Properties

Label 297.2.n.b.280.1
Level $297$
Weight $2$
Character 297.280
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(37,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([10, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 280.1
Character \(\chi\) \(=\) 297.280
Dual form 297.2.n.b.262.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55841 + 1.73079i) q^{2} +(-0.357932 - 3.40549i) q^{4} +(0.212128 + 0.235592i) q^{5} +(-1.29586 - 0.576953i) q^{7} +(2.68358 + 1.94973i) q^{8} -0.738340 q^{10} +(-2.21923 - 2.46476i) q^{11} +(-4.10532 - 0.872613i) q^{13} +(3.01805 - 1.34372i) q^{14} +(-0.857827 + 0.182337i) q^{16} +(1.92957 - 5.93860i) q^{17} +(-2.50622 - 1.82087i) q^{19} +(0.726379 - 0.806725i) q^{20} +(7.72443 + 7.98214e-5i) q^{22} +(-2.26025 + 3.91487i) q^{23} +(0.512137 - 4.87266i) q^{25} +(7.90807 - 5.74555i) q^{26} +(-1.50098 + 4.61954i) q^{28} +(-2.67527 - 1.19111i) q^{29} +(9.33325 + 1.98384i) q^{31} +(-2.29583 + 3.97649i) q^{32} +(7.27140 + 12.5944i) q^{34} +(-0.138962 - 0.427681i) q^{35} +(-0.685637 + 0.498145i) q^{37} +(7.05725 - 1.50006i) q^{38} +(0.109920 + 1.04582i) q^{40} +(3.53506 - 1.57391i) q^{41} +(-1.77651 - 3.07700i) q^{43} +(-7.59937 + 8.43978i) q^{44} +(-3.25341 - 10.0130i) q^{46} +(-0.778841 + 7.41018i) q^{47} +(-3.33754 - 3.70672i) q^{49} +(7.63541 + 8.47998i) q^{50} +(-1.50225 + 14.2930i) q^{52} +(-2.06517 - 6.35595i) q^{53} +(0.109916 - 1.04568i) q^{55} +(-2.35263 - 4.07487i) q^{56} +(6.23070 - 2.77409i) q^{58} +(-1.26216 - 12.0086i) q^{59} +(-4.51935 + 0.960618i) q^{61} +(-17.9786 + 13.0622i) q^{62} +(-3.84663 - 11.8387i) q^{64} +(-0.665272 - 1.15229i) q^{65} +(-4.98385 + 8.63229i) q^{67} +(-20.9145 - 4.44552i) q^{68} +(0.956783 + 0.425987i) q^{70} +(-0.905630 + 2.78724i) q^{71} +(-3.43158 + 2.49319i) q^{73} +(0.206320 - 1.96300i) q^{74} +(-5.30392 + 9.18665i) q^{76} +(1.45376 + 4.47436i) q^{77} +(-2.26299 + 2.51331i) q^{79} +(-0.224926 - 0.163418i) q^{80} +(-2.78496 + 8.57123i) q^{82} +(-13.1927 + 2.80420i) q^{83} +(1.80840 - 0.805152i) q^{85} +(8.09416 + 1.72047i) q^{86} +(-1.14986 - 10.9413i) q^{88} -2.69745 q^{89} +(4.81645 + 3.49936i) q^{91} +(14.1411 + 6.29601i) q^{92} +(-11.6117 - 12.8961i) q^{94} +(-0.102656 - 0.976702i) q^{95} +(-3.51792 + 3.90704i) q^{97} +11.6168 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55841 + 1.73079i −1.10196 + 1.22385i −0.129303 + 0.991605i \(0.541274\pi\)
−0.972657 + 0.232245i \(0.925393\pi\)
\(3\) 0 0
\(4\) −0.357932 3.40549i −0.178966 1.70275i
\(5\) 0.212128 + 0.235592i 0.0948664 + 0.105360i 0.788708 0.614767i \(-0.210750\pi\)
−0.693842 + 0.720127i \(0.744083\pi\)
\(6\) 0 0
\(7\) −1.29586 0.576953i −0.489788 0.218068i 0.146956 0.989143i \(-0.453052\pi\)
−0.636744 + 0.771075i \(0.719719\pi\)
\(8\) 2.68358 + 1.94973i 0.948787 + 0.689334i
\(9\) 0 0
\(10\) −0.738340 −0.233484
\(11\) −2.21923 2.46476i −0.669123 0.743152i
\(12\) 0 0
\(13\) −4.10532 0.872613i −1.13861 0.242019i −0.400238 0.916411i \(-0.631072\pi\)
−0.738373 + 0.674392i \(0.764406\pi\)
\(14\) 3.01805 1.34372i 0.806609 0.359125i
\(15\) 0 0
\(16\) −0.857827 + 0.182337i −0.214457 + 0.0455842i
\(17\) 1.92957 5.93860i 0.467989 1.44032i −0.387195 0.921998i \(-0.626556\pi\)
0.855184 0.518325i \(-0.173444\pi\)
\(18\) 0 0
\(19\) −2.50622 1.82087i −0.574966 0.417737i 0.261940 0.965084i \(-0.415638\pi\)
−0.836906 + 0.547347i \(0.815638\pi\)
\(20\) 0.726379 0.806725i 0.162423 0.180389i
\(21\) 0 0
\(22\) 7.72443 7.98214e-5i 1.64685 1.70180e-5i
\(23\) −2.26025 + 3.91487i −0.471295 + 0.816306i −0.999461 0.0328349i \(-0.989546\pi\)
0.528166 + 0.849141i \(0.322880\pi\)
\(24\) 0 0
\(25\) 0.512137 4.87266i 0.102427 0.974532i
\(26\) 7.90807 5.74555i 1.55090 1.12679i
\(27\) 0 0
\(28\) −1.50098 + 4.61954i −0.283659 + 0.873011i
\(29\) −2.67527 1.19111i −0.496785 0.221183i 0.143021 0.989720i \(-0.454318\pi\)
−0.639805 + 0.768537i \(0.720985\pi\)
\(30\) 0 0
\(31\) 9.33325 + 1.98384i 1.67630 + 0.356309i 0.945334 0.326103i \(-0.105736\pi\)
0.730967 + 0.682412i \(0.239069\pi\)
\(32\) −2.29583 + 3.97649i −0.405848 + 0.702950i
\(33\) 0 0
\(34\) 7.27140 + 12.5944i 1.24703 + 2.15993i
\(35\) −0.138962 0.427681i −0.0234889 0.0722913i
\(36\) 0 0
\(37\) −0.685637 + 0.498145i −0.112718 + 0.0818945i −0.642716 0.766104i \(-0.722193\pi\)
0.529998 + 0.847999i \(0.322193\pi\)
\(38\) 7.05725 1.50006i 1.14484 0.243343i
\(39\) 0 0
\(40\) 0.109920 + 1.04582i 0.0173799 + 0.165359i
\(41\) 3.53506 1.57391i 0.552084 0.245804i −0.111682 0.993744i \(-0.535624\pi\)
0.663766 + 0.747940i \(0.268957\pi\)
\(42\) 0 0
\(43\) −1.77651 3.07700i −0.270915 0.469239i 0.698181 0.715921i \(-0.253993\pi\)
−0.969096 + 0.246682i \(0.920660\pi\)
\(44\) −7.59937 + 8.43978i −1.14565 + 1.27235i
\(45\) 0 0
\(46\) −3.25341 10.0130i −0.479689 1.47633i
\(47\) −0.778841 + 7.41018i −0.113606 + 1.08089i 0.778059 + 0.628191i \(0.216204\pi\)
−0.891665 + 0.452695i \(0.850462\pi\)
\(48\) 0 0
\(49\) −3.33754 3.70672i −0.476792 0.529531i
\(50\) 7.63541 + 8.47998i 1.07981 + 1.19925i
\(51\) 0 0
\(52\) −1.50225 + 14.2930i −0.208325 + 1.98208i
\(53\) −2.06517 6.35595i −0.283673 0.873057i −0.986793 0.161986i \(-0.948210\pi\)
0.703120 0.711071i \(-0.251790\pi\)
\(54\) 0 0
\(55\) 0.109916 1.04568i 0.0148210 0.140999i
\(56\) −2.35263 4.07487i −0.314383 0.544528i
\(57\) 0 0
\(58\) 6.23070 2.77409i 0.818132 0.364256i
\(59\) −1.26216 12.0086i −0.164319 1.56339i −0.696998 0.717073i \(-0.745482\pi\)
0.532680 0.846317i \(-0.321185\pi\)
\(60\) 0 0
\(61\) −4.51935 + 0.960618i −0.578644 + 0.122995i −0.487931 0.872882i \(-0.662248\pi\)
−0.0907135 + 0.995877i \(0.528915\pi\)
\(62\) −17.9786 + 13.0622i −2.28329 + 1.65890i
\(63\) 0 0
\(64\) −3.84663 11.8387i −0.480828 1.47984i
\(65\) −0.665272 1.15229i −0.0825169 0.142923i
\(66\) 0 0
\(67\) −4.98385 + 8.63229i −0.608875 + 1.05460i 0.382552 + 0.923934i \(0.375045\pi\)
−0.991426 + 0.130668i \(0.958288\pi\)
\(68\) −20.9145 4.44552i −2.53626 0.539098i
\(69\) 0 0
\(70\) 0.956783 + 0.425987i 0.114357 + 0.0509152i
\(71\) −0.905630 + 2.78724i −0.107479 + 0.330785i −0.990304 0.138916i \(-0.955638\pi\)
0.882826 + 0.469701i \(0.155638\pi\)
\(72\) 0 0
\(73\) −3.43158 + 2.49319i −0.401636 + 0.291806i −0.770207 0.637794i \(-0.779847\pi\)
0.368571 + 0.929600i \(0.379847\pi\)
\(74\) 0.206320 1.96300i 0.0239842 0.228195i
\(75\) 0 0
\(76\) −5.30392 + 9.18665i −0.608401 + 1.05378i
\(77\) 1.45376 + 4.47436i 0.165671 + 0.509901i
