) −9.94279 11.0426i −0.817293 0.907695i
\(149\) −13.4996 14.9928i −1.10593 1.22826i −0.971425 0.237346i \(-0.923723\pi\)
−0.134504 0.990913i \(-0.542944\pi\)
\(150\) 0 0
\(151\) 1.15800 11.0177i 0.0942370 0.896605i −0.840631 0.541609i \(-0.817815\pi\)
0.934868 0.354996i \(-0.115518\pi\)
\(152\) −0.560175 1.72404i −0.0454362 0.139838i
\(153\) 0 0
\(154\) −0.170330 + 3.84851i −0.0137255 + 0.310122i
\(155\) −6.58844 11.4115i −0.529196 0.916595i
\(156\) 0 0
\(157\) 0.304014 0.135356i 0.0242629 0.0108025i −0.394569 0.918866i \(-0.629106\pi\)
0.418832 + 0.908064i \(0.362440\pi\)
\(158\) −0.127575 1.21379i −0.0101493 0.0965640i
\(159\) 0 0
\(160\) −8.57970 + 1.82367i −0.678285 + 0.144174i
\(161\) 6.14339 4.46344i 0.484167 0.351768i
\(162\) 0 0
\(163\) 4.12168 + 12.6852i 0.322835 + 0.993584i 0.972408 + 0.233285i \(0.0749475\pi\)
−0.649574 + 0.760299i \(0.725053\pi\)
\(164\) −6.59276 11.4190i −0.514808 0.891674i
\(165\) 0 0
\(166\) 0.926759 1.60519i 0.0719304 0.124587i
\(167\) −18.5018 3.93268i −1.43171 0.304320i −0.574172 0.818735i \(-0.694676\pi\)
−0.857541 + 0.514415i \(0.828009\pi\)
\(168\) 0 0
\(169\) 1.67166 + 0.744272i 0.128589 + 0.0572517i
\(170\) 1.03115 3.17357i 0.0790860 0.243402i
\(171\) 0 0
\(172\) 1.52896 1.11085i 0.116582 0.0847016i
\(173\) −0.158265 + 1.50579i −0.0120327 + 0.114483i −0.998890 0.0471135i \(-0.984998\pi\)
0.986857 + 0.161597i \(0.0516644\pi\)
\(174\) 0 0
\(175\) 4.76018 8.24487i 0.359836 0.623254i
\(176\) 2.92877 11.2969i 0.220764 0.851537i
\(177\) 0 0
\(178\) 1.76729 1.96277i 0.132464 0.147116i
\(179\) 10.6703 + 7.75244i 0.797537 + 0.579445i 0.910191 0.414190i \(-0.135935\pi\)
−0.112653 + 0.993634i \(0.535935\pi\)
\(180\) 0 0
\(181\) 0.864886 2.66185i 0.0642865 0.197853i −0.913754 0.406267i \(-0.866830\pi\)
0.978041 + 0.208414i \(0.0668301\pi\)
\(182\) −4.37516 + 0.929969i −0.324308 + 0.0689339i
\(183\) 0 0
\(184\) 1.90302 0.847278i 0.140292 0.0624621i
\(185\) 20.5193 + 4.36152i 1.50861 + 0.320665i
\(186\) 0 0
\(187\) 10.2138 + 10.0491i 0.746908 + 0.734861i
\(188\) 11.2557 0.820907
\(189\) 0 0
\(190\) 1.01374 + 0.736522i 0.0735441 + 0.0534329i
\(191\) 15.2942 + 6.80940i 1.10665 + 0.492711i 0.876965 0.480555i \(-0.159565\pi\)
0.229682 + 0.973266i \(0.426231\pi\)
\(192\) 0 0
\(193\) −14.7472 16.3784i −1.06153 1.17895i −0.983296 0.182011i \(-0.941739\pi\)
−0.0782316 0.996935i \(-0.524927\pi\)
\(194\) −0.220943 2.10214i −0.0158628 0.150925i
\(195\) 0 0
\(196\) −12.3148 + 13.6770i −0.879629 + 0.976927i
\(197\) −18.2247 −1.29845 −0.649227 0.760595i \(-0.724907\pi\)
−0.649227 + 0.760595i \(0.724907\pi\)
\(198\) 0 0
\(199\) −25.0958 −1.77899 −0.889497 0.456942i \(-0.848945\pi\)
−0.889497 + 0.456942i \(0.848945\pi\)
\(200\) 1.74753 1.94083i 0.123569 0.137238i
\(201\) 0 0
\(202\) 0.408869 + 3.89012i 0.0287679 + 0.273708i
\(203\) 9.68497 + 10.7563i 0.679752 + 0.754941i
\(204\) 0 0
\(205\) 17.0055 + 7.57133i 1.18771 + 0.528804i
\(206\) 1.17081 + 0.850642i 0.0815741 + 0.0592670i
\(207\) 0 0
\(208\) 13.5506 0.939563
\(209\) −4.77408 + 2.48161i −0.330230 + 0.171657i
\(210\) 0 0
\(211\) −8.08930 1.71943i −0.556891 0.118371i −0.0791356 0.996864i \(-0.525216\pi\)
−0.477755 + 0.878493i \(0.658549\pi\)
\(212\) −2.75511 + 1.22666i −0.189222 + 0.0842470i
\(213\) 0 0
\(214\) 0.775105 0.164754i 0.0529851 0.0112623i
\(215\) −0.824482 + 2.53749i −0.0562292 + 0.173056i
\(216\) 0 0
\(217\) −16.0308 11.6470i −1.08824 0.790652i
\(218\) 3.31180 3.67812i 0.224303 0.249114i
\(219\) 0 0
\(220\) 6.30790 + 16.0416i 0.425279 + 1.08152i
\(221\) −8.31846 + 14.4080i −0.559560 + 0.969187i
\(222\) 0 0
\(223\) 0.768502 7.31181i 0.0514627 0.489635i −0.938187 0.346129i \(-0.887496\pi\)
0.989650 0.143506i \(-0.0458375\pi\)
\(224\) −10.6711 + 7.75301i −0.712993 + 0.518020i
\(225\) 0 0
\(226\) 0.0831507 0.255912i 0.00553110 0.0170230i
\(227\) 17.3036 + 7.70408i 1.14848 + 0.511338i 0.890577 0.454832i \(-0.150301\pi\)
0.257906 + 0.966170i \(0.416968\pi\)
\(228\) 0 0
\(229\) 7.68770 + 1.63407i 0.508017 + 0.107982i 0.454788 0.890600i \(-0.349715\pi\)
0.0532297 + 0.998582i \(0.483048\pi\)
\(230\) −0.719959 + 1.24701i −0.0474727 + 0.0822251i
\(231\) 0 0
\(232\) 1.98527 + 3.43859i 0.130339 + 0.225754i
\(233\) 2.03006 + 6.24789i 0.132994 + 0.409313i 0.995273 0.0971212i \(-0.0309634\pi\)
−0.862279 + 0.506434i \(0.830963\pi\)
\(234\) 0 0
\(235\) −12.8556 + 9.34013i −0.838606 + 0.609283i
\(236\) −21.3247 + 4.53271i −1.38812 + 0.295054i
\(237\) 0 0
\(238\) −0.524517 4.99045i −0.0339994 0.323483i
\(239\) 23.3377 10.3906i 1.50959 0.672113i 0.525664 0.850692i \(-0.323817\pi\)
0.983925 + 0.178580i \(0.0571502\pi\)
\(240\) 0 0
\(241\) 1.49099 + 2.58247i 0.0960432 + 0.166352i 0.910044 0.414513i \(-0.136048\pi\)
−0.814000 + 0.580864i \(0.802715\pi\)
\(242\) 3.12437 + 0.277103i 0.200842 + 0.0178129i
\(243\) 0 0
\(244\) 5.10344 + 15.7068i 0.326714 + 1.00552i
\(245\) 2.71589 25.8400i 0.173512 1.65086i
\(246\) 0 0
\(247\) −4.18032 4.64271i −0.265987 0.295409i
\(248\) −3.63722 4.03954i −0.230963 0.256511i
\(249\) 0 0
\(250\) 0.214983 2.04543i 0.0135967 0.129364i
\(251\) −3.60577 11.0974i −0.227594 0.700463i −0.998018 0.0629308i \(-0.979955\pi\)
0.770424 0.637532i \(-0.220045\pi\)
