Properties

Label 297.2.e.e
Level 297
Weight 2
Character orbit 297.e
Analytic conductor 2.372
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.508277025.1
Defining polynomial: \(x^{8} - 3 x^{7} + 5 x^{6} - 15 x^{5} + 21 x^{4} + 3 x^{3} - 22 x^{2} + 3 x + 19\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{2} + \beta_{6} ) q^{2} + ( \beta_{3} + 3 \beta_{5} ) q^{4} + ( \beta_{3} - \beta_{5} + \beta_{7} ) q^{5} + ( -\beta_{4} - \beta_{7} ) q^{7} + ( 1 + \beta_{1} - \beta_{3} - \beta_{4} - 2 \beta_{6} ) q^{8} +O(q^{10})\) \( q + ( \beta_{2} + \beta_{6} ) q^{2} + ( \beta_{3} + 3 \beta_{5} ) q^{4} + ( \beta_{3} - \beta_{5} + \beta_{7} ) q^{5} + ( -\beta_{4} - \beta_{7} ) q^{7} + ( 1 + \beta_{1} - \beta_{3} - \beta_{4} - 2 \beta_{6} ) q^{8} + ( 1 - 3 \beta_{4} ) q^{10} + ( 1 + \beta_{5} ) q^{11} + ( \beta_{2} - \beta_{3} + \beta_{5} + \beta_{7} ) q^{13} + ( -\beta_{3} - 2 \beta_{7} ) q^{14} + ( -5 - 2 \beta_{1} + 2 \beta_{2} - \beta_{4} - 5 \beta_{5} + 2 \beta_{6} - \beta_{7} ) q^{16} + ( 1 + 2 \beta_{4} - \beta_{6} ) q^{17} + ( 2 + \beta_{1} - \beta_{3} + 2 \beta_{4} ) q^{19} + ( -2 - \beta_{1} + \beta_{2} - 4 \beta_{4} - 2 \beta_{5} + \beta_{6} - 4 \beta_{7} ) q^{20} + \beta_{2} q^{22} + ( -\beta_{3} - 4 \beta_{5} + \beta_{7} ) q^{23} + ( -3 + 2 \beta_{1} - \beta_{2} + \beta_{4} - 3 \beta_{5} - \beta_{6} + \beta_{7} ) q^{25} + ( -6 - 3 \beta_{1} + 3 \beta_{3} - \beta_{4} ) q^{26} + ( -1 + \beta_{1} - \beta_{3} + 3 \beta_{4} + \beta_{6} ) q^{28} + ( -1 + \beta_{1} - \beta_{2} - \beta_{5} - \beta_{6} ) q^{29} + ( -\beta_{2} + \beta_{3} ) q^{31} + ( -3 \beta_{2} + \beta_{3} + 10 \beta_{5} - 2 \beta_{7} ) q^{32} + ( -5 + \beta_{1} + \beta_{2} + 4 \beta_{4} - 5 \beta_{5} + \beta_{6} + 4 \beta_{7} ) q^{34} + ( 2 + \beta_{1} - \beta_{3} - \beta_{4} + 2 \beta_{6} ) q^{35} + ( 1 - 2 \beta_{1} + 2 \beta_{3} - \beta_{4} - 2 \beta_{6} ) q^{37} + ( -1 + \beta_{1} + 3 \beta_{2} + 5 \beta_{4} - \beta_{5} + 3 \beta_{6} + 5 \beta_{7} ) q^{38} + ( -3 \beta_{2} - 2 \beta_{3} + 4 \beta_{5} - 3 \beta_{7} ) q^{40} + ( \beta_{2} + \beta_{5} - 3 \beta_{7} ) q^{41} + ( 5 + \beta_{2} + 5 \beta_{5} + \beta_{6} ) q^{43} + ( -3 - \beta_{1} + \beta_{3} ) q^{44} + ( -1 - 2 \beta_{1} + 2 \beta_{3} - \beta_{4} + 5 \beta_{6} ) q^{46} + ( -2 - \beta_{2} + 2 \beta_{4} - 2 \beta_{5} - \beta_{6} + 2 \beta_{7} ) q^{47} + ( \beta_{2} - 4 \beta_{5} ) q^{49} + ( -\beta_{2} - 2 \beta_{3} - 7 \beta_{5} + 4 \beta_{7} ) q^{50} + ( 5 - 7 \beta_{2} - 3 \beta_{4} + 5 \beta_{5} - 7 \beta_{6} - 3 \beta_{7} ) q^{52} + ( 1 + \beta_{1} - \beta_{3} + 3 \beta_{4} ) q^{53} + ( 1 - \beta_{1} + \beta_{3} - \beta_{4} ) q^{55} + ( 4 + \beta_{1} + 3 \beta_{4} + 4 \beta_{5} + 3 \beta_{7} ) q^{56} + ( -2 \beta_{3} - 6 \beta_{5} + \beta_{7} ) q^{58} + ( -\beta_{3} - \beta_{5} + \beta_{7} ) q^{59} + ( -4 + \beta_{4} - 4 \beta_{5} + \beta_{7} ) q^{61} + ( 6 + 2 \beta_{1} - 2 \beta_{3} - \beta_{4} - \beta_{6} ) q^{62} + ( 6 + 2 \beta_{1} - 2 \beta_{3} + \beta_{4} - 7 \beta_{6} ) q^{64} + ( 5 - 4 \beta_{1} - 3 \beta_{2} - 2 \beta_{4} + 5 \beta_{5} - 3 \beta_{6} - 2 \beta_{7} ) q^{65} + ( -\beta_{2} - 2 \beta_{3} + 4 \beta_{5} - 3 \beta_{7} ) q^{67} + ( -2 \beta_{2} + 4 \beta_{3} + 2 \beta_{5} + 5 \beta_{7} ) q^{68} + ( 9 + 3 \beta_{2} - \beta_{4} + 9 \beta_{5} + 3 \beta_{6} - \beta_{7} ) q^{70} + ( 1 - 3 \beta_{4} + 2 \beta_{6} ) q^{71} + ( 6 - \beta_{1} + \beta_{3} - \beta_{4} - 2 \beta_{6} ) q^{73} + ( -8 - \beta_{1} - \beta_{2} - 4 \beta_{4} - 8 \beta_{5} - \beta_{6} - 4 \beta_{7} ) q^{74} + ( 5 \beta_{3} + 10 \beta_{5} + 7 \beta_{7} ) q^{76} -\beta_{7} q^{77} + ( -2 - \beta_{1} - 2 \beta_{2} - 2 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{79} + ( 9 + 2 \beta_{1} - 2 \beta_{3} ) q^{80} + ( -5 + 2 \beta_{1} - 2 \beta_{3} + 6 \beta_{4} - \beta_{6} ) q^{82} + ( 5 + 3 \beta_{1} - \beta_{2} + 2 \beta_{4} + 5 \beta_{5} - \beta_{6} + 2 \beta_{7} ) q^{83} + ( 4 \beta_{2} + 3 \beta_{3} + 4 \beta_{5} - 4 \beta_{7} ) q^{85} + ( 5 \beta_{2} + \beta_{3} + 5 \beta_{5} ) q^{86} + ( 1 + \beta_{1} - 2 \beta_{2} - \beta_{4} + \beta_{5} - 2 \beta_{6} - \beta_{7} ) q^{88} + ( 4 \beta_{4} + 2 \beta_{6} ) q^{89} + ( 4 + 3 \beta_{4} ) q^{91} + ( 19 + 4 \beta_{1} - 3 \beta_{2} - 2 \beta_{4} + 19 \beta_{5} - 3 \beta_{6} - 2 \beta_{7} ) q^{92} + ( -2 \beta_{2} + \beta_{3} - 5 \beta_{5} + 4 \beta_{7} ) q^{94} + ( 3 \beta_{2} + 2 \beta_{3} + 7 \beta_{5} + \beta_{7} ) q^{95} + ( -7 - 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{4} - 7 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{97} + ( -5 - \beta_{1} + \beta_{3} + 4 \beta_{6} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + q^{2} - 11q^{4} + 4q^{5} - q^{7} + O(q^{10}) \) \( 8q + q^{2} - 11q^{4} + 4q^{5} - q^{7} + 2q^{10} + 4q^{11} - 7q^{13} + q^{14} - 17q^{16} + 10q^{17} + 18q^{19} - 10q^{20} - q^{22} + 14q^{23} - 14q^{25} - 44q^{26} - 2q^{28} - 6q^{29} + 