Properties

Label 297.2.e.b.199.1
Level $297$
Weight $2$
Character 297.199
Analytic conductor $2.372$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(100,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 199.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 297.199
Dual form 297.2.e.b.100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{4} +(-1.50000 + 2.59808i) q^{5} +(2.00000 + 3.46410i) q^{7} +(0.500000 + 0.866025i) q^{11} +(-1.00000 + 1.73205i) q^{13} +(-2.00000 - 3.46410i) q^{16} +6.00000 q^{17} +2.00000 q^{19} +(3.00000 + 5.19615i) q^{20} +(1.50000 - 2.59808i) q^{23} +(-2.00000 - 3.46410i) q^{25} +8.00000 q^{28} +(-3.00000 - 5.19615i) q^{29} +(-4.00000 + 6.92820i) q^{31} -12.0000 q^{35} +2.00000 q^{37} +(-4.00000 - 6.92820i) q^{43} +2.00000 q^{44} +(1.50000 + 2.59808i) q^{47} +(-4.50000 + 7.79423i) q^{49} +(2.00000 + 3.46410i) q^{52} -3.00000 q^{53} -3.00000 q^{55} +(-4.00000 - 6.92820i) q^{61} -8.00000 q^{64} +(-3.00000 - 5.19615i) q^{65} +(6.50000 - 11.2583i) q^{67} +(6.00000 - 10.3923i) q^{68} +2.00000 q^{73} +(2.00000 - 3.46410i) q^{76} +(-2.00000 + 3.46410i) q^{77} +(-1.00000 - 1.73205i) q^{79} +12.0000 q^{80} +(-9.00000 - 15.5885i) q^{83} +(-9.00000 + 15.5885i) q^{85} -3.00000 q^{89} -8.00000 q^{91} +(-3.00000 - 5.19615i) q^{92} +(-3.00000 + 5.19615i) q^{95} +(-1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 3 q^{5} + 4 q^{7} + q^{11} - 2 q^{13} - 4 q^{16} + 12 q^{17} + 4 q^{19} + 6 q^{20} + 3 q^{23} - 4 q^{25} + 16 q^{28} - 6 q^{29} - 8 q^{31} - 24 q^{35} + 4 q^{37} - 8 q^{43} + 4 q^{44} + 3 q^{47}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 2.00000 + 3.46410i 0.755929 + 1.30931i 0.944911 + 0.327327i \(0.106148\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) 0 0
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 3.00000 + 5.19615i 0.670820 + 1.16190i
\(21\) 0 0
\(22\) 0 0
\(23\) 1.50000 2.59808i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 8.00000 1.51186
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −12.0000 −2.02837
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) −4.00000 6.92820i −0.609994 1.05654i −0.991241 0.132068i \(-0.957838\pi\)
0.381246 0.924473i \(-0.375495\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) 0 0
\(49\) −4.50000 + 7.79423i −0.642857 + 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −3.00000 5.19615i −0.372104 0.644503i
\(66\) 0 0
\(67\) 6.50000 11.2583i 0.794101 1.37542i −0.129307 0.991605i \(-0.541275\pi\)
0.923408 0.383819i \(-0.125391\pi\)
\(68\) 6.00000 10.3923i 0.727607 1.26025i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.00000 3.46410i 0.229416 0.397360i
\(77\) −2.00000 + 3.46410i −0.227921 + 0.394771i
\(78\) 0 0
\(79\) −1.00000 1.73205i −0.112509 0.194871i 0.804272 0.594261i \(-0.202555\pi\)
−0.916781 + 0.399390i \(0.869222\pi\)
\(80\) 12.0000 1.34164
\(81\) 0 0
\(82\) 0 0
\(83\) −9.00000 15.5885i −0.987878 1.71106i −0.628372 0.777913i \(-0.716279\pi\)
−0.359506 0.933143i \(-0.617055\pi\)
\(84\) 0 0
\(85\) −9.00000 + 15.5885i −0.976187 + 1.69081i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) −3.00000 5.19615i −0.312772 0.541736i
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 + 5.19615i −0.307794 + 0.533114i