\(252\) 0 0
\(253\) −3.40953 5.15792i −0.214355 0.324276i
\(254\) 0.349364 + 0.605116i 0.0219211 + 0.0379684i
\(255\) 0 0
\(256\) 9.02987 4.02036i 0.564367 0.251272i
\(257\) 2.16630 + 20.6109i 0.135130 + 1.28567i 0.826402 + 0.563080i \(0.190384\pi\)
−0.691273 + 0.722594i \(0.742950\pi\)
\(258\) 0 0
\(259\) 30.8565 6.55876i 1.91733 0.407541i
\(260\) −16.1919 + 11.7641i −1.00418 + 0.729578i
\(261\) 0 0
\(262\) 0.352231 + 1.08406i 0.0217609 + 0.0669732i
\(263\) 4.54273 + 7.86823i 0.280117 + 0.485176i 0.971413 0.237395i \(-0.0762936\pi\)
−0.691297 + 0.722571i \(0.742960\pi\)
\(264\) 0 0
\(265\) 2.12883 3.68724i 0.130773 0.226505i
\(266\) 1.84313 + 0.391769i 0.113009 + 0.0240209i
\(267\) 0 0
\(268\) 3.05088 + 1.35834i 0.186362 + 0.0829737i
\(269\) −2.45399 + 7.55261i −0.149623 + 0.460491i −0.997576 0.0695792i \(-0.977834\pi\)
0.847954 + 0.530070i \(0.177834\pi\)
\(270\) 0 0
\(271\) −3.01249 + 2.18870i −0.182995 + 0.132954i −0.675512 0.737349i \(-0.736077\pi\)
0.492516 + 0.870303i \(0.336077\pi\)
\(272\) −1.58901 + 15.1185i −0.0963481 + 0.916691i
\(273\) 0 0
\(274\) −0.155300 + 0.268987i −0.00938201 + 0.0162501i
\(275\) −6.53527 4.16891i −0.394092 0.251395i
\(276\) 0 0
\(277\) −2.61004 + 2.89874i −0.156822 + 0.174168i −0.816436 0.577436i \(-0.804053\pi\)
0.659614 + 0.751605i \(0.270720\pi\)
\(278\) 0.665523 + 0.483531i 0.0399154 + 0.0290003i
\(279\) 0 0
\(280\) 3.80987 11.7256i 0.227684 0.700738i
\(281\) 0.0387572 0.00823810i 0.00231206 0.000491444i −0.206756 0.978393i \(-0.566290\pi\)
0.209068 + 0.977901i \(0.432957\pi\)
\(282\) 0 0
\(283\) 5.84109 2.60062i 0.347217 0.154591i −0.225716 0.974193i \(-0.572472\pi\)
0.572933 + 0.819602i \(0.305806\pi\)
\(284\) 10.7752 + 2.29033i 0.639389 + 0.135906i
\(285\) 0 0
\(286\) 0.598955 + 3.59238i 0.0354169 + 0.212422i
\(287\) 27.9925 1.65235
\(288\) 0 0
\(289\) −1.34634 0.978174i −0.0791965 0.0575397i
\(290\) −2.50729 1.11632i −0.147233 0.0655524i
\(291\) 0 0
\(292\) 5.19528 + 5.76994i 0.304031 + 0.337660i
\(293\) −2.44674 23.2792i −0.142940 1.35998i −0.797200 0.603715i \(-0.793686\pi\)
0.654260 0.756270i \(-0.272980\pi\)
\(294\) 0 0
\(295\) 20.5945 22.8725i 1.19906 1.33169i
\(296\) 8.65375 0.502989
\(297\) 0 0
\(298\) 5.75282 0.333252
\(299\) 4.80375 5.33510i 0.277808 0.308537i
\(300\) 0 0
\(301\) 0.419389 + 3.99022i 0.0241732 + 0.229992i
\(302\) 2.11377 + 2.34758i 0.121634 + 0.135088i
\(303\) 0 0
\(304\) −5.21493 2.32184i −0.299097 0.133166i
\(305\) −18.8625 13.7044i −1.08007 0.784713i
\(306\) 0 0
\(307\) 29.1494 1.66365 0.831823 0.555042i \(-0.187298\pi\)
0.831823 + 0.555042i \(0.187298\pi\)
\(308\) 18.4773 + 18.1793i 1.05284 + 1.03586i
\(309\) 0 0
\(310\) 3.67526 + 0.781200i 0.208741 + 0.0443692i
\(311\) 18.0021 8.01504i 1.02080 0.454491i 0.173068 0.984910i \(-0.444632\pi\)
0.847736 + 0.530418i \(0.177965\pi\)
\(312\) 0 0
\(313\) −1.30913 + 0.278264i −0.0739964 + 0.0157284i −0.244761 0.969583i \(-0.578710\pi\)
0.170765 + 0.985312i \(0.445376\pi\)
\(314\) −0.0293235 + 0.0902485i −0.00165482 + 0.00509302i
\(315\) 0 0
\(316\) −6.64387 4.82706i −0.373747 0.271543i
\(317\) −2.67712 + 2.97324i −0.150362 + 0.166994i −0.813620 0.581397i \(-0.802506\pi\)
0.663258 + 0.748391i \(0.269173\pi\)
\(318\) 0 0
\(319\) 9.09815 7.49083i 0.509399 0.419406i
\(320\) −8.28080 + 14.3428i −0.462911 + 0.801785i
\(321\) 0 0
\(322\) −0.226337 + 2.15346i −0.0126133 + 0.120007i
\(323\) 5.67011 4.11958i 0.315493 0.229219i
\(324\) 0 0
\(325\) 2.78134 8.56008i 0.154281 0.474828i
\(326\) −3.47451 1.54695i −0.192435 0.0856776i
\(327\) 0 0
\(328\) 7.51119 + 1.59655i 0.414736 + 0.0881548i
\(329\) −11.9478 + 20.6942i −0.658704 + 1.14091i
\(330\) 0 0
\(331\) −1.59017 2.75425i −0.0874034 0.151387i 0.819009 0.573780i \(-0.194524\pi\)
−0.906413 + 0.422393i \(0.861190\pi\)
\(332\) −3.85401 11.8614i −0.211516 0.650980i
\(333\) 0 0
\(334\) 4.36353 3.17029i 0.238762 0.173471i
\(335\) −4.61169 + 0.980246i −0.251964 + 0.0535566i
\(336\) 0 0
\(337\) 1.90219 + 18.0981i 0.103619 + 0.985867i 0.915575 + 0.402148i \(0.131736\pi\)
−0.811956 + 0.583719i \(0.801597\pi\)
\(338\) −0.476672 + 0.212228i −0.0259275 + 0.0115437i
\(339\) 0 0
\(340\) −11.2265 19.4449i −0.608844 1.05455i
\(341\) −10.0512 + 12.6206i −0.544303 + 0.683445i
\(342\) 0 0
\(343\) −3.26270 10.0416i −0.176169 0.542193i
\(344\) −0.115048 + 1.09461i −0.00620297 + 0.0590173i
\(345\) 0 0
\(346\) −0.288890 0.320845i −0.0155308 0.0172487i
\(347\) 18.3436 + 20.3726i 0.984737 + 1.09366i 0.995599 + 0.0937200i \(0.0298758\pi\)
−0.0108618 + 0.999941i \(0.503457\pi\)
\(348\) 0 0
\(349\) −2.39428 + 22.7800i −0.128163 + 1.21939i 0.721633 + 0.692276i \(0.243392\pi\)
−0.849796 + 0.527112i \(0.823275\pi\)
\(350\) 0.838893 + 2.58185i 0.0448407 + 0.138006i
\(351\) 0 0
\(352\) 5.92237 + 8.95933i 0.315663 + 0.477534i
\(353\) −14.8524 25.7250i −0.790511 1.36921i −0.925651 0.378379i \(-0.876482\pi\)
0.135140 0.990827i \(-0.456852\pi\)
\(354\) 0 0
\(355\) −14.2073 + 6.32550i −0.754045 + 0.335722i
\(356\) −1.85765 17.6744i −0.0984554 0.936741i
\(357\) 0 0
\(358\) −3.67871 + 0.781933i −0.194426 + 0.0413265i
\(359\) −29.8183 + 21.6643i −1.57375 + 1.14340i −0.650299 + 0.759678i \(0.725356\pi\)
−0.923450 + 0.383718i \(0.874644\pi\)