2q^{31} - 34q^{32} - 16q^{34} + 16q^{35} + 6q^{37} + 3q^{38} - 12q^{40} - 2q^{41} + 21q^{43} - 22q^{44} + 4q^{46} - 7q^{47} + 15q^{49} + 23q^{50} + 10q^{52} + 12q^{53} + 8q^{55} + 18q^{56} + 21q^{58} + 2q^{59} - 15q^{61} + 40q^{62} + 32q^{64} + 19q^{65} - 14q^{67} - 7q^{68} + 38q^{70} + 6q^{71} + 44q^{73} - 36q^{74} - 42q^{76} + q^{77} - 11q^{79} + 68q^{80} - 34q^{82} + 18q^{83} - 13q^{85} - 24q^{86} + 12q^{89} + 38q^{91} + 67q^{92} + 19q^{94} - 30q^{95} - 26q^{97} - 30q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 3 x^{7} + 5 x^{6} - 15 x^{5} + 21 x^{4} + 3 x^{3} - 22 x^{2} + 3 x + 19\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -43 \nu^{7} - 317 \nu^{6} - 270 \nu^{5} + 36 \nu^{4} + 2226 \nu^{3} + 5037 \nu^{2} - 3419 \nu - 2806 \)\()/2799\)
\(\beta_{2}\)\(=\)\((\)\( 193 \nu^{7} + 620 \nu^{6} - 1023 \nu^{5} + 1878 \nu^{4} - 10143 \nu^{3} + 12564 \nu^{2} + 2696 \nu - 10991 \)\()/5598\)
\(\beta_{3}\)\(=\)\((\)\( 130 \nu^{7} - 235 \nu^{6} - 312 \nu^{5} - 1389 \nu^{4} - 828 \nu^{3} + 6795 \nu^{2} + 2048 \nu - 3125 \)\()/2799\)
\(\beta_{4}\)\(=\)\((\)\( 145 \nu^{7} - 298 \nu^{6} + 585 \nu^{5} - 1944 \nu^{4} + 1086 \nu^{3} + 1371 \nu^{2} - 2596 \nu + 3799 \)\()/2799\)
\(\beta_{5}\)\(=\)\((\)\( -145 \nu^{7} + 298 \nu^{6} - 585 \nu^{5} + 1944 \nu^{4} - 2019 \nu^{3} - 438 \nu^{2} + 730 \nu - 67 \)\()/1866\)
\(\beta_{6}\)\(=\)\((\)\( 242 \nu^{7} - 581 \nu^{6} + 912 \nu^{5} - 3045 \nu^{4} + 3138 \nu^{3} + 1812 \nu^{2} - 6752 \nu + 929 \)\()/2799\)
\(\beta_{7}\)\(=\)\((\)\( -254 \nu^{7} + 818 \nu^{6} - 1443 \nu^{5} + 4422 \nu^{4} - 6162 \nu^{3} + 1221 \nu^{2} + 1697 \nu - 2363 \)\()/2799\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-2 \beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} + \beta_{2} + 2\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(2 \beta_{7} - 3 \beta_{6} - 4 \beta_{5} + 4 \beta_{4} - \beta_{3} + 2 \beta_{1} - 2\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(6 \beta_{7} - \beta_{6} - 12 \beta_{5} - 3 \beta_{4} - \beta_{3} - 2 \beta_{2} + 2 \beta_{1} + 6\)\()/3\)
\(\nu^{4}\)\(=\)\((\)\(-17 \beta_{7} + 6 \beta_{6} + 16 \beta_{5} - 19 \beta_{4} - 5 \beta_{3} + 12 \beta_{2} + \beta_{1} + 29\)\()/3\)
\(\nu^{5}\)\(=\)\((\)\(-13 \beta_{7} - 22 \beta_{6} + 5 \beta_{5} + 31 \beta_{4} - 17 \beta_{3} + 13 \beta_{2} + 10 \beta_{1} - 29\)\()/3\)
\(\nu^{6}\)\(=\)\(37 \beta_{7} - 13 \beta_{6} - 54 \beta_{5} + 19 \beta_{4} - 3 \beta_{3} - 14 \beta_{2} + 5 \beta_{1} - 18\)
