gp: [N,k,chi] = [297,2,Mod(34,297)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(297, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([16, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("297.34");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [102]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{102} - 48 T_{2}^{97} + 849 T_{2}^{96} + 78 T_{2}^{95} - 42 T_{2}^{94} + 506 T_{2}^{93} + \cdots + 331776 \)
T2^102 - 48*T2^97 + 849*T2^96 + 78*T2^95 - 42*T2^94 + 506*T2^93 + 543*T2^92 - 37908*T2^91 + 482382*T2^90 - 55125*T2^89 + 64287*T2^88 + 320637*T2^87 - 155952*T2^86 - 15384807*T2^85 + 152910228*T2^84 - 30893328*T2^83 + 31781637*T2^82 + 144876126*T2^81 - 190541340*T2^80 - 3434990031*T2^79 + 34916403342*T2^78 - 15877267488*T2^77 + 19628081280*T2^76 + 20586701907*T2^75 - 66418725096*T2^74 - 356756699439*T2^73 + 4407739833846*T2^72 - 2345997643488*T2^71 + 4047030742833*T2^70 - 1038419157471*T2^69 + 888969348585*T2^68 - 36244648237644*T2^67 + 395458258741395*T2^66 - 191939062915719*T2^65 + 231967438833600*T2^64 - 16052446323699*T2^63 + 36163432366092*T2^62 - 1392121755995544*T2^61 + 17275072433976930*T2^60 - 3847984436520774*T2^59 + 1619124802096392*T2^58 + 4812339339300081*T2^57 - 9066920673832074*T2^56 - 3456355705426548*T2^55 + 524772690647130210*T2^54 - 68335422708800574*T2^53 - 103974338470061106*T2^52 + 159701914400920509*T2^51 - 200791026930478950*T2^50 + 535447108161338283*T2^49 + 8893795385168681577*T2^48 + 473590923774054984*T2^47 - 5410546815933958041*T2^46 + 1276890182991952392*T2^45 - 4035329112845220876*T2^44 + 25820538808331031408*T2^43 + 99283122623348325957*T2^42 - 13718801017400107194*T2^41 - 67527972050174995923*T2^40 + 26405330468325022863*T2^39 + 31003754651730518310*T2^38 + 169227428636103041547*T2^37 + 350590669239920454660*T2^36 - 204121367020841322978*T2^35 - 333678684134215747098*T2^34 + 166217983854242875941*T2^33 + 56856340587167548335*T2^32 + 213914509745151662919*T2^31 + 961346091027165356154*T2^30 - 313294251747301746435*T2^29 - 1191789887671101131721*T2^28 + 284801223050612428503*T2^27 + 1081194843725205379173*T2^26 + 228882432158675854254*T2^25 - 230112263333213846358*T2^24 - 318278347954823372256*T2^23 - 92613206024978115744*T2^22 + 124939980437241591281*T2^21 + 195175020684477469968*T2^20 + 67101035447924539929*T2^19 + 30291677245067600190*T2^18 + 2182854205113997491*T2^17 - 6136987643927256453*T2^16 - 729242489439823932*T2^15 + 412405039038605907*T2^14 - 693007670411318334*T2^13 + 662655787186159189*T2^12 - 178236919737417576*T2^11 + 52351310581426836*T2^10 - 7903263180003936*T2^9 + 619022834239824*T2^8 - 173819320450560*T2^7 + 44858333205504*T2^6 - 6311146876416*T2^5 + 941872872960*T2^4 - 40149430272*T2^3 + 556305408*T2^2 + 23887872*T2 + 331776
acting on \(S_{2}^{\mathrm{new}}(297, [\chi])\).