\(360\) 0 0
\(361\) −5.05804 15.5670i −0.266213 0.819318i
\(362\) 0.399041 + 0.691159i 0.0209731 + 0.0363265i
\(363\) 0 0
\(364\) −15.0485 + 26.0648i −0.788756 + 1.36617i
\(365\) −10.7217 2.27897i −0.561199 0.119287i
\(366\) 0 0
\(367\) −22.7113 10.1117i −1.18552 0.527828i −0.283270 0.959040i \(-0.591419\pi\)
−0.902251 + 0.431212i \(0.858086\pi\)
\(368\) 2.02708 6.23872i 0.105669 0.325216i
\(369\) 0 0
\(370\) −4.83936 + 3.51600i −0.251586 + 0.182788i
\(371\) 0.669251 6.36750i 0.0347458 0.330584i
\(372\) 0 0
\(373\) −9.13952 + 15.8301i −0.473227 + 0.819653i −0.999530 0.0306440i \(-0.990244\pi\)
0.526304 + 0.850297i \(0.323578\pi\)
\(374\) −4.07828 + 0.246996i −0.210883 + 0.0127719i
\(375\) 0 0
\(376\) −4.38622 + 4.87139i −0.226202 + 0.251223i
\(377\) 11.0704 + 8.04312i 0.570155 + 0.414242i
\(378\) 0 0
\(379\) −9.72145 + 29.9196i −0.499357 + 1.53686i 0.310697 + 0.950509i \(0.399438\pi\)
−0.810054 + 0.586355i \(0.800562\pi\)
\(380\) 8.24717 1.75299i 0.423071 0.0899265i
\(381\) 0 0
\(382\) −4.36111 + 1.94169i −0.223134 + 0.0993455i
\(383\) −12.1601 2.58471i −0.621352 0.132073i −0.113530 0.993535i \(-0.536216\pi\)
−0.507822 + 0.861462i \(0.669549\pi\)
\(384\) 0 0
\(385\) −36.1891 5.43056i −1.84437 0.276767i
\(386\) 6.28449 0.319872
\(387\) 0 0
\(388\) −11.5064 8.35986i −0.584147 0.424408i
\(389\) −6.68686 2.97718i −0.339037 0.150949i 0.230154 0.973154i \(-0.426077\pi\)
−0.569191 + 0.822205i \(0.692744\pi\)
\(390\) 0 0
\(391\) 5.38909 + 5.98520i 0.272538 + 0.302684i
\(392\) −1.12036 10.6595i −0.0565868 0.538388i
\(393\) 0 0
\(394\) 3.47729 3.86193i 0.175184 0.194561i
\(395\) 11.5938 0.583346
\(396\) 0 0
\(397\) 34.2087 1.71688 0.858442 0.512911i \(-0.171433\pi\)
0.858442 + 0.512911i \(0.171433\pi\)
\(398\) 4.78831 5.31796i 0.240016 0.266565i
\(399\) 0 0
\(400\) −0.859660 8.17911i −0.0429830 0.408956i
\(401\) −5.00227 5.55558i −0.249801 0.277433i 0.605183 0.796086i \(-0.293100\pi\)
−0.854984 + 0.518654i \(0.826433\pi\)
\(402\) 0 0
\(403\) −17.1137 7.61953i −0.852496 0.379556i
\(404\) 21.2932 + 15.4704i 1.05938 + 0.769682i
\(405\) 0 0
\(406\) −4.12723 −0.204831
\(407\) −4.22423 25.3358i −0.209387 1.25585i
\(408\) 0 0
\(409\) −2.35753 0.501108i −0.116572 0.0247782i 0.149256 0.988799i \(-0.452312\pi\)
−0.265828 + 0.964020i \(0.585645\pi\)
\(410\) −4.84908 + 2.15895i −0.239479 + 0.106623i
\(411\) 0 0
\(412\) 9.52503 2.02461i 0.469265 0.0997453i
\(413\) 14.3023 44.0180i 0.703771 2.16598i
\(414\) 0 0
\(415\) 14.2446 + 10.3493i 0.699239 + 0.508027i
\(416\) −8.34413 + 9.26709i −0.409104 + 0.454357i
\(417\) 0 0
\(418\) 0.385032 1.48515i 0.0188325 0.0726412i
\(419\) −5.60088 + 9.70101i −0.273621 + 0.473925i −0.969786 0.243956i \(-0.921555\pi\)
0.696165 + 0.717881i \(0.254888\pi\)
\(420\) 0 0
\(421\) 0.721755 6.86704i 0.0351762 0.334679i −0.962754 0.270378i \(-0.912851\pi\)
0.997931 0.0643013i \(-0.0204819\pi\)
\(422\) 1.90781 1.38611i 0.0928708 0.0674746i
\(423\) 0 0
\(424\) 0.542748 1.67041i 0.0263582 0.0811222i
\(425\) 9.22439 + 4.10696i 0.447449 + 0.199217i
\(426\) 0 0
\(427\) −34.2950 7.28962i −1.65965 0.352770i
\(428\) 2.66600 4.61765i 0.128866 0.223202i
\(429\) 0 0
\(430\) −0.380399 0.658871i −0.0183445 0.0317736i
\(431\) 9.01729 + 27.7524i 0.434348 + 1.33678i 0.893754 + 0.448558i \(0.148062\pi\)
−0.459406 + 0.888226i \(0.651938\pi\)
\(432\) 0 0
\(433\) 29.5582 21.4753i 1.42048 1.03204i 0.428785 0.903407i \(-0.358942\pi\)
0.991693 0.128630i \(-0.0410581\pi\)
\(434\) 5.52677 1.17475i 0.265294 0.0563899i
\(435\) 0 0
\(436\) −3.48114 33.1208i −0.166716 1.58620i
\(437\) −2.76287 + 1.23011i −0.132166 + 0.0588441i
\(438\) 0 0
\(439\) 10.7487 + 18.6173i 0.513009 + 0.888557i 0.999886 + 0.0150869i \(0.00480250\pi\)
−0.486877 + 0.873470i \(0.661864\pi\)
\(440\) −9.40081 3.52121i −0.448166 0.167867i
\(441\) 0 0
\(442\) −1.46597 4.51180i −0.0697293 0.214605i
\(443\) −3.49595 + 33.2618i −0.166098 + 1.58031i 0.520876 + 0.853633i \(0.325605\pi\)
−0.686974 + 0.726682i \(0.741061\pi\)
\(444\) 0 0
\(445\) 16.7881 + 18.6451i 0.795834 + 0.883863i
\(446\) 1.40279 + 1.55795i 0.0664240 + 0.0737713i
\(447\) 0 0
\(448\) −2.60328 + 24.7685i −0.122993 + 1.17020i
\(449\) −12.2165 37.5984i −0.576530 1.77438i −0.630908 0.775858i \(-0.717318\pi\)
0.0543777 0.998520i \(-0.482682\pi\)
\(450\) 0 0
\(451\) 1.00777 22.7700i 0.0474540 1.07220i
\(452\) −0.905290 1.56801i −0.0425813 0.0737529i
\(453\) 0 0
\(454\) −4.93411 + 2.19681i −0.231569 + 0.103101i
\(455\) −4.44140 42.2571i −0.208216 1.98104i
\(456\) 0 0
\(457\) −36.6926 + 7.79925i −1.71641 + 0.364834i −0.957960 0.286901i \(-0.907375\pi\)
−0.758447 + 0.651735i \(0.774041\pi\)
\(458\) −1.81309 + 1.31729i −0.0847204 + 0.0615529i
\(459\) 0 0
\(460\) 2.99402 + 9.21464i 0.139597 + 0.429635i
\(461\) 9.68265 + 16.7708i 0.450966 + 0.781096i 0.998446 0.0557228i \(-0.0177463\pi\)
−0.547480 + 0.836818i \(0.684413\pi\)
\(462\) 0 0
\(463\) 7.17464 12.4268i 0.333434 0.577524i −0.649749 0.760149i \(-0.725126\pi\)
0.983183 + 0.182625i \(0.0584594\pi\)
\(464\) 12.2301 + 2.59959i 0.567769 + 0.120683i
\(465\) 0 0
\(466\) −1.71131 0.761923i −0.0792748 0.0352954i
\(467\) 6.89755 21.2285i 0.319180 0.982336i −0.654819 0.755786i \(-0.727255\pi\)