\(\nu^{7}\)\(=\)\((\)\(-47 \beta_{7} + 107 \beta_{6} + 7 \beta_{5} - 238 \beta_{4} + 55 \beta_{2} - 30 \beta_{1} + 326\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(\beta_{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
100.1
1.86526 + 0.199842i
0.947217 + 0.807294i
−0.577806 2.22188i
−0.734668 + 0.348716i
1.86526 0.199842i
0.947217 0.807294i
−0.577806 + 2.22188i
−0.734668 0.348716i
−1.36526 + 2.36469i 0 −2.72785 4.72478i −0.468293 0.811107i 0 0.259560 0.449571i 9.43585 0 2.55736
100.2 −0.447217 + 0.774602i 0 0.599994 + 1.03922i 1.87447 + 3.24667i 0 −0.725528 + 1.25665i −2.86218 0 −3.35317
100.3 1.07781 1.86682i 0 −1.32333 2.29208i 1.81197 + 3.13842i 0 1.13530 1.96640i −1.39396 0 7.81179
100.4 1.23467 2.13851i 0 −2.04881 3.54864i −1.21814 2.10988i 0 −1.16933 + 2.02534i −5.17972 0 −6.01598
199.1 −1.36526 2.36469i 0 −2.72785 + 4.72478i −0.468293 + 0.811107i 0 0.259560 + 0.449571i 9.43585 0 2.55736
199.2 −0.447217 0.774602i 0 0.599994 1.03922i 1.87447 3.24667i 0 −0.725528 1.25665i −2.86218 0 −3.35317
199.3 1.07781 + 1.86682i 0 −1.32333 + 2.29208i 1.81197 3.13842i 0 1.13530 + 1.96640i −1.39396 0 7.81179
199.4 1.23467 + 2.13851i 0 −2.04881 + 3.54864i −1.21814 + 2.10988i 0 −1.16933 2.02534i −5.17972 0 −6.01598
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 297.2.e.e 8
3.b odd 2 1 99.2.e.e 8
9.c even 3 1 inner 297.2.e.e 8
9.c even 3 1 891.2.a.p 4
9.d odd 6 1 99.2.e.e 8
9.d odd 6 1 891.2.a.q 4
33.d even 2 1 1089.2.e.i 8
99.g even 6 1 1089.2.e.i 8
99.g even 6 1 9801.2.a.bi 4
99.h odd 6 1 9801.2.a.bl 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.e.e 8 3.b odd 2 1
99.2.e.e 8 9.d odd 6 1
297.2.e.e 8 1.a even 1 1 trivial
297.2.e.e 8 9.c even 3 1 inner
891.2.a.p 4 9.c even 3 1
891.2.a.q 4 9.d odd 6 1
1089.2.e.i 8 33.d even 2 1
1089.2.e.i 8 99.g even 6 1
9801.2.a.bi 4 99.g even 6 1
9801.2.a.bl 4 99.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{8} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(297, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + 2 T^{2} - 3 T^{3} + 2 T^{4} + 4 T^{5} + T^{6} + 6 T^{7} - 11 T^{8} + 12 T^{9} + 4 T^{10} + 32 T^{11} + 32 T^{12} - 96 T^{13} + 128 T^{14} - 128 T^{15} + 256 T^{16} \)
$3$ 1
$5$ \( 1 - 4 T + 5 T^{2} + 18 T^{3} - 94 T^{4} + 232 T^{5} - 110 T^{6} - 1011 T^{7} + 3826 T^{8} - 5055 T^{9} - 2750 T^{10} + 29000 T^{11} - 58750 T^{12} + 56250 T^{13} + 78125 T^{14} - 312500 T^{15} + 390625 T^{16} \)