\(78\) 0 0
\(79\) −2.26299 + 2.51331i −0.254606 + 0.282769i −0.856875 0.515525i \(-0.827597\pi\)
0.602268 + 0.798294i \(0.294264\pi\)
\(80\) −0.224926 0.163418i −0.0251475 0.0182707i
\(81\) 0 0
\(82\) −2.78496 + 8.57123i −0.307548 + 0.946534i
\(83\) −13.1927 + 2.80420i −1.44809 + 0.307801i −0.863838 0.503770i \(-0.831946\pi\)
−0.584253 + 0.811571i \(0.698613\pi\)
\(84\) 0 0
\(85\) 1.80840 0.805152i 0.196149 0.0873310i
\(86\) 8.09416 + 1.72047i 0.872815 + 0.185523i
\(87\) 0 0
\(88\) −1.14986 10.9413i −0.122575 1.16634i
\(89\) −2.69745 −0.285929 −0.142965 0.989728i \(-0.545664\pi\)
−0.142965 + 0.989728i \(0.545664\pi\)
\(90\) 0 0
\(91\) 4.81645 + 3.49936i 0.504902 + 0.366833i
\(92\) 14.1411 + 6.29601i 1.47431 + 0.656404i
\(93\) 0 0
\(94\) −11.6117 12.8961i −1.19765 1.33013i
\(95\) −0.102656 0.976702i −0.0105322 0.100208i
\(96\) 0 0
\(97\) −3.51792 + 3.90704i −0.357190 + 0.396700i −0.894781 0.446506i \(-0.852668\pi\)
0.537590 + 0.843206i \(0.319335\pi\)
\(98\) 11.6168 1.17347
\(99\) 0 0
\(100\) −16.7771 −1.67771
\(101\) 6.37664 7.08198i 0.634500 0.704683i −0.337059 0.941484i \(-0.609432\pi\)
0.971558 + 0.236800i \(0.0760987\pi\)
\(102\) 0 0
\(103\) −0.996745 9.48339i −0.0982122 0.934426i −0.927050 0.374938i \(-0.877664\pi\)
0.828838 0.559489i \(-0.189003\pi\)
\(104\) −9.31558 10.3460i −0.913468 1.01451i
\(105\) 0 0
\(106\) 14.2192 + 6.33078i 1.38109 + 0.614900i
\(107\) 4.18472 + 3.04038i 0.404552 + 0.293924i 0.771393 0.636359i \(-0.219560\pi\)
−0.366840 + 0.930284i \(0.619560\pi\)
\(108\) 0 0
\(109\) 14.4767 1.38661 0.693307 0.720643i \(-0.256153\pi\)
0.693307 + 0.720643i \(0.256153\pi\)
\(110\) 1.63855 + 1.81983i 0.156229 + 0.173514i
\(111\) 0 0
\(112\) 1.21682 + 0.258643i 0.114979 + 0.0244395i
\(113\) 6.78911 3.02271i 0.638666 0.284352i −0.0617453 0.998092i \(-0.519667\pi\)
0.700411 + 0.713740i \(0.253000\pi\)
\(114\) 0 0
\(115\) −1.40177 + 0.297956i −0.130716 + 0.0277845i
\(116\) −3.09874 + 9.53694i −0.287711 + 0.885482i
\(117\) 0 0
\(118\) 22.7513 + 16.5298i 2.09443 + 1.52169i
\(119\) −5.92674 + 6.58231i −0.543303 + 0.603400i
\(120\) 0 0
\(121\) −1.15004 + 10.9397i −0.104549 + 0.994520i
\(122\) 5.38037 9.31907i 0.487116 0.843709i
\(123\) 0 0
\(124\) 3.41530 32.4944i 0.306703 2.91808i
\(125\) 2.53897 1.84467i 0.227092 0.164992i
\(126\) 0 0
\(127\) −4.08040 + 12.5582i −0.362077 + 1.11436i 0.589715 + 0.807612i \(0.299240\pi\)
−0.951791 + 0.306746i \(0.900760\pi\)
\(128\) 18.0955 + 8.05664i 1.59943 + 0.712113i
\(129\) 0 0
\(130\) 3.03112 + 0.644285i 0.265847 + 0.0565075i
\(131\) −3.65021 + 6.32236i −0.318921 + 0.552387i −0.980263 0.197697i \(-0.936654\pi\)
0.661342 + 0.750084i \(0.269987\pi\)
\(132\) 0 0
\(133\) 2.19714 + 3.80556i 0.190516 + 0.329984i
\(134\) −7.17377 22.0786i −0.619719 1.90730i
\(135\) 0 0
\(136\) 16.7568 12.1746i 1.43689 1.04396i
\(137\) 9.59302 2.03906i 0.819587 0.174209i 0.221008 0.975272i \(-0.429065\pi\)
0.598579 + 0.801064i \(0.295732\pi\)
\(138\) 0 0
\(139\) 0.990605 + 9.42498i 0.0840220 + 0.799416i 0.952674 + 0.303994i \(0.0983202\pi\)
−0.868652 + 0.495423i \(0.835013\pi\)
\(140\) −1.40673 + 0.626314i −0.118890 + 0.0529332i
\(141\) 0 0
\(142\) −3.41278 5.91111i −0.286394 0.496049i
\(143\) 6.95987 + 12.0551i 0.582014 + 1.00810i
\(144\) 0 0
\(145\) −0.286884 0.882938i −0.0238244 0.0733240i
\(146\) 1.03262 9.82474i 0.0854604 0.813101i
\(147\) 0 0
\(148\) 1.94184 + 2.15663i 0.159618 + 0.177274i
\(149\) 2.76180 + 3.06729i 0.226256 + 0.251282i 0.845575 0.533857i \(-0.179258\pi\)
−0.619319 + 0.785139i \(0.712591\pi\)
\(150\) 0 0
\(151\) 1.85802 17.6779i 0.151204 1.43861i −0.611186 0.791487i \(-0.709307\pi\)
0.762389 0.647119i \(-0.224026\pi\)
\(152\) −3.17541 9.77291i −0.257560 0.792688i
\(153\) 0 0
\(154\) −10.0097 4.45673i −0.806605 0.359134i
\(155\) 1.51246 + 2.61967i 0.121484 + 0.210417i
\(156\) 0 0
\(157\) −1.84286 + 0.820493i −0.147076 + 0.0654825i −0.478955 0.877840i \(-0.658984\pi\)
0.331879 + 0.943322i \(0.392318\pi\)
\(158\) −0.823335 7.83351i −0.0655010 0.623200i
\(159\) 0 0
\(160\) −1.42384 + 0.302646i −0.112564 + 0.0239262i
\(161\) 5.18765 3.76905i 0.408844 0.297043i
\(162\) 0 0
\(163\) −0.488377 1.50307i −0.0382526 0.117729i 0.930107 0.367289i \(-0.119714\pi\)
−0.968359 + 0.249560i \(0.919714\pi\)
\(164\) −6.62526 11.4753i −0.517346 0.896069i
\(165\) 0 0
\(166\) 15.7062 27.2039i 1.21904 2.11143i
\(167\) 14.9868 + 3.18555i 1.15971 + 0.246505i 0.747297 0.664490i \(-0.231351\pi\)
0.412417 + 0.910995i \(0.364685\pi\)
\(168\) 0 0
\(169\) 4.21612 + 1.87714i 0.324317 + 0.144395i
\(170\) −1.42468 + 4.38471i −0.109268 + 0.336292i
\(171\) 0 0
\(172\) −9.84284 + 7.15124i −0.750510 + 0.545277i
\(173\) −0.103069 + 0.980638i −0.00783620 + 0.0745565i −0.997741 0.0671768i \(-0.978601\pi\)
0.989905 + 0.141733i \(0.0452675\pi\)
\(174\) 0 0
\(175\) −3.47495 + 6.01879i −0.262682 + 0.454978i
\(176\) 2.35313 + 1.70969i 0.177374 + 0.128872i
\(177\) 0 0
\(178\) 4.20373 4.66871i 0.315083 0.349935i
\(179\) −9.08186 6.59836i −0.678810 0.493185i 0.194153 0.980971i \(-0.437804\pi\)
−0.872963 + 0.487787i \(0.837804\pi\)
\(180\) 0 0
\(181\) 5.53932 17.0483i 0.411735 1.26719i −0.503405 0.864051i \(-0.667919\pi\)
0.915139 0.403138i \(-0.132081\pi\)
\(182\) −13.5626 + 2.88283i −1.00533 + 0.213689i
\(183\) 0 0
\(184\) −13.6985 + 6.09896i −1.00987 + 0.449621i
\(185\) −0.262801 0.0558602i −0.0193216 0.00410692i
\(186\) 0 0
\(187\) −18.9194 + 8.42321i −1.38352 + 0.615966i
\(188\) 25.5141 1.86081
\(189\) 0 0
\(190\) 1.85044 + 1.34442i 0.134245 + 0.0975348i
\(191\) −11.7737 5.24200i −0.851917 0.379298i −0.0661416 0.997810i \(-0.521069\pi\)
−0.785775 + 0.618513i \(0.787736\pi\)
\(192\) 0 0
\(193\) −15.4911 17.2046i −1.11507 1.23841i −0.968447 0.249219i \(-0.919826\pi\)
−0.146624 0.989192i \(-0.546841\pi\)
\(194\) −1.27991 12.1775i −0.0918921 0.874295i
\(195\) 0 0
\(196\) −11.4286 + 12.6927i −0.816327 + 0.906623i
\(197\) −1.07766 −0.0767801 −0.0383900 0.999263i \(-0.512223\pi\)
−0.0383900 + 0.999263i \(0.512223\pi\)
\(198\) 0 0
\(199\) 16.4307 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(200\) 10.8747 12.0776i 0.768960 0.854017i
\(201\) 0 0
\(202\) 2.31999 + 22.0732i 0.163234 + 1.55307i
\(203\) 2.77955 + 3.08701i 0.195086 + 0.216665i
\(204\) 0 0
\(205\) 1.12069 + 0.498961i 0.0782721 + 0.0348490i
\(206\) 17.9671 + 13.0538i 1.25182 + 0.909503i
\(207\) 0 0
\(208\) 3.68076 0.255215