0.973999 0.226551i \(-0.0727449\pi\)
\(468\) 0 0
\(469\) −5.73585 + 4.16734i −0.264857 + 0.192430i
\(470\) 0.473631 4.50629i 0.0218469 0.207860i
\(471\) 0 0
\(472\) 6.34827 10.9955i 0.292203 0.506110i
\(473\) 3.26087 0.197491i 0.149935 0.00908065i
\(474\) 0 0
\(475\) −2.53713 + 2.81777i −0.116412 + 0.129288i
\(476\) −27.3160 19.8462i −1.25203 0.909651i
\(477\) 0 0
\(478\) −2.25103 + 6.92795i −0.102960 + 0.316877i
\(479\) −22.7533 + 4.83637i −1.03963 + 0.220979i −0.695936 0.718104i \(-0.745010\pi\)
−0.343690 + 0.939083i \(0.611677\pi\)
\(480\) 0 0
\(481\) 27.2453 12.1304i 1.24228 0.553098i
\(482\) −0.831726 0.176789i −0.0378841 0.00805251i
\(483\) 0 0
\(484\) 15.4528 14.3756i 0.702401 0.653434i
\(485\) 20.0790 0.911740
\(486\) 0 0
\(487\) −0.219083 0.159173i −0.00992760 0.00721282i 0.582810 0.812608i \(-0.301953\pi\)
−0.592738 + 0.805395i \(0.701953\pi\)
\(488\) −8.78654 3.91202i −0.397748 0.177089i
\(489\) 0 0
\(490\) 4.95747 + 5.50583i 0.223956 + 0.248728i
\(491\) −0.439705 4.18351i −0.0198436 0.188799i 0.980110 0.198456i \(-0.0635927\pi\)
−0.999953 + 0.00965687i \(0.996926\pi\)
\(492\) 0 0
\(493\) −10.2719 + 11.4081i −0.462625 + 0.513797i
\(494\) 1.78143 0.0801504
\(495\) 0 0
\(496\) −17.1173 −0.768589
\(497\) −15.6486 + 17.3796i −0.701936 + 0.779579i
\(498\) 0 0
\(499\) 1.60600 + 15.2801i 0.0718944 + 0.684030i 0.969810 + 0.243862i \(0.0784144\pi\)
−0.897916 + 0.440168i \(0.854919\pi\)
\(500\) −9.26007 10.2844i −0.414123 0.459930i
\(501\) 0 0
\(502\) 3.03960 + 1.35332i 0.135664 + 0.0604016i
\(503\) 3.16786 + 2.30159i 0.141248 + 0.102623i 0.656165 0.754617i \(-0.272177\pi\)
−0.514917 + 0.857240i \(0.672177\pi\)
\(504\) 0 0
\(505\) −37.1573 −1.65348
\(506\) 1.74354 + 0.261637i 0.0775099 + 0.0116312i
\(507\) 0 0
\(508\) 4.59882 + 0.977510i 0.204040 + 0.0433700i
\(509\) −26.0812 + 11.6121i −1.15603 + 0.514696i −0.892984 0.450088i \(-0.851393\pi\)
−0.263043 + 0.964784i \(0.584726\pi\)
\(510\) 0 0
\(511\) −16.1231 + 3.42706i −0.713242 + 0.151604i
\(512\) −5.95109 + 18.3156i −0.263004 + 0.809442i
\(513\) 0 0
\(514\) −4.78092 3.47354i −0.210877 0.153211i
\(515\) −9.19887 + 10.2164i −0.405351 + 0.450187i
\(516\) 0 0
\(517\) 16.4032 + 10.4637i 0.721411 + 0.460195i
\(518\) −4.49763 + 7.79012i −0.197615 + 0.342278i
\(519\) 0 0
\(520\) 1.21838 11.5921i 0.0534293 0.508346i
\(521\) −11.5485 + 8.39049i −0.505950 + 0.367594i −0.811285 0.584651i \(-0.801232\pi\)
0.305335 + 0.952245i \(0.401232\pi\)
\(522\) 0 0
\(523\) −10.2462 + 31.5345i −0.448034 + 1.37891i 0.431088 + 0.902310i \(0.358130\pi\)
−0.879122 + 0.476597i \(0.841870\pi\)
\(524\) 7.00664 + 3.11956i 0.306086 + 0.136278i
\(525\) 0 0
\(526\) −2.53409 0.538637i −0.110492 0.0234857i
\(527\) 10.5080 18.2004i 0.457736 0.792822i
\(528\) 0 0
\(529\) 9.76231 + 16.9088i 0.424448 + 0.735166i
\(530\) 0.375166 + 1.15464i 0.0162962 + 0.0501545i
\(531\) 0 0
\(532\) 10.2575 7.45252i 0.444720 0.323108i
\(533\) 25.8860 5.50224i 1.12125 0.238329i
\(534\) 0 0
\(535\) 0.786839 + 7.48627i 0.0340180 + 0.323660i
\(536\) −1.77677 + 0.791070i −0.0767449 + 0.0341690i
\(537\) 0 0
\(538\) −1.13222 1.96107i −0.0488136 0.0845476i
\(539\) −30.6613 + 8.48344i −1.32068 + 0.365407i
\(540\) 0 0
\(541\) −8.79490 27.0679i −0.378122 1.16374i −0.941348 0.337437i \(-0.890440\pi\)
0.563226 0.826303i \(-0.309560\pi\)
\(542\) 0.110987 1.05597i 0.00476731 0.0453579i
\(543\) 0 0
\(544\) −9.36088 10.3963i −0.401344 0.445738i
\(545\) 31.4600 + 34.9399i 1.34760 + 1.49666i
\(546\) 0 0
\(547\) 3.21390 30.5782i 0.137416 1.30743i −0.680779 0.732489i \(-0.738359\pi\)
0.818195 0.574940i \(-0.194975\pi\)
\(548\) 0.645829 + 1.98766i 0.0275884 + 0.0849085i
\(549\) 0 0
\(550\) 2.13036 0.589432i 0.0908388 0.0251335i
\(551\) −2.88228 4.99226i −0.122789 0.212678i
\(552\) 0 0
\(553\) 15.9272 7.09124i 0.677293 0.301550i
\(554\) −0.116263 1.10617i −0.00493954 0.0469965i
\(555\) 0 0
\(556\) 5.41432 1.15085i 0.229618 0.0488069i
\(557\) −5.90145 + 4.28765i −0.250052 + 0.181674i −0.705750 0.708461i \(-0.749390\pi\)
0.455698 + 0.890135i \(0.349390\pi\)
\(558\) 0 0
\(559\) 1.17215 + 3.60751i 0.0495767 + 0.152581i
\(560\) −19.4122 33.6230i −0.820316 1.42083i
\(561\) 0 0
\(562\) −0.00564923 + 0.00978475i −0.000238298 + 0.000412745i
\(563\) −35.7742 7.60405i −1.50770 0.320472i −0.621369 0.783518i \(-0.713423\pi\)
−0.886335 + 0.463045i \(0.846757\pi\)
\(564\) 0 0
\(565\) 2.33512 + 1.03966i 0.0982393 + 0.0437389i
\(566\) −0.563400 + 1.73397i −0.0236815 + 0.0728841i
\(567\) 0 0
\(568\) −5.19020 + 3.77090i −0.217776 + 0.158224i
\(569\) 0.0158344 0.150654i 0.000663811 0.00631574i −0.994185 0.107686i \(-0.965656\pi\)
0.994849 + 0.101370i \(0.0323226\pi\)
\(570\) 0 0
\(571\) −21.6127 + 37.4343i −0.904463 + 1.56658i −0.0828262 + 0.996564i \(0.526395\pi\)
−0.821637 + 0.570012i \(0.806939\pi\)
\(572\) 20.6602 + 13.1793i 0.863845 + 0.551055i
\(573\) 0 0
\(574\) −5.34102 + 5.93180i −0.222930 + 0.247589i
\(575\) −3.52502 2.56108i −0.147003 0.106804i
\(576\) 0 0
\(577\) 9.00017 27.6997i 0.374682 1.15315i −0.569011 0.822330i \(-0.692674\pi\)
0.943693 0.330822i \(-0.107326\pi\)
\(578\) 0.464165 0.0986614i 0.0193067 0.00410377i
\(579\) 0 0
\(580\) −16.8709 + 7.51142i −0.700527 + 0.311895i