$7$ \( 1 + T - 21 T^{2} - 10 T^{3} + 254 T^{4} + 36 T^{5} - 2408 T^{6} - 83 T^{7} + 18573 T^{8} - 581 T^{9} - 117992 T^{10} + 12348 T^{11} + 609854 T^{12} - 168070 T^{13} - 2470629 T^{14} + 823543 T^{15} + 5764801 T^{16} \)
$11$ \( ( 1 - T + T^{2} )^{4} \)
$13$ \( 1 + 7 T + 12 T^{2} + 23 T^{3} + 77 T^{4} - 624 T^{5} - 1550 T^{6} + 622 T^{7} - 8472 T^{8} + 8086 T^{9} - 261950 T^{10} - 1370928 T^{11} + 2199197 T^{12} + 8539739 T^{13} + 57921708 T^{14} + 439239619 T^{15} + 815730721 T^{16} \)
$17$ \( ( 1 - 5 T + 44 T^{2} - 86 T^{3} + 682 T^{4} - 1462 T^{5} + 12716 T^{6} - 24565 T^{7} + 83521 T^{8} )^{2} \)
$19$ \( ( 1 - 9 T + 76 T^{2} - 432 T^{3} + 2112 T^{4} - 8208 T^{5} + 27436 T^{6} - 61731 T^{7} + 130321 T^{8} )^{2} \)
$23$ \( 1 - 14 T + 53 T^{2} - 96 T^{3} + 1775 T^{4} - 8902 T^{5} - 9839 T^{6} - 41958 T^{7} + 1213519 T^{8} - 965034 T^{9} - 5204831 T^{10} - 108310634 T^{11} + 496717775 T^{12} - 617888928 T^{13} + 7845902117 T^{14} - 47667556258 T^{15} + 78310985281 T^{16} \)
$29$ \( 1 + 6 T - 71 T^{2} - 192 T^{3} + 4573 T^{4} + 4224 T^{5} - 186713 T^{6} - 77688 T^{7} + 5509213 T^{8} - 2252952 T^{9} - 157025633 T^{10} + 103019136 T^{11} + 3234396013 T^{12} - 3938140608 T^{13} - 42232455791 T^{14} + 103499257854 T^{15} + 500246412961 T^{16} \)
$31$ \( 1 - 2 T - 99 T^{2} + 20 T^{3} + 5978 T^{4} + 2478 T^{5} - 249986 T^{6} - 33695 T^{7} + 8127744 T^{8} - 1044545 T^{9} - 240236546 T^{10} + 73822098 T^{11} + 5520808538 T^{12} + 572583020 T^{13} - 87862864419 T^{14} - 55025228222 T^{15} + 852891037441 T^{16} \)
$37$ \( ( 1 - 3 T + 67 T^{2} - 189 T^{3} + 2277 T^{4} - 6993 T^{5} + 91723 T^{6} - 151959 T^{7} + 1874161 T^{8} )^{2} \)
$41$ \( 1 + 2 T - 97 T^{2} - 612 T^{3} + 4493 T^{4} + 38218 T^{5} - 22457 T^{6} - 901512 T^{7} - 2262647 T^{8} - 36961992 T^{9} - 37750217 T^{10} + 2634022778 T^{11} + 12696144173 T^{12} - 70903995012 T^{13} - 460760111377 T^{14} + 389508547762 T^{15} + 7984925229121 T^{16} \)
$43$ \( 1 - 21 T + 113 T^{2} - 516 T^{3} + 15670 T^{4} - 131670 T^{5} + 283958 T^{6} - 4210359 T^{7} + 56707993 T^{8} - 181045437 T^{9} + 525038342 T^{10} - 10468686690 T^{11} + 53572611670 T^{12} - 75856356588 T^{13} + 714314024537 T^{14} - 5708190833247 T^{15} + 11688200277601 T^{16} \)
$47$ \( 1 + 7 T - 124 T^{2} - 759 T^{3} + 11189 T^{4} + 50870 T^{5} - 638711 T^{6} - 948885 T^{7} + 33885262 T^{8} - 44597595 T^{9} - 1410912599 T^{10} + 5281476010 T^{11} + 54598750709 T^{12} - 174072860313 T^{13} - 1336622700796 T^{14} + 3546361843241 T^{15} + 23811286661761 T^{16} \)