\(209\) 1.07386 + 10.2182i 0.0742807 + 0.706804i
\(210\) 0 0
\(211\) 14.6231 + 3.10824i 1.00670 + 0.213980i 0.681618 0.731708i \(-0.261276\pi\)
0.325077 + 0.945688i \(0.394610\pi\)
\(212\) −20.9060 + 9.30793i −1.43583 + 0.639271i
\(213\) 0 0
\(214\) −11.7837 + 2.50471i −0.805520 + 0.171219i
\(215\) 0.348070 1.07125i 0.0237382 0.0730585i
\(216\) 0 0
\(217\) −10.9500 7.95563i −0.743333 0.540063i
\(218\) −22.5605 + 25.0560i −1.52799 + 1.69701i
\(219\) 0 0
\(220\) −3.60038 3.72050e-5i −0.242738 2.50836e-6i
\(221\) −13.1036 + 22.6961i −0.881444 + 1.52671i
\(222\) 0 0
\(223\) −0.201351 + 1.91573i −0.0134835 + 0.128286i −0.999193 0.0401676i \(-0.987211\pi\)
0.985710 + 0.168454i \(0.0538775\pi\)
\(224\) 5.26931 3.82838i 0.352070 0.255794i
\(225\) 0 0
\(226\) −5.34854 + 16.4611i −0.355779 + 1.09498i
\(227\) 14.6269 + 6.51230i 0.970819 + 0.432236i 0.829978 0.557796i \(-0.188353\pi\)
0.140841 + 0.990032i \(0.455020\pi\)
\(228\) 0 0
\(229\) 0.511498 + 0.108722i 0.0338007 + 0.00718457i 0.224781 0.974409i \(-0.427833\pi\)
−0.190980 + 0.981594i \(0.561167\pi\)
\(230\) 1.66883 2.89050i 0.110040 0.190594i
\(231\) 0 0
\(232\) −4.85695 8.41248i −0.318874 0.552306i
\(233\) 3.16820 + 9.75073i 0.207556 + 0.638792i 0.999599 + 0.0283260i \(0.00901764\pi\)
−0.792043 + 0.610466i \(0.790982\pi\)
\(234\) 0 0
\(235\) −1.91099 + 1.38842i −0.124659 + 0.0905703i
\(236\) −40.4435 + 8.59653i −2.63265 + 0.559587i
\(237\) 0 0
\(238\) −2.15630 20.5158i −0.139772 1.32984i
\(239\) 8.80753 3.92137i 0.569712 0.253652i −0.101602 0.994825i \(-0.532397\pi\)
0.671314 + 0.741173i \(0.265730\pi\)
\(240\) 0 0
\(241\) 0.139366 + 0.241388i 0.00897733 + 0.0155492i 0.870479 0.492205i \(-0.163809\pi\)
−0.861502 + 0.507754i \(0.830476\pi\)
\(242\) −17.1421 19.0390i −1.10193 1.22387i
\(243\) 0 0
\(244\) 4.88900 + 15.0468i 0.312986 + 0.963272i
\(245\) 0.165286 1.57259i 0.0105598 0.100469i
\(246\) 0 0
\(247\) 8.69991 + 9.66223i 0.553562 + 0.614793i
\(248\) 21.1785 + 23.5211i 1.34484 + 1.49359i
\(249\) 0 0
\(250\) −0.764019 + 7.26916i −0.0483208 + 0.459742i
\(251\) −1.36753 4.20881i −0.0863175 0.265658i 0.898576 0.438817i \(-0.144602\pi\)
−0.984894 + 0.173159i \(0.944602\pi\)
\(252\) 0 0
\(253\) 14.6652 3.11703i 0.921993 0.195966i
\(254\) −15.3766 26.6330i −0.964813 1.67111i
\(255\) 0 0
\(256\) −19.4009 + 8.63785i −1.21256 + 0.539866i
\(257\) 0.382002 + 3.63450i 0.0238286 + 0.226714i 0.999955 + 0.00950980i \(0.00302711\pi\)
−0.976126 + 0.217204i \(0.930306\pi\)
\(258\) 0 0
\(259\) 1.17589 0.249944i 0.0730665 0.0155308i
\(260\) −3.68598 + 2.67802i −0.228595 + 0.166084i
\(261\) 0 0
\(262\) −5.25413 16.1705i −0.324601 0.999019i
\(263\) −7.22621 12.5162i −0.445587 0.771780i 0.552506 0.833509i \(-0.313672\pi\)
−0.998093 + 0.0617294i \(0.980338\pi\)
\(264\) 0 0
\(265\) 1.05933 1.83481i 0.0650741 0.112712i
\(266\) −10.0107 2.12783i −0.613793 0.130466i
\(267\) 0 0
\(268\) 31.1811 + 13.8827i 1.90469 + 0.848021i
\(269\) −0.283600 + 0.872830i −0.0172914 + 0.0532174i −0.959330 0.282287i \(-0.908907\pi\)
0.942039 + 0.335505i \(0.108907\pi\)
\(270\) 0 0
\(271\) 2.13921 1.55422i 0.129948 0.0944124i −0.520913 0.853610i \(-0.674408\pi\)
0.650860 + 0.759197i \(0.274408\pi\)
\(272\) −0.572411 + 5.44612i −0.0347075 + 0.330220i
\(273\) 0 0
\(274\) −11.4206 + 19.7811i −0.689947 + 1.19502i
\(275\) −13.1465 + 9.55126i −0.792761 + 0.575962i
\(276\) 0 0
\(277\) 19.3409 21.4802i 1.16208 1.29062i 0.212478 0.977166i \(-0.431847\pi\)
0.949603 0.313456i \(-0.101487\pi\)
\(278\) −17.8564 12.9734i −1.07095 0.778094i
\(279\) 0 0
\(280\) 0.460948 1.41865i 0.0275469 0.0847807i
\(281\) 8.55152 1.81768i 0.510141 0.108434i 0.0543523 0.998522i \(-0.482691\pi\)
0.455789 + 0.890088i \(0.349357\pi\)
\(282\) 0 0
\(283\) −21.2100 + 9.44331i −1.26081 + 0.561347i −0.924778 0.380506i \(-0.875750\pi\)
−0.336027 + 0.941852i \(0.609083\pi\)
\(284\) 9.81609 + 2.08647i 0.582478 + 0.123809i
\(285\) 0 0
\(286\) −31.7112 6.74076i −1.87512 0.398590i
\(287\) −5.48901 −0.324006
\(288\) 0 0
\(289\) −17.7905 12.9255i −1.04650 0.760326i
\(290\) 1.97526 + 0.879441i 0.115991 + 0.0516426i
\(291\) 0 0
\(292\) 9.71881 + 10.7938i 0.568751 + 0.631662i
\(293\) −2.19253 20.8605i −0.128089 1.21868i −0.850032 0.526731i \(-0.823418\pi\)
0.721944 0.691952i \(-0.243249\pi\)
\(294\) 0 0
\(295\) 2.56139 2.84472i 0.149130 0.165626i
\(296\) −2.81121 −0.163398
\(297\) 0 0
\(298\) −9.61284 −0.556857
\(299\) 12.6952 14.0995i 0.734183 0.815393i
\(300\) 0 0
\(301\) 0.526816 + 5.01232i 0.0303652 + 0.288905i
\(302\) 27.7011 + 30.7652i 1.59402 + 1.77034i
\(303\) 0 0
\(304\) 2.48191 + 1.10502i 0.142347 + 0.0633772i
\(305\) −1.18499 0.860949i −0.0678526 0.0492978i
\(306\) 0 0
\(307\) 23.1324 1.32024 0.660118 0.751162i \(-0.270506\pi\)
0.660118 + 0.751162i \(0.270506\pi\)
\(308\) 14.7171 6.55228i 0.838582 0.373351i
\(309\) 0 0
\(310\) −6.89111 1.46475i −0.391389 0.0831923i
\(311\) −18.6499 + 8.30346i −1.05754 + 0.470846i −0.860447 0.509540i \(-0.829816\pi\)
−0.197090 + 0.980385i \(0.563149\pi\)
\(312\) 0 0
\(313\) 33.2955 7.07718i 1.88197 0.400026i 0.884222 0.467066i \(-0.154689\pi\)
0.997750 + 0.0670406i \(0.0213557\pi\)
\(314\) 1.45182 4.46825i 0.0819311 0.252158i
\(315\) 0 0
\(316\) 9.36904 + 6.80701i 0.527050 + 0.382924i
\(317\) 18.3478 20.3773i 1.03052 1.14451i 0.0411371 0.999154i \(-0.486902\pi\)
0.989380 0.145352i \(-0.0464314\pi\)
\(318\) 0 0
\(319\) 3.00125 + 9.23722i 0.168038 + 0.517185i
\(320\) 1.97312 3.41755i 0.110301 0.191047i
\(321\) 0 0
\(322\) −1.56105 + 14.8524i −0.0869941 + 0.827694i
\(323\) −15.6494 + 11.3699i −0.870754 + 0.632640i
\(324\) 0 0
\(325\) −6.35443 + 19.5569i −0.352480 + 1.08482i
\(326\) 3.36258 + 1.49712i 0.186236 + 0.0829176i
\(327\) 0 0
\(328\) 12.5553 + 2.66872i 0.693252 + 0.147355i
\(329\) 5.28459 9.15318i 0.291349 0.504631i
\(330\) 0 0
\(331\) 8.98622 + 15.5646i 0.493927 + 0.855507i 0.999976 0.00699827i \(-0.00222764\pi\)
−0.506048 + 0.862505i \(0.668894\pi\)
\(332\) 14.2718 + 43.9241i 0.783266 + 2.41065i
\(333\) 0 0
\(334\) −28.8690 + 20.9746i −1.57964 + 1.14768i
\(335\) −3.09091 + 0.656993i −0.168874 + 0.0358954i
\(336\) 0 0
\(337\) −1.14690 10.9120i −0.0624757 0.594417i −0.980312 0.197457i \(-0.936732\pi\)
0.917836 0.396960i \(-0.129935\pi\)
\(338\) −9.81935 + 4.37186i −0.534102 + 0.237798i
\(339\) 0 0
\(340\) −3.38922 5.87031i −0.183806 0.318362i
\(341\) −15.8229 27.4068i −0.856860 1.48416i
\(342\) 0 0