\(581\) 25.8988 + 5.50497i 1.07446 + 0.228385i
\(582\) 0 0
\(583\) −5.15543 0.773629i −0.213516 0.0320404i
\(584\) −4.52173 −0.187111
\(585\) 0 0
\(586\) 5.39985 + 3.92322i 0.223066 + 0.162067i
\(587\) 20.7328 + 9.23084i 0.855734 + 0.380997i 0.787235 0.616654i \(-0.211512\pi\)
0.0684998 + 0.997651i \(0.478179\pi\)
\(588\) 0 0
\(589\) 5.28064 + 5.86475i 0.217585 + 0.241653i
\(590\) 0.917372 + 8.72821i 0.0377676 + 0.359335i
\(591\) 0 0
\(592\) 18.2344 20.2514i 0.749431 0.832327i
\(593\) 22.9308 0.941656 0.470828 0.882225i \(-0.343955\pi\)
0.470828 + 0.882225i \(0.343955\pi\)
\(594\) 0 0
\(595\) 47.6673 1.95417
\(596\) 25.9015 28.7666i 1.06097 1.17832i
\(597\) 0 0
\(598\) 0.213981 + 2.03589i 0.00875032 + 0.0832538i
\(599\) 8.36460 + 9.28982i 0.341768 + 0.379572i 0.889386 0.457156i \(-0.151132\pi\)
−0.547618 + 0.836728i \(0.684465\pi\)
\(600\) 0 0
\(601\) 20.5354 + 9.14296i 0.837658 + 0.372949i 0.780301 0.625405i \(-0.215066\pi\)
0.0573569 + 0.998354i \(0.481733\pi\)
\(602\) −0.925574 0.672469i −0.0377236 0.0274078i
\(603\) 0 0
\(604\) 21.2559 0.864892
\(605\) −5.72025 + 29.2418i −0.232561 + 1.18885i
\(606\) 0 0
\(607\) −26.1212 5.55223i −1.06023 0.225358i −0.355383 0.934721i \(-0.615649\pi\)
−0.704843 + 0.709363i \(0.748983\pi\)
\(608\) 4.79912 2.13670i 0.194630 0.0866548i
\(609\) 0 0
\(610\) 6.50306 1.38227i 0.263301 0.0559664i
\(611\) −6.98102 + 21.4854i −0.282422 + 0.869205i
\(612\) 0 0
\(613\) 35.1797 + 25.5595i 1.42089 + 1.03234i 0.991623 + 0.129163i \(0.0412289\pi\)
0.429269 + 0.903176i \(0.358771\pi\)
\(614\) −5.56175 + 6.17695i −0.224454 + 0.249282i
\(615\) 0 0
\(616\) −15.0683 + 0.912593i −0.607118 + 0.0367694i
\(617\) 20.7128 35.8756i 0.833864 1.44430i −0.0610871 0.998132i \(-0.519457\pi\)
0.894952 0.446163i \(-0.147210\pi\)
\(618\) 0 0
\(619\) −0.931532 + 8.86293i −0.0374414 + 0.356231i 0.959721 + 0.280954i \(0.0906508\pi\)
−0.997163 + 0.0752773i \(0.976016\pi\)
\(620\) 20.4539 14.8606i 0.821446 0.596816i
\(621\) 0 0
\(622\) −1.73638 + 5.34404i −0.0696227 + 0.214277i
\(623\) 34.4672 + 15.3458i 1.38090 + 0.614815i
\(624\) 0 0
\(625\) 30.5412 + 6.49173i 1.22165 + 0.259669i
\(626\) 0.190818 0.330506i 0.00762662 0.0132097i
\(627\) 0 0
\(628\) 0.319255 + 0.552966i 0.0127397 + 0.0220657i
\(629\) 10.3390 + 31.8202i 0.412244 + 1.26876i
\(630\) 0 0
\(631\) 4.58752 3.33303i 0.182626 0.132686i −0.492716 0.870190i \(-0.663996\pi\)
0.675342 + 0.737504i \(0.263996\pi\)
\(632\) 4.67816 0.994373i 0.186087 0.0395540i
\(633\) 0 0
\(634\) −0.119251 1.13460i −0.00473606 0.0450606i
\(635\) −6.06365 + 2.69971i −0.240628 + 0.107135i
\(636\) 0 0
\(637\) −18.4693 31.9898i −0.731780 1.26748i
\(638\) −0.148586 + 3.35722i −0.00588257 + 0.132914i
\(639\) 0 0
\(640\) −6.88034 21.1755i −0.271970 0.837036i
\(641\) 2.80327 26.6713i 0.110722 1.05345i −0.788222 0.615390i \(-0.788998\pi\)
0.898945 0.438062i \(-0.144335\pi\)
\(642\) 0 0
\(643\) 9.46047 + 10.5069i 0.373085 + 0.414352i 0.900224 0.435426i \(-0.143402\pi\)
−0.527140 + 0.849779i \(0.676736\pi\)
\(644\) 9.74915 + 10.8275i 0.384170 + 0.426664i
\(645\) 0 0
\(646\) −0.208900 + 1.98756i −0.00821908 + 0.0781993i
\(647\) 0.393698 + 1.21168i 0.0154779 + 0.0476360i 0.958497 0.285102i \(-0.0920275\pi\)
−0.943019 + 0.332738i \(0.892027\pi\)
\(648\) 0 0
\(649\) −35.2907 13.2187i −1.38528 0.518878i
\(650\) 1.28325 + 2.22266i 0.0503334 + 0.0871799i
\(651\) 0 0
\(652\) −23.3791 + 10.4090i −0.915595 + 0.407649i
\(653\) −0.504698 4.80188i −0.0197504 0.187912i 0.980199 0.198017i \(-0.0634501\pi\)
−0.999949 + 0.0101049i \(0.996783\pi\)
\(654\) 0 0
\(655\) −10.5912 + 2.25123i −0.413833 + 0.0879629i
\(656\) 19.5632 14.2135i 0.763813 0.554942i
\(657\) 0 0
\(658\) −2.10558 6.48030i −0.0820840 0.252628i
\(659\) −11.0889 19.2065i −0.431961 0.748178i 0.565082 0.825035i \(-0.308845\pi\)
−0.997042 + 0.0768574i \(0.975511\pi\)
\(660\) 0 0
\(661\) 13.6987 23.7269i 0.532820 0.922871i −0.466446 0.884550i \(-0.654466\pi\)
0.999265 0.0383209i \(-0.0122009\pi\)
\(662\) 0.887049 + 0.188548i 0.0344761 + 0.00732813i
\(663\) 0 0
\(664\) 6.63541 + 2.95427i 0.257504 + 0.114648i
\(665\) −5.53132 + 17.0236i −0.214495 + 0.660148i
\(666\) 0 0
\(667\) 5.35915 3.89365i 0.207507 0.150763i
\(668\) 3.79358 36.0935i 0.146778 1.39650i
\(669\) 0 0
\(670\) 0.672198 1.16428i 0.0259693 0.0449801i
\(671\) −7.16428 + 27.6342i −0.276574 + 1.06681i
\(672\) 0 0
\(673\) 23.5825 26.1911i 0.909040 1.00959i −0.0908659 0.995863i \(-0.528963\pi\)
0.999906 0.0137279i \(-0.00436986\pi\)
\(674\) −4.19805 3.05006i −0.161703 0.117484i
\(675\) 0 0
\(676\) −1.08494 + 3.33910i −0.0417285 + 0.128427i
\(677\) −43.0874 + 9.15850i −1.65598 + 0.351990i −0.938685 0.344777i \(-0.887955\pi\)
−0.717298 + 0.696767i \(0.754621\pi\)
\(678\) 0 0
\(679\) 27.5839 12.2811i 1.05857 0.471307i
\(680\) 12.7905 + 2.71870i 0.490493 + 0.104257i
\(681\) 0 0
\(682\) −0.756610 4.53795i −0.0289721 0.173767i
\(683\) −42.2845 −1.61797 −0.808985 0.587829i \(-0.799983\pi\)
−0.808985 + 0.587829i \(0.799983\pi\)
\(684\) 0 0
\(685\) −2.38701 1.73426i −0.0912029 0.0662628i
\(686\) 2.75040 + 1.22456i 0.105011 + 0.0467538i
\(687\) 0 0
\(688\) 2.31917 + 2.57570i 0.0884174 + 0.0981975i
\(689\) −0.632714 6.01987i −0.0241045 0.229339i