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −8.00000 −0.800000
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) −2.50000 + 4.33013i −0.246332 + 0.426660i −0.962505 0.271263i \(-0.912559\pi\)
0.716173 + 0.697923i \(0.245892\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 8.00000 13.8564i 0.755929 1.30931i
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) 4.50000 + 7.79423i 0.419627 + 0.726816i
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) 0 0
\(119\) 12.0000 + 20.7846i 1.10004 + 1.90532i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 8.00000 + 13.8564i 0.718421 + 1.24434i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.00000 15.5885i 0.786334 1.36197i −0.141865 0.989886i \(-0.545310\pi\)
0.928199 0.372084i \(-0.121357\pi\)
\(132\) 0 0
\(133\) 4.00000 + 6.92820i 0.346844 + 0.600751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00000 + 15.5885i 0.768922 + 1.33181i 0.938148 + 0.346235i \(0.112540\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 0 0
\(139\) 5.00000 8.66025i 0.424094 0.734553i −0.572241 0.820086i \(-0.693926\pi\)
0.996335 + 0.0855324i \(0.0272591\pi\)
\(140\) −12.0000 + 20.7846i −1.01419 + 1.75662i
\(141\) 0 0
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 18.0000 1.49482
\(146\) 0 0
\(147\) 0 0
\(148\) 2.00000 3.46410i 0.164399 0.284747i
\(149\) −6.00000 + 10.3923i −0.491539 + 0.851371i −0.999953 0.00974235i \(-0.996899\pi\)
0.508413 + 0.861113i \(0.330232\pi\)
\(150\) 0 0
\(151\) −4.00000 6.92820i −0.325515 0.563809i 0.656101 0.754673i \(-0.272204\pi\)
−0.981617 + 0.190864i \(0.938871\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 20.7846i −0.963863 1.66946i
\(156\) 0 0
\(157\) 3.50000 6.06218i 0.279330 0.483814i −0.691888 0.722005i \(-0.743221\pi\)
0.971219 + 0.238190i \(0.0765542\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.00000 15.5885i 0.696441 1.20627i −0.273252 0.961943i \(-0.588099\pi\)
0.969693 0.244328i \(-0.0785675\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) −16.0000 −1.21999
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 0 0
\(175\) 8.00000 13.8564i 0.604743 1.04745i
\(176\) 2.00000 3.46410i 0.150756 0.261116i
\(177\) 0 0
\(178\) 0 0
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 0 0
\(181\) −1.00000 −0.0743294 −0.0371647 0.999309i \(-0.511833\pi\)
−0.0371647 + 0.999309i \(0.511833\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) 0 0
\(187\) 3.00000 + 5.19615i 0.219382 + 0.379980i
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) 1.50000 + 2.59808i 0.108536 + 0.187990i 0.915177 0.403051i \(-0.132050\pi\)
−0.806641 + 0.591041i \(0.798717\pi\)
\(192\) 0 0
\(193\) 2.00000 3.46410i 0.143963 0.249351i −0.785022 0.619467i \(-0.787349\pi\)
0.928986 + 0.370116i \(0.120682\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 9.00000 + 15.5885i 0.642857 + 1.11346i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.0000 20.7846i 0.842235 1.45879i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 8.00000 0.554700
\(209\) 1.00000 + 1.73205i 0.0691714 + 0.119808i
\(210\) 0 0
\(211\) 2.00000 3.46410i 0.137686 0.238479i −0.788935 0.614477i \(-0.789367\pi\)