\(343\) 5.25475 + 16.1724i 0.283730 + 0.873230i
\(344\) 1.23194 11.7211i 0.0664215 0.631959i
\(345\) 0 0
\(346\) −1.53665 1.70662i −0.0826108 0.0917486i
\(347\) −14.7870 16.4226i −0.793807 0.881612i 0.201389 0.979511i \(-0.435454\pi\)
−0.995196 + 0.0978989i \(0.968788\pi\)
\(348\) 0 0
\(349\) 1.92371 18.3029i 0.102974 0.979732i −0.814022 0.580835i \(-0.802726\pi\)
0.916996 0.398897i \(-0.130607\pi\)
\(350\) −5.00185 15.3941i −0.267360 0.822850i
\(351\) 0 0
\(352\) 14.8960 3.16609i 0.793961 0.168753i
\(353\) 16.5354 + 28.6401i 0.880089 + 1.52436i 0.851241 + 0.524776i \(0.175851\pi\)
0.0288486 + 0.999584i \(0.490816\pi\)
\(354\) 0 0
\(355\) −0.848761 + 0.377893i −0.0450475 + 0.0200565i
\(356\) 0.965504 + 9.18616i 0.0511716 + 0.486865i
\(357\) 0 0
\(358\) 25.5736 5.43583i 1.35161 0.287293i
\(359\) 2.42595 1.76256i 0.128037 0.0930242i −0.521924 0.852992i \(-0.674785\pi\)
0.649960 + 0.759968i \(0.274785\pi\)
\(360\) 0 0
\(361\) −2.90578 8.94306i −0.152936 0.470687i
\(362\) 20.8744 + 36.1555i 1.09713 + 1.90029i
\(363\) 0 0
\(364\) 10.1931 17.6549i 0.534262 0.925370i
\(365\) −1.31531 0.279578i −0.0688464 0.0146338i
\(366\) 0 0
\(367\) 1.51873 + 0.676183i 0.0792772 + 0.0352965i 0.445992 0.895037i \(-0.352851\pi\)
−0.366715 + 0.930333i \(0.619518\pi\)
\(368\) 1.22508 3.77040i 0.0638616 0.196546i
\(369\) 0 0
\(370\) 0.506234 0.367800i 0.0263178 0.0191210i
\(371\) −0.990914 + 9.42791i −0.0514457 + 0.489473i
\(372\) 0 0
\(373\) 10.7543 18.6271i 0.556839 0.964473i −0.440919 0.897547i \(-0.645348\pi\)
0.997758 0.0669259i \(-0.0213191\pi\)
\(374\) 14.9053 45.8721i 0.770734 2.37199i
\(375\) 0 0
\(376\) −16.5380 + 18.3673i −0.852880 + 0.947219i
\(377\) 9.94346 + 7.22435i 0.512114 + 0.372073i
\(378\) 0 0
\(379\) 3.83779 11.8115i 0.197134 0.606715i −0.802811 0.596233i \(-0.796663\pi\)
0.999945 0.0104822i \(-0.00333665\pi\)
\(380\) −3.28941 + 0.699185i −0.168743 + 0.0358674i
\(381\) 0 0
\(382\) 27.4210 12.2086i 1.40298 0.624648i
\(383\) 0.782202 + 0.166262i 0.0399686 + 0.00849560i 0.227853 0.973696i \(-0.426830\pi\)
−0.187884 + 0.982191i \(0.560163\pi\)
\(384\) 0 0
\(385\) −0.745741 + 1.29163i −0.0380065 + 0.0658275i
\(386\) 53.9188 2.74439
\(387\) 0 0
\(388\) 14.5646 + 10.5818i 0.739404 + 0.537209i
\(389\) 1.58654 + 0.706374i 0.0804408 + 0.0358146i 0.446563 0.894752i \(-0.352648\pi\)
−0.366122 + 0.930567i \(0.619315\pi\)
\(390\) 0 0
\(391\) 18.8875 + 20.9767i 0.955184 + 1.06084i
\(392\) −1.72945 16.4546i −0.0873502 0.831081i
\(393\) 0 0
\(394\) 1.67943 1.86520i 0.0846086 0.0939673i
\(395\) −1.07216 −0.0539461
\(396\) 0 0
\(397\) −24.7599 −1.24267 −0.621333 0.783547i \(-0.713409\pi\)
−0.621333 + 0.783547i \(0.713409\pi\)
\(398\) −25.6057 + 28.4380i −1.28350 + 1.42547i
\(399\) 0 0
\(400\) 0.449140 + 4.27328i 0.0224570 + 0.213664i
\(401\) −14.6221 16.2395i −0.730191 0.810960i 0.257681 0.966230i \(-0.417042\pi\)
−0.987872 + 0.155271i \(0.950375\pi\)
\(402\) 0 0
\(403\) −36.5849 16.2886i −1.82242 0.811395i
\(404\) −26.4000 19.1807i −1.31345 0.954278i
\(405\) 0 0
\(406\) −9.67462 −0.480143
\(407\) 2.74939 + 0.584431i 0.136282 + 0.0289692i
\(408\) 0 0
\(409\) −7.85919 1.67052i −0.388612 0.0826020i 0.00946221 0.999955i \(-0.496988\pi\)
−0.398074 + 0.917353i \(0.630321\pi\)
\(410\) −2.61008 + 1.16208i −0.128903 + 0.0573911i
\(411\) 0 0
\(412\) −31.9389 + 6.78881i −1.57351 + 0.334461i
\(413\) −5.29283 + 16.2897i −0.260443 + 0.801562i
\(414\) 0 0
\(415\) −3.45919 2.51325i −0.169805 0.123371i
\(416\) 12.8950 14.3214i 0.632231 0.702164i
\(417\) 0 0
\(418\) −19.3590 14.0654i −0.946877 0.687962i
\(419\) −2.79840 + 4.84698i −0.136711 + 0.236790i −0.926250 0.376910i \(-0.876986\pi\)
0.789539 + 0.613701i \(0.210320\pi\)
\(420\) 0 0
\(421\) −3.95686 + 37.6470i −0.192846 + 1.83480i 0.287567 + 0.957760i \(0.407154\pi\)
−0.480413 + 0.877043i \(0.659513\pi\)
\(422\) −28.1684 + 20.4656i −1.37122 + 0.996248i
\(423\) 0 0
\(424\) 6.85035 21.0832i 0.332682 1.02389i
\(425\) −27.9486 12.4435i −1.35571 0.603599i
\(426\) 0 0
\(427\) 6.41067 + 1.36263i 0.310234 + 0.0659423i
\(428\) 8.85614 15.3393i 0.428078 0.741452i
\(429\) 0 0
\(430\) 1.31167 + 2.27187i 0.0632542 + 0.109560i
\(431\) 9.20389 + 28.3267i 0.443336 + 1.36445i 0.884299 + 0.466922i \(0.154637\pi\)
−0.440963 + 0.897525i \(0.645363\pi\)
\(432\) 0 0
\(433\) 0.225935 0.164152i 0.0108578 0.00788862i −0.582343 0.812943i \(-0.697864\pi\)
0.593201 + 0.805054i \(0.297864\pi\)
\(434\) 30.8340 6.55397i 1.48008 0.314601i
\(435\) 0 0
\(436\) −5.18166 49.3002i −0.248156 2.36105i
\(437\) 12.7932 5.69588i 0.611980 0.272471i
\(438\) 0 0
\(439\) −7.49827 12.9874i −0.357873 0.619854i 0.629732 0.776812i \(-0.283165\pi\)
−0.987605 + 0.156958i \(0.949831\pi\)
\(440\) 2.33375 2.59184i 0.111257 0.123561i
\(441\) 0 0
\(442\) −18.8614 58.0493i −0.897143 2.76112i
\(443\) 1.51564 14.4204i 0.0720104 0.685133i −0.897655 0.440698i \(-0.854731\pi\)
0.969666 0.244435i \(-0.0786024\pi\)
\(444\) 0 0
\(445\) −0.572205 0.635498i −0.0271251 0.0301255i
\(446\) −3.00192 3.33397i −0.142145 0.157868i
\(447\) 0 0
\(448\) −1.84569 + 17.5606i −0.0872008 + 0.829660i
\(449\) 6.55787 + 20.1830i 0.309485 + 0.952497i 0.977965 + 0.208767i \(0.0669450\pi\)
−0.668481 + 0.743730i \(0.733055\pi\)
\(450\) 0 0
\(451\) −11.7244 5.22020i −0.552082 0.245809i
\(452\) −12.7238 22.0383i −0.598479 1.03660i
\(453\) 0 0
\(454\) −34.0660 + 15.1672i −1.59880 + 0.711830i
\(455\) 0.197284 + 1.87703i 0.00924880 + 0.0879964i
\(456\) 0 0
\(457\) 3.13937 0.667293i 0.146853 0.0312146i −0.133898 0.990995i \(-0.542750\pi\)
0.280752 + 0.959780i \(0.409416\pi\)
\(458\) −0.985297 + 0.715860i −0.0460399 + 0.0334499i
\(459\) 0 0
\(460\) 1.51642 + 4.66707i 0.0707037 + 0.217603i
\(461\) 13.1628 + 22.7986i 0.613052 + 1.06184i 0.990723 + 0.135897i \(0.0433918\pi\)
−0.377671 + 0.925940i \(0.623275\pi\)
\(462\) 0 0
\(463\) −1.81412 + 3.14215i −0.0843093 + 0.146028i −0.905097 0.425206i \(-0.860202\pi\)
0.820787 + 0.571234i \(0.193535\pi\)
\(464\) 2.51210 + 0.533963i 0.116621 + 0.0247886i
\(465\) 0 0
\(466\) −21.8138 9.71212i −1.01050 0.449905i
\(467\) 5.71532 17.5899i 0.264473 0.813965i −0.727341 0.686276i \(-0.759244\pi\)
0.991814 0.127689i \(-0.0407559\pi\)
\(468\) 0 0
\(469\) 11.4388 8.31077i 0.528194 0.383756i
\(470\) 0.575050 5.47123i 0.0265251 0.252369i
\(471\) 0 0
\(472\) 20.0265 34.6869i 0.921795 1.59660i
\(473\) −3.64158 + 11.2072i −0.167440 + 0.515309i
\(474\) 0 0