\(690\) 0 0
\(691\) −5.66545 + 6.29212i −0.215524 + 0.239363i −0.841206 0.540715i \(-0.818154\pi\)
0.625682 + 0.780078i \(0.284821\pi\)
\(692\) −2.90507 −0.110434
\(693\) 0 0
\(694\) −7.81709 −0.296733
\(695\) −5.22892 + 5.80730i −0.198344 + 0.220284i
\(696\) 0 0
\(697\) 3.10335 + 29.5264i 0.117548 + 1.11839i
\(698\) −4.37041 4.85383i −0.165422 0.183720i
\(699\) 0 0
\(700\) 16.6874 + 7.42970i 0.630724 + 0.280816i
\(701\) 35.2342 + 25.5991i 1.33078 + 0.966865i 0.999730 + 0.0232503i \(0.00740148\pi\)
0.331046 + 0.943615i \(0.392599\pi\)
\(702\) 0 0
\(703\) −12.5638 −0.473854
\(704\) 20.0538 + 3.00929i 0.755806 + 0.113417i
\(705\) 0 0
\(706\) 8.28515 + 1.76106i 0.311816 + 0.0662785i
\(707\) −51.0456 + 22.7270i −1.91977 + 0.854736i
\(708\) 0 0
\(709\) 5.89558 1.25314i 0.221413 0.0470628i −0.0958693 0.995394i \(-0.530563\pi\)
0.317282 + 0.948331i \(0.397230\pi\)
\(710\) 1.37036 4.21753i 0.0514287 0.158281i
\(711\) 0 0
\(712\) 8.37326 + 6.08353i 0.313801 + 0.227990i
\(713\) −6.06817 + 6.73939i −0.227255 + 0.252392i
\(714\) 0 0
\(715\) −34.5332 + 2.09146i −1.29147 + 0.0782163i
\(716\) −12.6530 + 21.9157i −0.472866 + 0.819028i
\(717\) 0 0
\(718\) 1.09858 10.4523i 0.0409985 0.390075i
\(719\) 32.6897 23.7504i 1.21912 0.885741i 0.223092 0.974797i \(-0.428385\pi\)
0.996027 + 0.0890560i \(0.0283850\pi\)
\(720\) 0 0
\(721\) −6.38836 + 19.6614i −0.237915 + 0.732227i
\(722\) 4.26384 + 1.89838i 0.158684 + 0.0706505i
\(723\) 0 0
\(724\) 5.25274 + 1.11650i 0.195216 + 0.0414945i
\(725\) 4.15251 7.19235i 0.154220 0.267117i
\(726\) 0 0
\(727\) −9.36031 16.2125i −0.347155 0.601290i 0.638588 0.769549i \(-0.279519\pi\)
−0.985743 + 0.168259i \(0.946185\pi\)
\(728\) −5.41643 16.6700i −0.200746 0.617833i
\(729\) 0 0
\(730\) 2.52864 1.83717i 0.0935893 0.0679966i
\(731\) −4.16237 + 0.884740i −0.153951 + 0.0327233i
\(732\) 0 0
\(733\) −0.0589741 0.561101i −0.00217826 0.0207247i 0.993379 0.114885i \(-0.0366500\pi\)
−0.995557 + 0.0941604i \(0.969983\pi\)
\(734\) 6.47609 2.88334i 0.239037 0.106426i
\(735\) 0 0
\(736\) 3.01837 + 5.22796i 0.111258 + 0.192705i
\(737\) 3.18335 + 4.81575i 0.117260 + 0.177391i
\(738\) 0 0
\(739\) 0.602004 + 1.85278i 0.0221451 + 0.0681555i 0.961518 0.274741i \(-0.0885921\pi\)
−0.939373 + 0.342896i \(0.888592\pi\)
\(740\) −4.20725 + 40.0293i −0.154662 + 1.47151i
\(741\) 0 0
\(742\) 1.22162 + 1.35675i 0.0448471 + 0.0498077i
\(743\) 18.2423 + 20.2601i 0.669245 + 0.743272i 0.978168 0.207815i \(-0.0666352\pi\)
−0.308923 + 0.951087i \(0.599968\pi\)
\(744\) 0 0
\(745\) −5.71229 + 54.3488i −0.209282 + 1.99119i
\(746\) −1.61067 4.95714i −0.0589709 0.181494i
\(747\) 0 0
\(748\) −17.1270 + 21.5052i −0.626224 + 0.786308i
\(749\) 5.65985 + 9.80315i 0.206807 + 0.358199i
\(750\) 0 0
\(751\) 27.6861 12.3267i 1.01028 0.449806i 0.166241 0.986085i \(-0.446837\pi\)
0.844041 + 0.536279i \(0.180170\pi\)
\(752\) 2.15770 + 20.5292i 0.0786833 + 0.748621i
\(753\) 0 0
\(754\) −3.81664 + 0.811252i −0.138994 + 0.0295441i
\(755\) −24.2772 + 17.6384i −0.883539 + 0.641929i
\(756\) 0 0
\(757\) 3.43224 + 10.5634i 0.124747 + 0.383931i 0.993855 0.110691i \(-0.0353064\pi\)
−0.869108 + 0.494622i \(0.835306\pi\)
\(758\) −4.48528 7.76874i −0.162913 0.282173i
\(759\) 0 0
\(760\) −2.45515 + 4.25244i −0.0890576 + 0.154252i
\(761\) −32.6124 6.93197i −1.18220 0.251284i −0.425444 0.904985i \(-0.639882\pi\)
−0.756753 + 0.653701i \(0.773216\pi\)
\(762\) 0 0
\(763\) 64.5895 + 28.7571i 2.33830 + 1.04108i
\(764\) −9.92620 + 30.5497i −0.359117 + 1.10525i
\(765\) 0 0
\(766\) 2.86788 2.08364i 0.103621 0.0752849i
\(767\) 4.57380 43.5168i 0.165150 1.57130i
\(768\) 0 0
\(769\) 25.9701 44.9815i 0.936504 1.62207i 0.164575 0.986364i \(-0.447375\pi\)
0.771929 0.635709i \(-0.219292\pi\)
\(770\) 8.05570 6.63254i 0.290307 0.239020i
\(771\) 0 0
\(772\) 28.2953 31.4252i 1.01837 1.13102i
\(773\) −6.24784 4.53932i −0.224719 0.163268i 0.469729 0.882811i \(-0.344352\pi\)
−0.694448 + 0.719542i \(0.744352\pi\)
\(774\) 0 0
\(775\) −3.51343 + 10.8132i −0.126206 + 0.388423i
\(776\) 8.10199 1.72213i 0.290844 0.0618209i
\(777\) 0 0
\(778\) 1.90675 0.848939i 0.0683602 0.0304359i
\(779\) −10.9050 2.31793i −0.390713 0.0830486i
\(780\) 0 0
\(781\) 13.5737 + 13.3548i 0.485706 + 0.477871i
\(782\) −2.29655 −0.0821244
\(783\) 0 0
\(784\) −27.3060 19.8390i −0.975215 0.708535i
\(785\) −0.823492 0.366642i −0.0293917 0.0130860i
\(786\) 0 0
\(787\) −13.1861 14.6446i −0.470034 0.522025i 0.460782 0.887513i \(-0.347569\pi\)
−0.930816 + 0.365488i \(0.880902\pi\)
\(788\) −3.65510 34.7759i −0.130207 1.23884i
\(789\) 0 0
\(790\) −2.21211 + 2.45680i −0.0787034 + 0.0874089i
\(791\) 3.84382 0.136670
\(792\) 0 0
\(793\) −33.1470 −1.17709
\(794\) −6.52707 + 7.24904i −0.231637 + 0.257259i
\(795\) 0 0
\(796\) −5.03316 47.8873i −0.178395 1.69732i
\(797\) −9.38507 10.4232i −0.332436 0.369208i 0.553633 0.832761i \(-0.313241\pi\)
−0.886069 + 0.463553i \(0.846574\pi\)
\(798\) 0 0
\(799\) −23.1527 10.3083i −0.819085 0.364680i
\(800\) 6.12297 + 4.44860i 0.216480 + 0.157282i
\(801\) 0 0
\(802\) 2.13170 0.0752731
\(803\) 2.20723 + 13.2384i 0.0778914 + 0.467173i
\(804\) 0 0
\(805\) −20.1197 4.27657i −0.709126 0.150729i