0.926620 + 0.375999i \(0.122700\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 0 0
\(214\) 0 0
\(215\) 24.0000 1.63679
\(216\) 0 0
\(217\) −32.0000 −2.17230
\(218\) 0 0
\(219\) 0 0
\(220\) −3.00000 + 5.19615i −0.202260 + 0.350325i
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) 0 0
\(223\) −5.50000 9.52628i −0.368307 0.637927i 0.620994 0.783815i \(-0.286729\pi\)
−0.989301 + 0.145889i \(0.953396\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.00000 + 15.5885i 0.597351 + 1.03464i 0.993210 + 0.116331i \(0.0371134\pi\)
−0.395860 + 0.918311i \(0.629553\pi\)
\(228\) 0 0
\(229\) −11.5000 + 19.9186i −0.759941 + 1.31626i 0.182939 + 0.983124i \(0.441439\pi\)
−0.942880 + 0.333133i \(0.891894\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 + 10.3923i −0.388108 + 0.672222i −0.992195 0.124696i \(-0.960204\pi\)
0.604087 + 0.796918i \(0.293538\pi\)
\(240\) 0 0
\(241\) −1.00000 1.73205i −0.0644157 0.111571i 0.832019 0.554747i \(-0.187185\pi\)
−0.896435 + 0.443176i \(0.853852\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −16.0000 −1.02430
\(245\) −13.5000 23.3827i −0.862483 1.49387i
\(246\) 0 0
\(247\) −2.00000 + 3.46410i −0.127257 + 0.220416i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.0000 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(252\) 0 0
\(253\) 3.00000 0.188608
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 3.00000 5.19615i 0.187135 0.324127i −0.757159 0.653231i \(-0.773413\pi\)
0.944294 + 0.329104i \(0.106747\pi\)
\(258\) 0 0
\(259\) 4.00000 + 6.92820i 0.248548 + 0.430498i
\(260\) −12.0000 −0.744208
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) 0 0
\(265\) 4.50000 7.79423i 0.276433 0.478796i
\(266\) 0 0
\(267\) 0 0
\(268\) −13.0000 22.5167i −0.794101 1.37542i
\(269\) −27.0000 −1.64622 −0.823110 0.567883i \(-0.807763\pi\)
−0.823110 + 0.567883i \(0.807763\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) −12.0000 20.7846i −0.727607 1.26025i
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) −1.00000 1.73205i −0.0600842 0.104069i 0.834419 0.551131i \(-0.185804\pi\)
−0.894503 + 0.447062i \(0.852470\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 10.3923i −0.357930 0.619953i 0.629685 0.776851i \(-0.283184\pi\)
−0.987615 + 0.156898i \(0.949851\pi\)
\(282\) 0 0
\(283\) 5.00000 8.66025i 0.297219 0.514799i −0.678280 0.734804i \(-0.737274\pi\)
0.975499 + 0.220005i \(0.0706075\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 2.00000 3.46410i 0.117041 0.202721i
\(293\) 3.00000 5.19615i 0.175262 0.303562i −0.764990 0.644042i \(-0.777256\pi\)
0.940252 + 0.340480i \(0.110589\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) 16.0000 27.7128i 0.922225 1.59734i
\(302\) 0 0
\(303\) 0 0
\(304\) −4.00000 6.92820i −0.229416 0.397360i
\(305\) 24.0000 1.37424
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 4.00000 + 6.92820i 0.227921 + 0.394771i
\(309\) 0 0
\(310\) 0 0
\(311\) −1.50000 + 2.59808i −0.0850572 + 0.147323i −0.905416 0.424526i \(-0.860441\pi\)
0.820358 + 0.571850i \(0.193774\pi\)
\(312\) 0 0
\(313\) −5.50000 9.52628i −0.310878 0.538457i 0.667674 0.744453i \(-0.267290\pi\)
−0.978553 + 0.205996i \(0.933957\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) −13.5000 23.3827i −0.758236 1.31330i −0.943750 0.330661i \(-0.892728\pi\)