\(475\) −10.1560 + 11.2794i −0.465990 + 0.517535i
\(476\) 24.5374 + 17.8275i 1.12467 + 0.817120i
\(477\) 0 0
\(478\) −6.93867 + 21.3550i −0.317367 + 0.976756i
\(479\) −0.153567 + 0.0326418i −0.00701668 + 0.00149144i −0.211419 0.977396i \(-0.567808\pi\)
0.204402 + 0.978887i \(0.434475\pi\)
\(480\) 0 0
\(481\) 3.24945 1.44675i 0.148162 0.0659660i
\(482\) −0.634980 0.134969i −0.0289225 0.00614767i
\(483\) 0 0
\(484\) 37.6668 0.000778469i 1.71213 3.53850e-5i
\(485\) −1.66671 −0.0756816
\(486\) 0 0
\(487\) −14.5028 10.5369i −0.657187 0.477474i 0.208525 0.978017i \(-0.433134\pi\)
−0.865712 + 0.500543i \(0.833134\pi\)
\(488\) −14.0010 6.23364i −0.633795 0.282184i
\(489\) 0 0
\(490\) 2.46424 + 2.73682i 0.111323 + 0.123637i
\(491\) −0.694902 6.61155i −0.0313605 0.298375i −0.998949 0.0458419i \(-0.985403\pi\)
0.967588 0.252533i \(-0.0812637\pi\)
\(492\) 0 0
\(493\) −12.2356 + 13.5890i −0.551065 + 0.612019i
\(494\) −30.2813 −1.36242
\(495\) 0 0
\(496\) −8.36804 −0.375736
\(497\) 2.78168 3.08936i 0.124775 0.138577i
\(498\) 0 0
\(499\) −3.54846 33.7614i −0.158851 1.51137i −0.725968 0.687729i \(-0.758608\pi\)
0.567117 0.823638i \(-0.308059\pi\)
\(500\) −7.19078 7.98617i −0.321582 0.357153i
\(501\) 0 0
\(502\) 9.41572 + 4.19215i 0.420244 + 0.187105i
\(503\) 2.53812 + 1.84405i 0.113169 + 0.0822222i 0.642930 0.765925i \(-0.277718\pi\)
−0.529761 + 0.848147i \(0.677718\pi\)
\(504\) 0 0
\(505\) 3.02112 0.134438
\(506\) −17.4594 + 30.2399i −0.776167 + 1.34433i
\(507\) 0 0
\(508\) 44.2273 + 9.40080i 1.96227 + 0.417093i
\(509\) −20.8320 + 9.27502i −0.923364 + 0.411108i −0.812655 0.582745i \(-0.801979\pi\)
−0.110709 + 0.993853i \(0.535312\pi\)
\(510\) 0 0
\(511\) 5.88530 1.25096i 0.260350 0.0553391i
\(512\) 3.04225 9.36310i 0.134450 0.413794i
\(513\) 0 0
\(514\) −6.88586 5.00287i −0.303722 0.220667i
\(515\) 2.02277 2.24652i 0.0891340 0.0989933i
\(516\) 0 0
\(517\) 19.9927 14.5252i 0.879279 0.638819i
\(518\) −1.39992 + 2.42474i −0.0615090 + 0.106537i
\(519\) 0 0
\(520\) 0.461339 4.38935i 0.0202311 0.192486i
\(521\) 4.26200 3.09653i 0.186722 0.135661i −0.490497 0.871443i \(-0.663185\pi\)
0.677219 + 0.735781i \(0.263185\pi\)
\(522\) 0 0
\(523\) 3.67595 11.3134i 0.160738 0.494701i −0.837959 0.545733i \(-0.816251\pi\)
0.998697 + 0.0510325i \(0.0162512\pi\)
\(524\) 22.8373 + 10.1678i 0.997651 + 0.444183i
\(525\) 0 0
\(526\) 32.9242 + 6.99825i 1.43556 + 0.305138i
\(527\) 29.7904 51.5985i 1.29769 2.24767i
\(528\) 0 0
\(529\) 1.28255 + 2.22144i 0.0557629 + 0.0965843i
\(530\) 1.52480 + 4.69285i 0.0662331 + 0.203845i
\(531\) 0 0
\(532\) 12.1734 8.84448i 0.527783 0.383457i
\(533\) −15.8860 + 3.37667i −0.688099 + 0.146260i
\(534\) 0 0
\(535\) 0.171408 + 1.63083i 0.00741060 + 0.0705071i
\(536\) −30.2052 + 13.4482i −1.30467 + 0.580875i
\(537\) 0 0
\(538\) −1.06872 1.85108i −0.0460757 0.0798055i
\(539\) −1.72938 + 16.4523i −0.0744895 + 0.708650i
\(540\) 0 0
\(541\) 12.5401 + 38.5945i 0.539142 + 1.65931i 0.734525 + 0.678581i \(0.237405\pi\)
−0.195383 + 0.980727i \(0.562595\pi\)
\(542\) −0.643724 + 6.12462i −0.0276503 + 0.263075i
\(543\) 0 0
\(544\) 19.1848 + 21.3069i 0.822542 + 0.913526i
\(545\) 3.07090 + 3.41058i 0.131543 + 0.146093i
\(546\) 0 0
\(547\) −2.46000 + 23.4054i −0.105182 + 1.00074i 0.806887 + 0.590706i \(0.201151\pi\)
−0.912069 + 0.410036i \(0.865516\pi\)
\(548\) −10.3776 31.9391i −0.443311 1.36437i
\(549\) 0 0
\(550\) 3.95635 37.6384i 0.168699 1.60491i
\(551\) 4.53595 + 7.85650i 0.193238 + 0.334698i
\(552\) 0 0
\(553\) 4.38257 1.95125i 0.186366 0.0829755i
\(554\) 7.03671 + 66.9498i 0.298961 + 2.84443i
\(555\) 0 0
\(556\) 31.7421 6.74700i 1.34617 0.286136i
\(557\) −5.08590 + 3.69513i −0.215497 + 0.156568i −0.690297 0.723526i \(-0.742520\pi\)
0.474800 + 0.880093i \(0.342520\pi\)
\(558\) 0 0
\(559\) 4.60811 + 14.1823i 0.194902 + 0.599847i
\(560\) 0.197187 + 0.341538i 0.00833268 + 0.0144326i
\(561\) 0 0
\(562\) −10.1807 + 17.6335i −0.429448 + 0.743826i
\(563\) −16.5956 3.52751i −0.699423 0.148667i −0.155542 0.987829i \(-0.549712\pi\)
−0.543881 + 0.839162i \(0.683046\pi\)
\(564\) 0 0
\(565\) 2.15228 + 0.958259i 0.0905473 + 0.0403142i
\(566\) 16.7095 51.4265i 0.702352 2.16162i
\(567\) 0 0
\(568\) −7.86471 + 5.71404i −0.329996 + 0.239756i
\(569\) 2.32581 22.1286i 0.0975031 0.927680i −0.830979 0.556303i \(-0.812219\pi\)
0.928482 0.371376i \(-0.121114\pi\)
\(570\) 0 0
\(571\) −17.6576 + 30.5838i −0.738947 + 1.27989i 0.214023 + 0.976829i \(0.431343\pi\)
−0.952970 + 0.303065i \(0.901990\pi\)
\(572\) 38.5625 28.0167i 1.61238 1.17144i
\(573\) 0 0
\(574\) 8.55411 9.50030i 0.357042 0.396535i
\(575\) 17.9182 + 13.0184i 0.747243 + 0.542904i
\(576\) 0 0
\(577\) −11.8156 + 36.3646i −0.491889 + 1.51388i 0.329859 + 0.944030i \(0.392999\pi\)
−0.821749 + 0.569850i \(0.807001\pi\)
\(578\) 50.0962 10.6483i 2.08373 0.442910i
\(579\) 0 0
\(580\) −2.90415 + 1.29301i −0.120588 + 0.0536894i
\(581\) 18.7138 + 3.97774i 0.776379 + 0.165025i
\(582\) 0 0
\(583\) −11.0828 + 19.1955i −0.459001 + 0.794995i
\(584\) −14.0700 −0.582219
\(585\) 0 0
\(586\) 39.5219 + 28.7143i 1.63263 + 1.18618i
\(587\) 11.3185 + 5.03932i 0.467165 + 0.207995i 0.626799 0.779181i \(-0.284365\pi\)
−0.159634 + 0.987176i \(0.551031\pi\)
\(588\) 0 0
\(589\) −19.7788 21.9666i −0.814973 0.905119i
\(590\) 0.931901 + 8.86645i 0.0383658 + 0.365026i
\(591\) 0 0
\(592\) 0.497328 0.552339i 0.0204401 0.0227010i
\(593\) −4.18039 −0.171668 −0.0858340 0.996309i \(-0.527355\pi\)
−0.0858340 + 0.996309i \(0.527355\pi\)
\(594\) 0 0
\(595\) −2.80796 −0.115115
\(596\) 9.45710 10.5032i 0.387378 0.430227i
\(597\) 0 0
\(598\) 4.61885 + 43.9454i 0.188879 + 1.79706i
\(599\) 29.4944 + 32.7569i 1.20511 + 1.33841i 0.925709 + 0.378236i \(0.123469\pi\)
0.279401 + 0.960174i \(0.409864\pi\)
\(600\) 0 0
\(601\) −1.59991 0.712324i −0.0652616 0.0290563i 0.373846 0.927491i \(-0.378039\pi\)
−0.439108 + 0.898434i \(0.644705\pi\)
\(602\) −9.49624 6.89943i −0.387038 0.281200i
\(603\) 0 0
\(604\) −60.8670 −2.47664
\(605\) −2.82126 + 2.04968i −0.114701 + 0.0833312i
\(606\) 0 0
\(607\) 10.6316 + 2.25982i 0.431525 + 0.0917234i 0.418553 0.908192i \(-0.362538\pi\)
0.0129718 + 0.999916i \(0.495871\pi\)
\(608\) 12.9945 5.78553i 0.526997 0.234634i
\(609\) 0 0
\(610\) 3.33682 0.709263i 0.135104 0.0287172i
\(611\) 9.66362 29.7416i 0.390948 1.20321i
\(612\) 0 0