\(806\) 4.87996 2.17270i 0.171889 0.0765300i
\(807\) 0 0
\(808\) −14.9932 + 3.18690i −0.527459 + 0.112115i
\(809\) 6.46767 19.9055i 0.227391 0.699839i −0.770649 0.637260i \(-0.780068\pi\)
0.998040 0.0625783i \(-0.0199323\pi\)
\(810\) 0 0
\(811\) −1.57186 1.14203i −0.0551956 0.0401019i 0.559845 0.828597i \(-0.310861\pi\)
−0.615041 + 0.788495i \(0.710861\pi\)
\(812\) −18.5825 + 20.6379i −0.652117 + 0.724249i
\(813\) 0 0
\(814\) 6.17482 + 3.93897i 0.216427 + 0.138061i
\(815\) 18.0646 31.2888i 0.632775 1.09600i
\(816\) 0 0
\(817\) 0.167031 1.58919i 0.00584367 0.0555988i
\(818\) 0.556008 0.403964i 0.0194404 0.0141243i
\(819\) 0 0
\(820\) −11.0369 + 33.9680i −0.385424 + 1.18621i
\(821\) −9.90445 4.40974i −0.345668 0.153901i 0.226557 0.973998i \(-0.427253\pi\)
−0.572225 + 0.820097i \(0.693920\pi\)
\(822\) 0 0
\(823\) −46.6261 9.91069i −1.62529 0.345465i −0.696924 0.717145i \(-0.745449\pi\)
−0.928361 + 0.371680i \(0.878782\pi\)
\(824\) −2.83556 + 4.91134i −0.0987815 + 0.171094i
\(825\) 0 0
\(826\) 6.59880 + 11.4295i 0.229601 + 0.397681i
\(827\) −11.5619 35.5838i −0.402046 1.23737i −0.923337 0.383991i \(-0.874549\pi\)
0.521291 0.853379i \(-0.325451\pi\)
\(828\) 0 0
\(829\) −8.66207 + 6.29336i −0.300846 + 0.218578i −0.727959 0.685621i \(-0.759531\pi\)
0.427113 + 0.904198i \(0.359531\pi\)
\(830\) −4.91097 + 1.04386i −0.170462 + 0.0362329i
\(831\) 0 0
\(832\) 2.46115 + 23.4163i 0.0853252 + 0.811815i
\(833\) 37.8570 16.8550i 1.31167 0.583992i
\(834\) 0 0
\(835\) 25.6181 + 44.3718i 0.886549 + 1.53555i
\(836\) −5.69284 8.61209i −0.196891 0.297856i
\(837\) 0 0
\(838\) −0.987051 3.03783i −0.0340971 0.104940i
\(839\) 1.60571 15.2774i 0.0554354 0.527433i −0.931202 0.364503i \(-0.881239\pi\)
0.986638 0.162930i \(-0.0520944\pi\)
\(840\) 0 0
\(841\) −10.9562 12.1681i −0.377799 0.419588i
\(842\) 1.31746 + 1.46319i 0.0454026 + 0.0504247i
\(843\) 0 0
\(844\) 1.65862 15.7807i 0.0570920 0.543194i
\(845\) −1.53168 4.71402i −0.0526913 0.162167i
\(846\) 0 0
\(847\) 10.0272 + 43.6703i 0.344539 + 1.50053i
\(848\) −2.76543 4.78987i −0.0949654 0.164485i
\(849\) 0 0
\(850\) −2.63032 + 1.17109i −0.0902192 + 0.0401682i
\(851\) −1.50913 14.3585i −0.0517325 0.492201i
\(852\) 0 0
\(853\) −40.5581 + 8.62090i −1.38868 + 0.295174i −0.840785 0.541370i \(-0.817906\pi\)
−0.547900 + 0.836544i \(0.684573\pi\)
\(854\) 8.08825 5.87646i 0.276774 0.201088i
\(855\) 0 0
\(856\) 0.959576 + 2.95327i 0.0327976 + 0.100941i
\(857\) 9.20273 + 15.9396i 0.314359 + 0.544486i 0.979301 0.202409i \(-0.0648770\pi\)
−0.664942 + 0.746895i \(0.731544\pi\)
\(858\) 0 0
\(859\) 7.52426 13.0324i 0.256725 0.444660i −0.708638 0.705572i \(-0.750690\pi\)
0.965363 + 0.260912i \(0.0840233\pi\)
\(860\) −5.00735 1.06435i −0.170749 0.0362939i
\(861\) 0 0
\(862\) −7.60142 3.38437i −0.258905 0.115272i
\(863\) 4.45906 13.7236i 0.151788 0.467155i −0.846033 0.533130i \(-0.821016\pi\)
0.997821 + 0.0659746i \(0.0210156\pi\)
\(864\) 0 0
\(865\) 3.31799 2.41066i 0.112815 0.0819649i
\(866\) −1.08900 + 10.3611i −0.0370056 + 0.352084i
\(867\) 0 0
\(868\) 19.0095 32.9255i 0.645225 1.11756i
\(869\) −5.19484 13.2110i −0.176223 0.448152i
\(870\) 0 0
\(871\) −4.48507 + 4.98118i −0.151971 + 0.168781i
\(872\) 15.6910 + 11.4002i 0.531365 + 0.386059i
\(873\) 0 0
\(874\) 0.266492 0.820177i 0.00901421 0.0277429i
\(875\) 28.7378 6.10840i 0.971514 0.206502i
\(876\) 0 0
\(877\) −21.9939 + 9.79233i −0.742683 + 0.330664i −0.742960 0.669336i \(-0.766579\pi\)
0.000276873 1.00000i \(0.499912\pi\)
\(878\) −5.99601 1.27449i −0.202356 0.0430120i
\(879\) 0 0
\(880\) −28.0489 + 14.5801i −0.945527 + 0.491494i
\(881\) 10.0956 0.340129 0.170064 0.985433i \(-0.445602\pi\)
0.170064 + 0.985433i \(0.445602\pi\)
\(882\) 0 0
\(883\) −41.0332 29.8124i −1.38088 1.00327i −0.996798 0.0799659i \(-0.974519\pi\)
−0.384079 0.923300i \(-0.625481\pi\)
\(884\) −29.1614 12.9835i −0.980803 0.436682i
\(885\) 0 0
\(886\) −6.38136 7.08721i −0.214386 0.238100i
\(887\) −0.268921 2.55861i −0.00902949 0.0859099i 0.989079 0.147386i \(-0.0470859\pi\)
−0.998109 + 0.0614760i \(0.980419\pi\)
\(888\) 0 0
\(889\) −6.67880 + 7.41756i −0.224000 + 0.248777i
\(890\) −7.15422 −0.239810
\(891\) 0 0
\(892\) 14.1064 0.472316
\(893\) 6.36808 7.07247i 0.213100 0.236671i
\(894\) 0 0
\(895\) −3.73440 35.5304i −0.124827 1.18765i
\(896\) −22.4038 24.8820i −0.748460 0.831249i
\(897\) 0 0
\(898\) 10.2983 + 4.58508i 0.343658 + 0.153006i
\(899\) −13.9843 10.1602i −0.466403 0.338862i
\(900\) 0 0
\(901\) 6.79061 0.226228
\(902\) 4.63284 + 4.55811i 0.154257 + 0.151768i
\(903\) 0 0
\(904\) 1.03140 + 0.219232i 0.0343040 + 0.00729154i
\(905\) −6.92585 + 3.08359i −0.230223 + 0.102502i
\(906\) 0 0
\(907\) −10.0699 + 2.14042i −0.334366 + 0.0710716i −0.372035 0.928219i \(-0.621340\pi\)
0.0376696 + 0.999290i \(0.488007\pi\)
\(908\) −11.2304 + 34.5636i −0.372693 + 1.14703i
\(909\) 0 0
\(910\) 9.80197 + 7.12155i 0.324932 + 0.236077i
\(911\) 10.4401 11.5950i 0.345897 0.384158i −0.544944 0.838472i \(-0.683449\pi\)
0.890841 + 0.454315i \(0.150116\pi\)
\(912\) 0 0
\(913\) 5.41031 20.8688i 0.179055 0.690655i
\(914\) 5.34829 9.26351i 0.176906 0.306410i
\(915\) 0 0
\(916\) −1.57627 + 14.9972i −0.0520815 + 0.495523i
\(917\) −13.1729 + 9.57070i −0.435009 + 0.316052i