0.185514 0.982642i \(-0.440605\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 12.0000 20.7846i 0.670820 1.16190i
\(321\) 0 0
\(322\) 0 0
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.00000 + 10.3923i −0.330791 + 0.572946i
\(330\) 0 0
\(331\) −14.5000 25.1147i −0.796992 1.38043i −0.921567 0.388221i \(-0.873090\pi\)
0.124574 0.992210i \(-0.460243\pi\)
\(332\) −36.0000 −1.97576
\(333\) 0 0
\(334\) 0 0
\(335\) 19.5000 + 33.7750i 1.06540 + 1.84532i
\(336\) 0 0
\(337\) −16.0000 + 27.7128i −0.871576 + 1.50961i −0.0112091 + 0.999937i \(0.503568\pi\)
−0.860366 + 0.509676i \(0.829765\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 18.0000 + 31.1769i 0.976187 + 1.69081i
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) 14.0000 + 24.2487i 0.749403 + 1.29800i 0.948109 + 0.317945i \(0.102993\pi\)
−0.198706 + 0.980059i \(0.563674\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.50000 + 12.9904i 0.399185 + 0.691408i 0.993626 0.112731i \(-0.0359599\pi\)
−0.594441 + 0.804139i \(0.702627\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) −8.00000 + 13.8564i −0.419314 + 0.726273i
\(365\) −3.00000 + 5.19615i −0.157027 + 0.271979i
\(366\) 0 0
\(367\) 9.50000 + 16.4545i 0.495896 + 0.858917i 0.999989 0.00473247i \(-0.00150640\pi\)
−0.504093 + 0.863649i \(0.668173\pi\)
\(368\) −12.0000 −0.625543
\(369\) 0 0
\(370\) 0 0
\(371\) −6.00000 10.3923i −0.311504 0.539542i
\(372\) 0 0
\(373\) −4.00000 + 6.92820i −0.207112 + 0.358729i −0.950804 0.309794i \(-0.899740\pi\)
0.743691 + 0.668523i \(0.233073\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −13.0000 −0.667765 −0.333883 0.942615i \(-0.608359\pi\)
−0.333883 + 0.942615i \(0.608359\pi\)
\(380\) 6.00000 + 10.3923i 0.307794 + 0.533114i
\(381\) 0 0
\(382\) 0 0
\(383\) −13.5000 + 23.3827i −0.689818 + 1.19480i 0.282079 + 0.959391i \(0.408976\pi\)
−0.971897 + 0.235408i \(0.924357\pi\)
\(384\) 0 0
\(385\) −6.00000 10.3923i −0.305788 0.529641i
\(386\) 0 0
\(387\) 0 0
\(388\) −4.00000 −0.203069
\(389\) 15.0000 + 25.9808i 0.760530 + 1.31728i 0.942578 + 0.333987i \(0.108394\pi\)
−0.182047 + 0.983290i \(0.558272\pi\)
\(390\) 0 0
\(391\) 9.00000 15.5885i 0.455150 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.00000 0.301893
\(396\) 0 0
\(397\) 17.0000 0.853206 0.426603 0.904439i \(-0.359710\pi\)
0.426603 + 0.904439i \(0.359710\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −8.00000 + 13.8564i −0.400000 + 0.692820i
\(401\) 10.5000 18.1865i 0.524345 0.908192i −0.475253 0.879849i \(-0.657644\pi\)
0.999598 0.0283431i \(-0.00902310\pi\)
\(402\) 0 0
\(403\) −8.00000 13.8564i −0.398508 0.690237i
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00000 + 1.73205i 0.0495682 + 0.0858546i
\(408\) 0 0
\(409\) −16.0000 + 27.7128i −0.791149 + 1.37031i 0.134107 + 0.990967i \(0.457183\pi\)
−0.925256 + 0.379344i \(0.876150\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.00000 + 8.66025i 0.246332 + 0.426660i
\(413\) 0 0
\(414\) 0 0
\(415\) 54.0000 2.65076
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.5000 + 18.1865i −0.512959 + 0.888470i 0.486928 + 0.873442i \(0.338117\pi\)
−0.999887 + 0.0150285i \(0.995216\pi\)