\(613\) −14.3951 10.4586i −0.581412 0.422421i 0.257821 0.966193i \(-0.416996\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(614\) −36.0497 + 40.0372i −1.45485 + 1.61577i
\(615\) 0 0
\(616\) −4.82254 + 14.8417i −0.194306 + 0.597990i
\(617\) 1.99805 3.46073i 0.0804386 0.139324i −0.823000 0.568042i \(-0.807701\pi\)
0.903438 + 0.428718i \(0.141035\pi\)
\(618\) 0 0
\(619\) 1.14724 10.9153i 0.0461115 0.438721i −0.946972 0.321315i \(-0.895875\pi\)
0.993084 0.117407i \(-0.0374581\pi\)
\(620\) 8.37989 6.08835i 0.336544 0.244514i
\(621\) 0 0
\(622\) 14.6926 45.2191i 0.589118 1.81312i
\(623\) 3.49552 + 1.55630i 0.140045 + 0.0623520i
\(624\) 0 0
\(625\) −22.9890 4.88646i −0.919560 0.195458i
\(626\) −39.6388 + 68.6565i −1.58429 + 2.74407i
\(627\) 0 0
\(628\) 3.45380 + 5.98216i 0.137822 + 0.238714i
\(629\) 1.63530 + 5.03293i 0.0652037 + 0.200676i
\(630\) 0 0
\(631\) −6.99735 + 5.08388i −0.278560 + 0.202386i −0.718289 0.695745i \(-0.755075\pi\)
0.439729 + 0.898131i \(0.355075\pi\)
\(632\) −10.9732 + 2.33242i −0.436490 + 0.0927788i
\(633\) 0 0
\(634\) 6.67542 + 63.5123i 0.265115 + 2.52240i
\(635\) −3.82417 + 1.70263i −0.151757 + 0.0675668i
\(636\) 0 0
\(637\) 10.4672 + 18.1296i 0.414724 + 0.718323i
\(638\) −20.6648 9.20082i −0.818128 0.364264i
\(639\) 0 0
\(640\) 1.94048 + 5.97219i 0.0767042 + 0.236071i
\(641\) 3.87671 36.8844i 0.153121 1.45685i −0.600546 0.799591i \(-0.705050\pi\)
0.753666 0.657257i \(-0.228283\pi\)
\(642\) 0 0
\(643\) −27.2554 30.2702i −1.07485 1.19374i −0.980155 0.198234i \(-0.936479\pi\)
−0.0946941 0.995506i \(-0.530187\pi\)
\(644\) −14.6923 16.3175i −0.578958 0.642998i
\(645\) 0 0
\(646\) 4.70916 44.8047i 0.185280 1.76282i
\(647\) 0.175813 + 0.541098i 0.00691193 + 0.0212727i 0.954453 0.298361i \(-0.0964400\pi\)
−0.947541 + 0.319634i \(0.896440\pi\)
\(648\) 0 0
\(649\) −26.7973 + 29.7608i −1.05189 + 1.16821i
\(650\) −23.9461 41.4758i −0.939242 1.62682i
\(651\) 0 0
\(652\) −4.94388 + 2.20116i −0.193617 + 0.0862040i
\(653\) −3.81817 36.3275i −0.149417 1.42160i −0.770290 0.637694i \(-0.779889\pi\)
0.620873 0.783911i \(-0.286778\pi\)
\(654\) 0 0
\(655\) −2.26381 + 0.481187i −0.0884542 + 0.0188015i
\(656\) −2.74549 + 1.99472i −0.107193 + 0.0778806i
\(657\) 0 0
\(658\) 7.60666 + 23.4109i 0.296538 + 0.912651i
\(659\) −12.0035 20.7907i −0.467590 0.809889i 0.531725 0.846917i \(-0.321544\pi\)
−0.999314 + 0.0370284i \(0.988211\pi\)
\(660\) 0 0
\(661\) −6.49165 + 11.2439i −0.252496 + 0.437336i −0.964212 0.265131i \(-0.914585\pi\)
0.711717 + 0.702467i \(0.247918\pi\)
\(662\) −40.9431 8.70273i −1.59130 0.338241i
\(663\) 0 0
\(664\) −40.8712 18.1970i −1.58611 0.706181i
\(665\) −0.430484 + 1.32489i −0.0166935 + 0.0513772i
\(666\) 0 0
\(667\) 10.7098 7.78112i 0.414685 0.301286i
\(668\) 5.48410 52.1777i 0.212186 2.01882i
\(669\) 0 0
\(670\) 3.67978 6.37356i 0.142162 0.246232i
\(671\) 12.3972 + 9.00727i 0.478588 + 0.347722i
\(672\) 0 0
\(673\) 11.3924 12.6525i 0.439144 0.487719i −0.482423 0.875939i \(-0.660243\pi\)
0.921567 + 0.388219i \(0.126910\pi\)
\(674\) 20.6737 + 15.0204i 0.796323 + 0.578562i
\(675\) 0 0
\(676\) 4.88349 15.0298i 0.187827 0.578071i
\(677\) −34.6574 + 7.36665i −1.33199 + 0.283123i −0.818270 0.574834i \(-0.805067\pi\)
−0.513721 + 0.857957i \(0.671733\pi\)
\(678\) 0 0
\(679\) 6.81290 3.03330i 0.261455 0.116407i
\(680\) 6.42281 + 1.36521i 0.246304 + 0.0523535i
\(681\) 0 0
\(682\) 72.0939 + 15.3248i 2.76062 + 0.586817i
\(683\) −23.8967 −0.914381 −0.457191 0.889369i \(-0.651144\pi\)
−0.457191 + 0.889369i \(0.651144\pi\)
\(684\) 0 0
\(685\) 2.51533 + 1.82749i 0.0961058 + 0.0698250i
\(686\) −36.1801 16.1084i −1.38136 0.615022i
\(687\) 0 0
\(688\) 2.08499 + 2.31561i 0.0794894 + 0.0882819i
\(689\) 2.93192 + 27.8953i 0.111697 + 1.06273i
\(690\) 0 0
\(691\) −0.396537 + 0.440399i −0.0150850 + 0.0167536i −0.750640 0.660711i \(-0.770255\pi\)
0.735555 + 0.677465i \(0.236921\pi\)
\(692\) 3.37645 0.128353
\(693\) 0 0
\(694\) 51.4682 1.95371
\(695\) −2.01031 + 2.23268i −0.0762555 + 0.0846903i
\(696\) 0 0
\(697\) −2.52569 24.0303i −0.0956672 0.910213i
\(698\) 28.6805 + 31.8529i 1.08557 + 1.20565i
\(699\) 0 0
\(700\) 21.7407 + 9.67960i 0.821723 + 0.365855i
\(701\) −20.5701 14.9451i −0.776922 0.564467i 0.127131 0.991886i \(-0.459423\pi\)
−0.904054 + 0.427419i \(0.859423\pi\)
\(702\) 0 0
\(703\) 2.62542 0.0990194
\(704\) −20.6430 + 35.7538i −0.778011 + 1.34752i
\(705\) 0 0
\(706\) −75.3387 16.0137i −2.83541 0.602685i
\(707\) −12.3492 + 5.49821i −0.464439 + 0.206782i
\(708\) 0 0
\(709\) −14.7746 + 3.14044i −0.554871 + 0.117942i −0.476809 0.879007i \(-0.658207\pi\)
−0.0780624 + 0.996948i \(0.524873\pi\)
\(710\) 0.668663 2.05793i 0.0250945 0.0772329i
\(711\) 0 0
\(712\) −7.23882 5.25931i −0.271286 0.197101i
\(713\) −28.8620 + 32.0545i −1.08089 + 1.20045i
\(714\) 0 0
\(715\) −1.36371 + 4.19692i −0.0509998 + 0.156956i
\(716\) −19.2200 + 33.2900i −0.718284 + 1.24410i
\(717\) 0 0
\(718\) −0.730010 + 6.94558i −0.0272437 + 0.259207i
\(719\) 9.74281 7.07857i 0.363345 0.263986i −0.391101 0.920348i \(-0.627906\pi\)
0.754446 + 0.656362i \(0.227906\pi\)
\(720\) 0 0
\(721\) −4.17983 + 12.8642i −0.155665 + 0.479088i
\(722\) 20.0069 + 8.90765i 0.744580 + 0.331508i
\(723\) 0 0
\(724\) −60.0405 12.7620i −2.23139 0.474296i
\(725\) −7.17396 + 12.4257i −0.266434 + 0.461477i
\(726\) 0 0
\(727\) −24.7966 42.9489i −0.919654 1.59289i −0.799940 0.600079i \(-0.795136\pi\)
−0.119714 0.992808i \(-0.538198\pi\)
\(728\) 6.10251 + 18.7816i 0.226174 + 0.696092i
\(729\) 0 0
\(730\) 2.53368 1.84082i 0.0937755 0.0681319i
\(731\) −21.7010 + 4.61269i −0.802640 + 0.170606i
\(732\) 0 0
\(733\) 3.37265 + 32.0886i 0.124572 + 1.18522i 0.860964 + 0.508666i \(0.169861\pi\)
−0.736392 + 0.676555i \(0.763472\pi\)
\(734\) −3.53713 + 1.57483i −0.130558 + 0.0581281i
\(735\) 0 0
\(736\) −10.3783 17.9757i −0.382548 0.662593i
\(737\) 32.3368 6.87305i 1.19114 0.253172i
\(738\) 0 0
\(739\) −0.968005 2.97921i −0.0356086 0.109592i 0.931672 0.363300i \(-0.118350\pi\)
−0.967281 + 0.253708i \(0.918350\pi\)
\(740\) −0.0961664 + 0.914963i −0.00353515 + 0.0336347i
\(741\) 0 0
\(742\) −14.7735 16.4076i −0.542351 0.602341i
\(743\) −5.21170 5.78818i −0.191199 0.212348i 0.639922 0.768440i \(-0.278967\pi\)
−0.831121 + 0.556092i \(0.812300\pi\)
\(744\) 0 0
\(745\) −0.136774 + 1.30132i −0.00501100 + 0.0476765i
\(746\) 15.4798 + 47.6420i 0.566756 + 1.74430i
\(747\) 0 0
\(748\) 35.4570 + 61.4148i 1.29644 + 2.24555i
\(749\) −3.66865 6.35428i −0.134049 0.232180i