$53$ \( ( 1 - 6 T + 167 T^{2} - 789 T^{3} + 11961 T^{4} - 41817 T^{5} + 469103 T^{6} - 893262 T^{7} + 7890481 T^{8} )^{2} \)
$59$ \( 1 - 2 T - 211 T^{2} + 180 T^{3} + 27194 T^{4} - 9886 T^{5} - 2406650 T^{6} + 211857 T^{7} + 162461212 T^{8} + 12499563 T^{9} - 8377548650 T^{10} - 2030376794 T^{11} + 329519515034 T^{12} + 128686373820 T^{13} - 8900092598251 T^{14} - 4977302969638 T^{15} + 146830437604321 T^{16} \)
$61$ \( 1 + 15 T - 97 T^{2} - 990 T^{3} + 28072 T^{4} + 155670 T^{5} - 2089990 T^{6} + 70125 T^{7} + 207502789 T^{8} + 4277625 T^{9} - 7776852790 T^{10} + 35334132270 T^{11} + 388680448552 T^{12} - 836150337990 T^{13} - 4997476313017 T^{14} + 47141142540315 T^{15} + 191707312997281 T^{16} \)
$67$ \( 1 + 14 T - 51 T^{2} - 500 T^{3} + 11354 T^{4} + 6834 T^{5} - 1143698 T^{6} - 2330227 T^{7} + 43235628 T^{8} - 156125209 T^{9} - 5134060322 T^{10} + 2055414342 T^{11} + 228795827834 T^{12} - 675062553500 T^{13} - 4613377490619 T^{14} + 84849962474522 T^{15} + 406067677556641 T^{16} \)
$71$ \( ( 1 - 3 T + 197 T^{2} - 909 T^{3} + 17697 T^{4} - 64539 T^{5} + 993077 T^{6} - 1073733 T^{7} + 25411681 T^{8} )^{2} \)
$73$ \( ( 1 - 22 T + 421 T^{2} - 4807 T^{3} + 49780 T^{4} - 350911 T^{5} + 2243509 T^{6} - 8558374 T^{7} + 28398241 T^{8} )^{2} \)
$79$ \( 1 + 11 T - 171 T^{2} - 1952 T^{3} + 23168 T^{4} + 216654 T^{5} - 1770938 T^{6} - 6655723 T^{7} + 156847173 T^{8} - 525802117 T^{9} - 11052424058 T^{10} + 106818871506 T^{11} + 902395476608 T^{12} - 6006414090848 T^{13} - 41567954894091 T^{14} + 211242998847749 T^{15} + 1517108809906561 T^{16} \)
$83$ \( 1 - 18 T - 5 T^{2} + 1620 T^{3} - 2021 T^{4} - 27828 T^{5} - 824807 T^{6} - 4969494 T^{7} + 193494259 T^{8} - 412468002 T^{9} - 5682095423 T^{10} - 15911688636 T^{11} - 95913266741 T^{12} + 6381245841660 T^{13} - 1634701866845 T^{14} - 488448917813286 T^{15} + 2252292232139041 T^{16} \)
$89$ \( ( 1 - 6 T + 224 T^{2} - 1554 T^{3} + 26094 T^{4} - 138306 T^{5} + 1774304 T^{6} - 4229814 T^{7} + 62742241 T^{8} )^{2} \)
$97$ \( 1 + 26 T + 132 T^{2} - 776 T^{3} + 16487 T^{4} + 336432 T^{5} + 568456 T^{6} + 7259774 T^{7} + 271106712 T^{8} + 704198078 T^{9} + 5348602504 T^{10} + 307052402736 T^{11} + 1459582255847 T^{12} - 6663776039432 T^{13} + 109952304650628 T^{14} + 2100755396430938 T^{15} + 7837433594376961 T^{16} \)
show more
show less