\(420\) 0 0
\(421\) 3.50000 + 6.06218i 0.170580 + 0.295452i 0.938623 0.344946i \(-0.112103\pi\)
−0.768043 + 0.640398i \(0.778769\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 20.7846i −0.582086 1.00820i
\(426\) 0 0
\(427\) 16.0000 27.7128i 0.774294 1.34112i
\(428\) 12.0000 20.7846i 0.580042 1.00466i
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 17.0000 0.816968 0.408484 0.912766i \(-0.366058\pi\)
0.408484 + 0.912766i \(0.366058\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.0000 24.2487i 0.670478 1.16130i
\(437\) 3.00000 5.19615i 0.143509 0.248566i
\(438\) 0 0
\(439\) −13.0000 22.5167i −0.620456 1.07466i −0.989401 0.145210i \(-0.953614\pi\)
0.368945 0.929451i \(-0.379719\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.00000 + 10.3923i 0.285069 + 0.493753i 0.972626 0.232377i \(-0.0746503\pi\)
−0.687557 + 0.726130i \(0.741317\pi\)
\(444\) 0 0
\(445\) 4.50000 7.79423i 0.213320 0.369482i
\(446\) 0 0
\(447\) 0 0
\(448\) −16.0000 27.7128i −0.755929 1.30931i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 6.00000 + 10.3923i 0.282216 + 0.488813i
\(453\) 0 0
\(454\) 0 0
\(455\) 12.0000 20.7846i 0.562569 0.974398i
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 18.0000 0.839254
\(461\) 15.0000 + 25.9808i 0.698620 + 1.21004i 0.968945 + 0.247276i \(0.0795353\pi\)
−0.270326 + 0.962769i \(0.587131\pi\)
\(462\) 0 0
\(463\) −14.5000 + 25.1147i −0.673872 + 1.16718i 0.302925 + 0.953014i \(0.402037\pi\)
−0.976797 + 0.214166i \(0.931297\pi\)
\(464\) −12.0000 + 20.7846i −0.557086 + 0.964901i
\(465\) 0 0
\(466\) 0 0
\(467\) −15.0000 −0.694117 −0.347059 0.937843i \(-0.612820\pi\)
−0.347059 + 0.937843i \(0.612820\pi\)
\(468\) 0 0
\(469\) 52.0000 2.40114
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000 6.92820i 0.183920 0.318559i
\(474\) 0 0
\(475\) −4.00000 6.92820i −0.183533 0.317888i
\(476\) 48.0000 2.20008
\(477\) 0 0
\(478\) 0 0
\(479\) −3.00000 5.19615i −0.137073 0.237418i 0.789314 0.613990i \(-0.210436\pi\)
−0.926388 + 0.376571i \(0.877103\pi\)
\(480\) 0 0
\(481\) −2.00000 + 3.46410i −0.0911922 + 0.157949i
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) 6.00000 0.272446
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.0000 + 25.9808i −0.676941 + 1.17250i 0.298957 + 0.954267i \(0.403361\pi\)
−0.975898 + 0.218229i \(0.929972\pi\)
\(492\) 0 0
\(493\) −18.0000 31.1769i −0.810679 1.40414i
\(494\) 0 0
\(495\) 0 0
\(496\) 32.0000 1.43684
\(497\) 0 0
\(498\) 0 0
\(499\) −20.5000 + 35.5070i −0.917706 + 1.58951i −0.114816 + 0.993387i \(0.536628\pi\)
−0.802890 + 0.596127i \(0.796706\pi\)
\(500\) −3.00000 + 5.19615i −0.134164 + 0.232379i
\(501\) 0 0
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) −4.00000 + 6.92820i −0.177471 + 0.307389i
\(509\) −4.50000 + 7.79423i −0.199459 + 0.345473i −0.948353 0.317217i \(-0.897252\pi\)
0.748894 + 0.662690i \(0.230585\pi\)
\(510\) 0 0
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.50000 12.9904i −0.330489 0.572425i
\(516\) 0 0
\(517\) −1.50000 + 2.59808i −0.0659699 + 0.114263i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) −18.0000 31.1769i −0.786334 1.36197i
\(525\) 0 0
\(526\) 0 0
\(527\) −24.0000 + 41.5692i −1.04546 + 1.81078i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) 0 0