\(918\) 0 0
\(919\) 3.46483 10.6637i 0.114294 0.351761i −0.877505 0.479568i \(-0.840794\pi\)
0.991799 + 0.127806i \(0.0407935\pi\)
\(920\) −5.15477 2.29505i −0.169948 0.0756655i
\(921\) 0 0
\(922\) −5.40131 1.14808i −0.177883 0.0378102i
\(923\) −11.0549 + 19.1476i −0.363875 + 0.630251i
\(924\) 0 0
\(925\) −9.05036 15.6757i −0.297574 0.515413i
\(926\) 1.26440 + 3.89141i 0.0415506 + 0.127880i
\(927\) 0 0
\(928\) −9.30886 + 6.76328i −0.305578 + 0.222016i
\(929\) 23.0134 4.89164i 0.755044 0.160490i 0.185720 0.982603i \(-0.440538\pi\)
0.569324 + 0.822113i \(0.307205\pi\)
\(930\) 0 0
\(931\) 1.62658 + 15.4759i 0.0533091 + 0.507202i
\(932\) −11.5149 + 5.12678i −0.377185 + 0.167933i
\(933\) 0 0
\(934\) 3.18239 + 5.51206i 0.104131 + 0.180360i
\(935\) 1.71609 38.7741i 0.0561221 1.26805i
\(936\) 0 0
\(937\) 5.76486 + 17.7424i 0.188330 + 0.579619i 0.999990 0.00451068i \(-0.00143580\pi\)
−0.811660 + 0.584130i \(0.801436\pi\)
\(938\) 0.211322 2.01060i 0.00689992 0.0656483i
\(939\) 0 0
\(940\) −20.4009 22.6575i −0.665405 0.739007i
\(941\) 21.7418 + 24.1467i 0.708763 + 0.787161i 0.984745 0.174002i \(-0.0556698\pi\)
−0.275982 + 0.961163i \(0.589003\pi\)
\(942\) 0 0
\(943\) 1.33914 12.7411i 0.0436085 0.414908i
\(944\) −12.3551 38.0250i −0.402123 1.23761i
\(945\) 0 0
\(946\) −0.580329 + 0.728681i −0.0188681 + 0.0236915i
\(947\) −1.92137 3.32790i −0.0624360 0.108142i 0.833118 0.553096i \(-0.186554\pi\)
−0.895554 + 0.444953i \(0.853220\pi\)
\(948\) 0 0
\(949\) −14.2361 + 6.33833i −0.462124 + 0.205751i
\(950\) −0.113016 1.07527i −0.00366671 0.0348864i
\(951\) 0 0
\(952\) 19.2340 4.08832i 0.623379 0.132503i
\(953\) 15.4434 11.2203i 0.500262 0.363461i −0.308855 0.951109i \(-0.599946\pi\)
0.809117 + 0.587648i \(0.199946\pi\)
\(954\) 0 0
\(955\) −14.0134 43.1289i −0.453464 1.39562i
\(956\) 24.5077 + 42.4486i 0.792636 + 1.37289i
\(957\) 0 0
\(958\) 3.31651 5.74436i 0.107152 0.185592i
\(959\) −4.33995 0.922485i −0.140144 0.0297886i
\(960\) 0 0
\(961\) −6.70155 2.98372i −0.216179 0.0962492i
\(962\) −2.62793 + 8.08795i −0.0847280 + 0.260766i
\(963\) 0 0
\(964\) −4.62879 + 3.36302i −0.149083 + 0.108315i
\(965\) −6.24022 + 59.3718i −0.200880 + 1.91124i
\(966\) 0 0
\(967\) −13.2813 + 23.0039i −0.427099 + 0.739757i −0.996614 0.0822239i \(-0.973798\pi\)
0.569515 + 0.821981i \(0.307131\pi\)
\(968\) 0.199855 + 12.2899i 0.00642357 + 0.395011i
\(969\) 0 0
\(970\) −3.83110 + 4.25487i −0.123009 + 0.136616i
\(971\) −41.3472 30.0405i −1.32689 0.964045i −0.999819 0.0190472i \(-0.993937\pi\)
−0.327076 0.944998i \(-0.606063\pi\)
\(972\) 0 0
\(973\) −3.63134 + 11.1761i −0.116415 + 0.358290i
\(974\) 0.0755312 0.0160547i 0.00242018 0.000514424i
\(975\) 0 0
\(976\) −27.6691 + 12.3191i −0.885666 + 0.394324i
\(977\) −20.7119 4.40244i −0.662631 0.140847i −0.135694 0.990751i \(-0.543326\pi\)
−0.526937 + 0.849904i \(0.676660\pi\)
\(978\) 0 0
\(979\) 13.7236 27.4842i 0.438608 0.878399i
\(980\) 49.8521 1.59247
\(981\) 0 0
\(982\) 0.970410 + 0.705044i 0.0309670 + 0.0224989i
\(983\) −46.4405 20.6766i −1.48122 0.659482i −0.502481 0.864588i \(-0.667579\pi\)
−0.978740 + 0.205106i \(0.934246\pi\)
\(984\) 0 0
\(985\) 33.0321 + 36.6859i 1.05249 + 1.16891i
\(986\) −0.457559 4.35338i −0.0145716 0.138640i
\(987\) 0 0
\(988\) 8.02073 8.90792i 0.255173 0.283399i
\(989\) 1.83625 0.0583895
\(990\) 0 0
\(991\) −13.1480 −0.417662 −0.208831 0.977952i \(-0.566966\pi\)
−0.208831 + 0.977952i \(0.566966\pi\)
\(992\) 10.5404 11.7063i 0.334659 0.371677i
\(993\) 0 0
\(994\) −0.697061 6.63209i −0.0221094 0.210357i
\(995\) 45.4860 + 50.5174i 1.44200 + 1.60151i
\(996\) 0 0
\(997\) −33.9918 15.1341i −1.07653 0.479303i −0.209629 0.977781i \(-0.567226\pi\)
−0.866902 + 0.498478i \(0.833892\pi\)
\(998\) −3.54437 2.57514i −0.112195 0.0815146i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.280.5 72
3.2 odd 2 99.2.m.b.49.5 yes 72
9.2 odd 6 99.2.m.b.16.5 72
9.4 even 3 891.2.f.e.82.5 36
9.5 odd 6 891.2.f.f.82.5 36
9.7 even 3 inner 297.2.n.b.181.5 72
11.9 even 5 inner 297.2.n.b.64.5 72
33.8 even 10 1089.2.e.o.364.10 36
33.14 odd 10 1089.2.e.p.364.9 36
33.20 odd 10 99.2.m.b.31.5 yes 72
99.14 odd 30 9801.2.a.cm.1.10 18
99.20 odd 30 99.2.m.b.97.5 yes 72
99.31 even 15 891.2.f.e.163.5 36
99.41 even 30 9801.2.a.co.1.9 18
99.47 odd 30 1089.2.e.p.727.9 36
99.58 even 15 9801.2.a.cp.1.9 18
99.74 even 30 1089.2.e.o.727.10 36
99.85 odd 30 9801.2.a.cn.1.10 18
99.86 odd 30 891.2.f.f.163.5 36
99.97 even 15 inner 297.2.n.b.262.5 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.5 72 9.2 odd 6
99.2.m.b.31.5 yes 72 33.20 odd 10
99.2.m.b.49.5 yes 72 3.2 odd 2
99.2.m.b.97.5 yes 72 99.20 odd 30
297.2.n.b.64.5 72 11.9 even 5 inner
297.2.n.b.181.5 72 9.7 even 3 inner
297.2.n.b.262.5 72 99.97 even 15 inner
297.2.n.b.280.5 72 1.1 even 1 trivial
891.2.f.e.82.5 36 9.4 even 3
891.2.f.e.163.5 36 99.31 even 15
891.2.f.f.82.5 36 9.5 odd 6
891.2.f.f.163.5 36 99.86 odd 30
1089.2.e.o.364.10 36 33.8 even 10
1089.2.e.o.727.10 36 99.74 even 30
1089.2.e.p.364.9 36 33.14 odd 10
1089.2.e.p.727.9 36 99.47 odd 30
9801.2.a.cm.1.10 18 99.14 odd 30
9801.2.a.cn.1.10 18 99.85 odd 30
9801.2.a.co.1.9 18 99.41 even 30
9801.2.a.cp.1.9 18 99.58 even 15