\(750\) 0 0
\(751\) 45.3932 20.2103i 1.65642 0.737486i 0.656562 0.754272i \(-0.272010\pi\)
0.999859 + 0.0167864i \(0.00534354\pi\)
\(752\) −0.683037 6.49866i −0.0249078 0.236982i
\(753\) 0 0
\(754\) −27.9997 + 5.95153i −1.01969 + 0.216742i
\(755\) 4.55890 3.31224i 0.165915 0.120545i
\(756\) 0 0
\(757\) −8.35296 25.7078i −0.303594 0.934365i −0.980198 0.198018i \(-0.936549\pi\)
0.676605 0.736346i \(-0.263451\pi\)
\(758\) 14.4623 + 25.0495i 0.525295 + 0.909838i
\(759\) 0 0
\(760\) 1.62882 2.82121i 0.0590836 0.102336i
\(761\) 43.5379 + 9.25426i 1.57825 + 0.335467i 0.911976 0.410243i \(-0.134556\pi\)
0.666271 + 0.745710i \(0.267889\pi\)
\(762\) 0 0
\(763\) −18.7597 8.35235i −0.679147 0.302376i
\(764\) −13.6374 + 41.9716i −0.493384 + 1.51848i
\(765\) 0 0
\(766\) −1.50675 + 1.09472i −0.0544412 + 0.0395538i
\(767\) −5.29732 + 50.4006i −0.191275 + 1.81986i
\(768\) 0 0
\(769\) 1.65952 2.87438i 0.0598440 0.103653i −0.834551 0.550930i \(-0.814273\pi\)
0.894395 + 0.447277i \(0.147606\pi\)
\(770\) −1.07337 3.30360i −0.0386815 0.119054i
\(771\) 0 0
\(772\) −53.0453 + 58.9127i −1.90914 + 2.12032i
\(773\) 23.0471 + 16.7447i 0.828946 + 0.602264i 0.919261 0.393649i \(-0.128787\pi\)
−0.0903152 + 0.995913i \(0.528787\pi\)
\(774\) 0 0
\(775\) 14.4465 44.4617i 0.518934 1.59711i
\(776\) −17.0583 + 3.62585i −0.612357 + 0.130160i
\(777\) 0 0
\(778\) −3.69506 + 1.64515i −0.132474 + 0.0589813i
\(779\) −11.7255 2.49234i −0.420111 0.0892973i
\(780\) 0 0
\(781\) 8.87968 3.95338i 0.317740 0.141463i
\(782\) −65.7407 −2.35088
\(783\) 0 0
\(784\) 3.53890 + 2.57116i 0.126389 + 0.0918273i
\(785\) −0.584222 0.260113i −0.0208518 0.00928382i
\(786\) 0 0
\(787\) 8.73129 + 9.69708i 0.311237 + 0.345663i 0.878386 0.477951i \(-0.158621\pi\)
−0.567150 + 0.823615i \(0.691954\pi\)
\(788\) 0.385729 + 3.66996i 0.0137410 + 0.130737i
\(789\) 0 0
\(790\) 1.67086 1.85568i 0.0594464 0.0660220i
\(791\) −10.5417 −0.374819
\(792\) 0 0
\(793\) 19.3917 0.688618
\(794\) 38.5861 42.8542i 1.36937 1.52084i
\(795\) 0 0
\(796\) −5.88107 55.9547i −0.208449 1.98326i
\(797\) −33.5725 37.2861i −1.18920 1.32074i −0.935445 0.353471i \(-0.885001\pi\)
−0.253754 0.967269i \(-0.581666\pi\)
\(798\) 0 0
\(799\) 42.5033 + 18.9237i 1.50366 + 0.669472i
\(800\) 18.2003 + 13.2233i 0.643477 + 0.467514i
\(801\) 0 0
\(802\) 50.8941 1.79713
\(803\) 13.7606 + 2.92505i 0.485600 + 0.103223i
\(804\) 0 0
\(805\) 1.98840 + 0.422648i 0.0700820 + 0.0148964i
\(806\) 85.2062 37.9363i 3.00126 1.33625i
\(807\) 0 0
\(808\) 30.9202 6.57229i 1.08777 0.231212i
\(809\) 10.8621 33.4301i 0.381892 1.17534i −0.556819 0.830634i \(-0.687978\pi\)
0.938710 0.344707i \(-0.112022\pi\)
\(810\) 0 0
\(811\) −17.8837 12.9933i −0.627981 0.456255i 0.227719 0.973727i \(-0.426873\pi\)
−0.855700 + 0.517472i \(0.826873\pi\)
\(812\) 9.51789 10.5707i 0.334012 0.370958i
\(813\) 0 0
\(814\) −5.29620 + 3.84783i −0.185632 + 0.134866i
\(815\) 0.250512 0.433900i 0.00877506 0.0151989i
\(816\) 0 0
\(817\) −1.15052 + 10.9464i −0.0402515 + 0.382967i
\(818\) 15.1391 10.9992i 0.529327 0.384579i
\(819\) 0 0
\(820\) 1.29808 3.99508i 0.0453309 0.139514i
\(821\) −2.31785 1.03197i −0.0808934 0.0360160i 0.365891 0.930658i \(-0.380764\pi\)
−0.446784 + 0.894642i \(0.647431\pi\)
\(822\) 0 0
\(823\) 10.1460 + 2.15660i 0.353668 + 0.0751745i 0.381320 0.924443i \(-0.375470\pi\)
−0.0276517 + 0.999618i \(0.508803\pi\)
\(824\) 15.8152 27.3928i 0.550950 0.954273i
\(825\) 0 0
\(826\) −19.9455 34.5467i −0.693994 1.20203i
\(827\) −16.2925 50.1431i −0.566546 1.74365i −0.663314 0.748341i \(-0.730851\pi\)
0.0967683 0.995307i \(-0.469149\pi\)
\(828\) 0 0
\(829\) −30.6163 + 22.2440i −1.06335 + 0.772566i −0.974705 0.223497i \(-0.928253\pi\)
−0.0886419 + 0.996064i \(0.528253\pi\)
\(830\) 9.74073 2.07046i 0.338106 0.0718666i
\(831\) 0 0
\(832\) 5.46104 + 51.9583i 0.189327 + 1.80133i
\(833\) −28.4527 + 12.6680i −0.985829 + 0.438919i
\(834\) 0 0
\(835\) 2.42863 + 4.20651i 0.0840462 + 0.145572i
\(836\) 34.4135 7.31444i 1.19021 0.252975i
\(837\) 0 0
\(838\) −4.02803 12.3970i −0.139146 0.428247i
\(839\) −2.10265 + 20.0054i −0.0725915 + 0.690662i 0.896346 + 0.443355i \(0.146212\pi\)
−0.968937 + 0.247306i \(0.920455\pi\)
\(840\) 0 0
\(841\) −13.6665 15.1781i −0.471257 0.523384i
\(842\) −58.9925 65.5178i −2.03302 2.25789i
\(843\) 0 0
\(844\) 5.35100 50.9114i 0.184189 1.75244i
\(845\) 0.452118 + 1.39148i 0.0155533 + 0.0478682i
\(846\) 0 0
\(847\) 7.80199 13.5128i 0.268079 0.464305i
\(848\) 2.93048 + 5.07575i 0.100633 + 0.174302i
\(849\) 0 0
\(850\) 65.0923 28.9810i 2.23265 0.994039i
\(851\) −0.400459 3.81011i −0.0137275 0.130609i
\(852\) 0 0
\(853\) −8.92089 + 1.89619i −0.305446 + 0.0649245i −0.358085 0.933689i \(-0.616570\pi\)
0.0526390 + 0.998614i \(0.483237\pi\)
\(854\) −12.3489 + 8.97197i −0.422569 + 0.307014i
\(855\) 0 0
\(856\) 5.30210 + 16.3182i 0.181222 + 0.557744i
\(857\) −0.922678 1.59813i −0.0315181 0.0545909i 0.849836 0.527047i \(-0.176701\pi\)
−0.881354 + 0.472456i \(0.843368\pi\)
\(858\) 0 0
\(859\) −14.2555 + 24.6913i −0.486392 + 0.842456i −0.999878 0.0156422i \(-0.995021\pi\)
0.513485 + 0.858098i \(0.328354\pi\)
\(860\) −3.77271 0.801915i −0.128648 0.0273451i
\(861\) 0 0
\(862\) −63.3708 28.2145i −2.15842 0.960989i
\(863\) 3.30628 10.1757i 0.112547 0.346385i −0.878880 0.477042i \(-0.841709\pi\)
0.991428 + 0.130658i \(0.0417089\pi\)
\(864\) 0 0
\(865\) −0.252894 + 0.183738i −0.00859865 + 0.00624729i
\(866\) −0.0679878 + 0.646861i −0.00231032 + 0.0219812i
\(867\) 0 0
\(868\) −23.1735 + 40.1376i −0.786559 + 1.36236i
\(869\) 11.2168 0.000115910i 0.380503 3.93198e-6i
\(870\) 0 0
\(871\) 27.9930 31.0893i 0.948506 1.05342i
\(872\) 38.8492 + 28.2256i 1.31560 + 0.955840i
\(873\) 0 0
\(874\) −10.0786 + 31.0187i −0.340913 + 1.04922i
\(875\) −4.35443 + 0.925562i −0.147207 + 0.0312897i
\(876\) 0 0
\(877\) 37.3021 16.6080i 1.25960 0.560811i 0.335171 0.942157i \(-0.391206\pi\)
0.924432 + 0.381346i \(0.124539\pi\)
\(878\) 34.1637 + 7.26173i 1.15297 + 0.245071i
\(879\) 0 0
\(880\) 0.0963762 + 0.917050i 0.00324884 + 0.0309137i
\(881\) −21.0458 −0.709050 −0.354525 0.935047i \(-0.615357\pi\)
−0.354525 + 0.935047i \(0.615357\pi\)
\(882\) 0 0
\(883\) −10.2973 7.48145i −0.346533 0.251771i 0.400880 0.916130i \(-0.368704\pi\)
−0.747413 + 0.664360i \(0.768704\pi\)
\(884\) 81.9816 + 36.5006i 2.75734 + 1.22765i
\(885\) 0 0
\(886\) 22.5966 + 25.0961i 0.759148 + 0.843119i