\(534\) 0 0
\(535\) −18.0000 + 31.1769i −0.778208 + 1.34790i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −21.0000 + 36.3731i −0.899541 + 1.55805i
\(546\) 0 0
\(547\) 14.0000 + 24.2487i 0.598597 + 1.03680i 0.993028 + 0.117875i \(0.0376081\pi\)
−0.394432 + 0.918925i \(0.629059\pi\)
\(548\) 36.0000 1.53784
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 10.3923i −0.255609 0.442727i
\(552\) 0 0
\(553\) 4.00000 6.92820i 0.170097 0.294617i
\(554\) 0 0
\(555\) 0 0
\(556\) −10.0000 17.3205i −0.424094 0.734553i
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 24.0000 + 41.5692i 1.01419 + 1.75662i
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000 20.7846i 0.505740 0.875967i −0.494238 0.869326i \(-0.664553\pi\)
0.999978 0.00664037i \(-0.00211371\pi\)
\(564\) 0 0
\(565\) −9.00000 15.5885i −0.378633 0.655811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.0000 36.3731i −0.880366 1.52484i −0.850935 0.525271i \(-0.823964\pi\)
−0.0294311 0.999567i \(-0.509370\pi\)
\(570\) 0 0
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) −2.00000 + 3.46410i −0.0836242 + 0.144841i
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) −7.00000 −0.291414 −0.145707 0.989328i \(-0.546546\pi\)
−0.145707 + 0.989328i \(0.546546\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 18.0000 31.1769i 0.747409 1.29455i
\(581\) 36.0000 62.3538i 1.49353 2.58687i
\(582\) 0 0
\(583\) −1.50000 2.59808i −0.0621237 0.107601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.50000 2.59808i −0.0619116 0.107234i 0.833408 0.552658i \(-0.186386\pi\)
−0.895320 + 0.445424i \(0.853053\pi\)
\(588\) 0 0
\(589\) −8.00000 + 13.8564i −0.329634 + 0.570943i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 6.92820i −0.164399 0.284747i
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) −72.0000 −2.95171
\(596\) 12.0000 + 20.7846i 0.491539 + 0.851371i
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) 0 0
\(601\) 20.0000 + 34.6410i 0.815817 + 1.41304i 0.908740 + 0.417363i \(0.137046\pi\)
−0.0929227 + 0.995673i \(0.529621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −16.0000 −0.651031
\(605\) −1.50000 2.59808i −0.0609837 0.105627i
\(606\) 0 0
\(607\) 14.0000 24.2487i 0.568242 0.984225i −0.428497 0.903543i \(-0.640957\pi\)
0.996740 0.0806818i \(-0.0257098\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.50000 7.79423i 0.181163 0.313784i −0.761114 0.648618i \(-0.775347\pi\)
0.942277 + 0.334835i \(0.108680\pi\)
\(618\) 0 0
\(619\) −22.0000 38.1051i −0.884255 1.53157i −0.846566 0.532284i \(-0.821334\pi\)
−0.0376891 0.999290i \(-0.512000\pi\)
\(620\) −48.0000 −1.92773
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 10.3923i −0.240385 0.416359i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) −7.00000 12.1244i −0.279330 0.483814i
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −31.0000 −1.23409 −0.617045 0.786928i \(-0.711670\pi\)
−0.617045 + 0.786928i \(0.711670\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.00000 10.3923i 0.238103 0.412406i
\(636\) 0 0
\(637\) −9.00000 15.5885i −0.356593 0.617637i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 0 0