\(887\) 1.12107 + 10.6662i 0.0376417 + 0.358137i 0.997089 + 0.0762484i \(0.0242942\pi\)
−0.959447 + 0.281889i \(0.909039\pi\)
\(888\) 0 0
\(889\) 12.5331 13.9194i 0.420346 0.466842i
\(890\) 1.99164 0.0667599
\(891\) 0 0
\(892\) 6.59606 0.220852
\(893\) 15.4450 17.1534i 0.516846 0.574015i
\(894\) 0 0
\(895\) −0.371996 3.53931i −0.0124345 0.118306i
\(896\) −18.8009 20.8805i −0.628094 0.697569i
\(897\) 0 0
\(898\) −45.1523 20.1031i −1.50675 0.670850i
\(899\) −22.6060 16.4242i −0.753952 0.547778i
\(900\) 0 0
\(901\) −41.7304 −1.39024
\(902\) 27.3065 12.1573i 0.909206 0.404793i
\(903\) 0 0
\(904\) 24.1126 + 5.12529i 0.801972 + 0.170464i
\(905\) 5.19148 2.31139i 0.172571 0.0768334i
\(906\) 0 0
\(907\) 12.9561 2.75391i 0.430201 0.0914421i 0.0122784 0.999925i \(-0.496092\pi\)
0.417923 + 0.908483i \(0.362758\pi\)
\(908\) 16.9422 52.1426i 0.562245 1.73041i
\(909\) 0 0
\(910\) −3.55618 2.58372i −0.117886 0.0856494i
\(911\) 38.2237 42.4518i 1.26641 1.40649i 0.392973 0.919550i \(-0.371447\pi\)
0.873436 0.486939i \(-0.161887\pi\)
\(912\) 0 0
\(913\) 36.1894 + 26.2937i 1.19769 + 0.870195i
\(914\) −3.73747 + 6.47348i −0.123624 + 0.214124i
\(915\) 0 0
\(916\) 0.187172 1.78082i 0.00618432 0.0588399i
\(917\) 8.37786 6.08687i 0.276661 0.201006i
\(918\) 0 0
\(919\) 5.12287 15.7666i 0.168988 0.520091i −0.830320 0.557287i \(-0.811842\pi\)
0.999308 + 0.0371955i \(0.0118424\pi\)
\(920\) −4.34269 1.93349i −0.143174 0.0637454i
\(921\) 0 0
\(922\) −59.9725 12.7475i −1.97509 0.419818i
\(923\) 6.15009 10.6523i 0.202433 0.350624i
\(924\) 0 0
\(925\) 2.07615 + 3.59600i 0.0682634 + 0.118236i
\(926\) −2.61125 8.03660i −0.0858109 0.264099i
\(927\) 0 0
\(928\) 10.8784 7.90359i 0.357100 0.259448i
\(929\) −7.20288 + 1.53102i −0.236319 + 0.0502311i −0.324549 0.945869i \(-0.605212\pi\)
0.0882298 + 0.996100i \(0.471879\pi\)
\(930\) 0 0
\(931\) 1.61515 + 15.3671i 0.0529343 + 0.503636i
\(932\) 32.0720 14.2794i 1.05055 0.467737i
\(933\) 0 0
\(934\) 21.5376 + 37.3043i 0.704733 + 1.22063i
\(935\) −5.99776 2.67045i −0.196148 0.0873330i
\(936\) 0 0
\(937\) 14.6033 + 44.9444i 0.477069 + 1.46827i 0.843147 + 0.537684i \(0.180701\pi\)
−0.366077 + 0.930584i \(0.619299\pi\)
\(938\) −3.44213 + 32.7496i −0.112389 + 1.06931i
\(939\) 0 0
\(940\) 5.41225 + 6.01091i 0.176528 + 0.196054i
\(941\) 37.5574 + 41.7118i 1.22434 + 1.35976i 0.912209 + 0.409725i \(0.134375\pi\)
0.312128 + 0.950040i \(0.398958\pi\)
\(942\) 0 0
\(943\) −1.82847 + 17.3967i −0.0595432 + 0.566516i
\(944\) 3.27233 + 10.0712i 0.106505 + 0.327789i
\(945\) 0 0
\(946\) −13.7223 23.7682i −0.446149 0.772772i
\(947\) −6.39323 11.0734i −0.207752 0.359837i 0.743254 0.669009i \(-0.233281\pi\)
−0.951006 + 0.309172i \(0.899948\pi\)
\(948\) 0 0
\(949\) 16.2633 7.24091i 0.527930 0.235050i
\(950\) −3.69502 35.1558i −0.119882 1.14060i
\(951\) 0 0
\(952\) −28.7386 + 6.10858i −0.931424 + 0.197980i
\(953\) −18.8480 + 13.6939i −0.610547 + 0.443588i −0.849607 0.527417i \(-0.823161\pi\)
0.239060 + 0.971005i \(0.423161\pi\)
\(954\) 0 0
\(955\) −1.26256 3.88576i −0.0408555 0.125740i
\(956\) −16.5067 28.5904i −0.533864 0.924680i
\(957\) 0 0
\(958\) 0.182825 0.316662i 0.00590680 0.0102309i
\(959\) −13.6076 2.89239i −0.439413 0.0934001i
\(960\) 0 0
\(961\) 54.8540 + 24.4226i 1.76949 + 0.787826i
\(962\) −2.55995 + 7.87872i −0.0825362 + 0.254020i
\(963\) 0 0
\(964\) 0.772163 0.561009i 0.0248697 0.0180689i
\(965\) 0.767170 7.29913i 0.0246961 0.234967i
\(966\) 0 0
\(967\) 27.7586 48.0794i 0.892657 1.54613i 0.0559798 0.998432i \(-0.482172\pi\)
0.836677 0.547696i \(-0.184495\pi\)
\(968\) −24.4157 + 27.1153i −0.784752 + 0.871519i
\(969\) 0 0
\(970\) 2.59742 2.88473i 0.0833981 0.0926230i
\(971\) −3.65698 2.65695i −0.117358 0.0852656i 0.527558 0.849519i \(-0.323108\pi\)
−0.644916 + 0.764253i \(0.723108\pi\)
\(972\) 0 0
\(973\) 4.15409 12.7850i 0.133174 0.409867i
\(974\) 40.8385 8.68049i 1.30855 0.278141i
\(975\) 0 0
\(976\) 3.70167 1.64809i 0.118487 0.0527540i
\(977\) −26.4484 5.62178i −0.846159 0.179857i −0.235623 0.971845i \(-0.575713\pi\)
−0.610537 + 0.791988i \(0.709046\pi\)
\(978\) 0 0
\(979\) 5.98627 + 6.64856i 0.191322 + 0.212489i
\(980\) −5.41462 −0.172964
\(981\) 0 0
\(982\) 12.5261 + 9.10076i 0.399725 + 0.290417i
\(983\) −9.71793 4.32670i −0.309954 0.138000i 0.245864 0.969304i \(-0.420928\pi\)
−0.555818 + 0.831304i \(0.687595\pi\)
\(984\) 0 0
\(985\) −0.228602 0.253888i −0.00728385 0.00808953i
\(986\) −4.45163 42.3545i −0.141769 1.34884i
\(987\) 0 0
\(988\) 29.7907 33.0859i 0.947768 1.05260i
\(989\) 16.0614 0.510723
\(990\) 0 0
\(991\) −18.7938 −0.597005 −0.298502 0.954409i \(-0.596487\pi\)
−0.298502 + 0.954409i \(0.596487\pi\)
\(992\) −29.3162 + 32.5590i −0.930792 + 1.03375i
\(993\) 0 0
\(994\) 1.01205 + 9.62897i 0.0321001 + 0.305412i
\(995\) 3.48541 + 3.87094i 0.110495 + 0.122717i
\(996\) 0 0
\(997\) −23.8686 10.6270i −0.755926 0.336560i −0.00767052 0.999971i \(-0.502442\pi\)
−0.748256 + 0.663411i \(0.769108\pi\)
\(998\) 63.9637 + 46.4723i 2.02473 + 1.47106i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.280.1 72
3.2 odd 2 99.2.m.b.49.9 yes 72
9.2 odd 6 99.2.m.b.16.1 72
9.4 even 3 891.2.f.e.82.1 36
9.5 odd 6 891.2.f.f.82.9 36
9.7 even 3 inner 297.2.n.b.181.9 72
11.9 even 5 inner 297.2.n.b.64.9 72
33.8 even 10 1089.2.e.o.364.18 36
33.14 odd 10 1089.2.e.p.364.1 36
33.20 odd 10 99.2.m.b.31.1 yes 72
99.14 odd 30 9801.2.a.cm.1.18 18
99.20 odd 30 99.2.m.b.97.9 yes 72
99.31 even 15 891.2.f.e.163.1 36
99.41 even 30 9801.2.a.co.1.1 18
99.47 odd 30 1089.2.e.p.727.1 36
99.58 even 15 9801.2.a.cp.1.1 18
99.74 even 30 1089.2.e.o.727.18 36
99.85 odd 30 9801.2.a.cn.1.18 18
99.86 odd 30 891.2.f.f.163.9 36
99.97 even 15 inner 297.2.n.b.262.1 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.1 72 9.2 odd 6
99.2.m.b.31.1 yes 72 33.20 odd 10
99.2.m.b.49.9 yes 72 3.2 odd 2
99.2.m.b.97.9 yes 72 99.20 odd 30
297.2.n.b.64.9 72 11.9 even 5 inner
297.2.n.b.181.9 72 9.7 even 3 inner
297.2.n.b.262.1 72 99.97 even 15 inner
297.2.n.b.280.1 72 1.1 even 1 trivial
891.2.f.e.82.1 36 9.4 even 3
891.2.f.e.163.1 36 99.31 even 15
891.2.f.f.82.9 36 9.5 odd 6
891.2.f.f.163.9 36 99.86 odd 30
1089.2.e.o.364.18 36 33.8 even 10
1089.2.e.o.727.18 36 99.74 even 30
1089.2.e.p.364.1 36 33.14 odd 10
1089.2.e.p.727.1 36 99.47 odd 30
9801.2.a.cm.1.18 18 99.14 odd 30
9801.2.a.cn.1.18 18 99.85 odd 30
9801.2.a.co.1.1 18 99.41 even 30
9801.2.a.cp.1.1 18 99.58 even 15