\(643\) 15.5000 26.8468i 0.611260 1.05873i −0.379768 0.925082i \(-0.623996\pi\)
0.991028 0.133652i \(-0.0426705\pi\)
\(644\) 12.0000 20.7846i 0.472866 0.819028i
\(645\) 0 0
\(646\) 0 0
\(647\) −21.0000 −0.825595 −0.412798 0.910823i \(-0.635448\pi\)
−0.412798 + 0.910823i \(0.635448\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.00000 + 1.73205i −0.0391630 + 0.0678323i
\(653\) 9.00000 15.5885i 0.352197 0.610023i −0.634437 0.772975i \(-0.718768\pi\)
0.986634 + 0.162951i \(0.0521013\pi\)
\(654\) 0 0
\(655\) 27.0000 + 46.7654i 1.05498 + 1.82727i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 20.7846i −0.467454 0.809653i 0.531855 0.846836i \(-0.321495\pi\)
−0.999309 + 0.0371821i \(0.988162\pi\)
\(660\) 0 0
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) −18.0000 31.1769i −0.696441 1.20627i
\(669\) 0 0
\(670\) 0 0
\(671\) 4.00000 6.92820i 0.154418 0.267460i
\(672\) 0 0
\(673\) 17.0000 + 29.4449i 0.655302 + 1.13502i 0.981818 + 0.189824i \(0.0607919\pi\)
−0.326516 + 0.945192i \(0.605875\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 18.0000 0.692308
\(677\) 18.0000 + 31.1769i 0.691796 + 1.19823i 0.971249 + 0.238067i \(0.0765137\pi\)
−0.279453 + 0.960159i \(0.590153\pi\)
\(678\) 0 0
\(679\) 4.00000 6.92820i 0.153506 0.265880i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.0000 −0.573959 −0.286980 0.957937i \(-0.592651\pi\)
−0.286980 + 0.957937i \(0.592651\pi\)
\(684\) 0 0
\(685\) −54.0000 −2.06323
\(686\) 0 0
\(687\) 0 0
\(688\) −16.0000 + 27.7128i −0.609994 + 1.05654i
\(689\) 3.00000 5.19615i 0.114291 0.197958i
\(690\) 0 0
\(691\) 12.5000 + 21.6506i 0.475522 + 0.823629i 0.999607 0.0280373i \(-0.00892572\pi\)
−0.524084 + 0.851666i \(0.675592\pi\)
\(692\) 36.0000 1.36851
\(693\) 0 0
\(694\) 0 0
\(695\) 15.0000 + 25.9808i 0.568982 + 0.985506i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −16.0000 27.7128i −0.604743 1.04745i
\(701\) −36.0000 −1.35970 −0.679851 0.733351i \(-0.737955\pi\)
−0.679851 + 0.733351i \(0.737955\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) −4.00000 6.92820i −0.150756 0.261116i
\(705\) 0 0
\(706\) 0 0
\(707\) −12.0000 + 20.7846i −0.451306 + 0.781686i
\(708\) 0 0
\(709\) −11.5000 19.9186i −0.431892 0.748058i 0.565145 0.824992i \(-0.308820\pi\)
−0.997036 + 0.0769337i \(0.975487\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0000 + 20.7846i 0.449404 + 0.778390i
\(714\) 0 0
\(715\) 3.00000 5.19615i 0.112194 0.194325i
\(716\) −15.0000 + 25.9808i −0.560576 + 0.970947i
\(717\) 0 0
\(718\) 0 0
\(719\) 3.00000 0.111881 0.0559406 0.998434i \(-0.482184\pi\)
0.0559406 + 0.998434i \(0.482184\pi\)
\(720\) 0 0
\(721\) −20.0000 −0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) −1.00000 + 1.73205i −0.0371647 + 0.0643712i
\(725\) −12.0000 + 20.7846i −0.445669 + 0.771921i
\(726\) 0 0
\(727\) 14.0000 + 24.2487i 0.519231 + 0.899335i 0.999750 + 0.0223506i \(0.00711500\pi\)
−0.480519 + 0.876984i \(0.659552\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24.0000 41.5692i −0.887672 1.53749i
\(732\) 0 0
\(733\) 20.0000 34.6410i 0.738717 1.27950i −0.214356 0.976756i \(-0.568765\pi\)
0.953073 0.302740i \(-0.0979013\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.0000 0.478861
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 6.00000 + 10.3923i 0.220564 + 0.382029i
\(741\) 0 0
\(742\) 0 0
\(743\) −3.00000 + 5.19615i −0.110059 + 0.190628i −0.915794 0.401648i \(-0.868437\pi\)
0.805735 + 0.592277i \(0.201771\pi\)
\(744\) 0 0
\(745\) −18.0000 31.1769i −0.659469 1.14223i
\(746\) 0 0
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) 24.0000 + 41.5692i 0.876941 + 1.51891i
\(750\) 0 0
\(751\) 8.00000 13.8564i 0.291924 0.505627i −0.682341 0.731034i \(-0.739038\pi\)
0.974265 + 0.225407i \(0.0723712\pi\)
\(752\) 6.00000 10.3923i 0.218797 0.378968i
\(753\) 0 0
\(754\) 0 0
\(755\) 24.0000 0.873449
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 10.3923i 0.217500 0.376721i −0.736543 0.676391i \(-0.763543\pi\)
0.954043 + 0.299670i \(0.0968765\pi\)
\(762\) 0 0
\(763\) 28.0000 + 48.4974i 1.01367 + 1.75572i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −4.00000 + 6.92820i −0.144244 + 0.249837i −0.929091 0.369852i \(-0.879408\pi\)
0.784847 + 0.619690i \(0.212742\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.00000 6.92820i −0.143963 0.249351i
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 32.0000 1.14947
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 36.0000 1.28571
\(785\) 10.5000 + 18.1865i 0.374761 + 0.649105i
\(786\) 0 0
\(787\) −16.0000 + 27.7128i −0.570338 + 0.987855i 0.426193 + 0.904632i \(0.359855\pi\)
−0.996531 + 0.0832226i \(0.973479\pi\)
\(788\) −18.0000 + 31.1769i −0.641223 + 1.11063i
\(789\) 0 0
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) 0 0
\(795\) 0 0
\(796\) 11.0000 19.0526i 0.389885 0.675300i
\(797\) 15.0000 25.9808i 0.531327 0.920286i −0.468004 0.883726i \(-0.655027\pi\)
0.999331 0.0365596i \(-0.0116399\pi\)
\(798\) 0 0
\(799\) 9.00000 + 15.5885i 0.318397 + 0.551480i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.00000 + 1.73205i 0.0352892 + 0.0611227i
\(804\) 0 0
\(805\) −18.0000 + 31.1769i −0.634417 + 1.09884i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) −24.0000 41.5692i −0.842235 1.45879i
\(813\) 0 0
\(814\) 0 0
\(815\) 1.50000 2.59808i 0.0525427 0.0910066i
\(816\) 0 0
\(817\) −8.00000 13.8564i −0.279885 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000 + 10.3923i 0.209401 + 0.362694i 0.951526 0.307568i \(-0.0995151\pi\)
−0.742125 + 0.670262i \(0.766182\pi\)
\(822\) 0 0
\(823\) 24.5000 42.4352i 0.854016 1.47920i −0.0235383 0.999723i \(-0.507493\pi\)
0.877555 0.479477i \(-0.159174\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) 0 0
\(829\) −7.00000 −0.243120 −0.121560 0.992584i \(-0.538790\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.00000 13.8564i 0.277350 0.480384i
\(833\) −27.0000 + 46.7654i −0.935495 + 1.62032i
\(834\) 0 0
\(835\) 27.0000 + 46.7654i 0.934374 + 1.61838i
\(836\) 4.00000 0.138343
\(837\) 0 0
\(838\) 0 0
\(839\) 7.50000 + 12.9904i 0.258929 + 0.448478i 0.965955 0.258709i \(-0.0832972\pi\)
−0.707026 + 0.707187i \(0.749964\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) −27.0000 −0.928828
\(846\) 0 0
\(847\) −4.00000 −0.137442
\(848\) 6.00000 + 10.3923i 0.206041 + 0.356873i
\(849\) 0 0
\(850\) 0 0
\(851\) 3.00000 5.19615i 0.102839 0.178122i
\(852\) 0 0
\(853\) −22.0000 38.1051i −0.753266 1.30469i −0.946232 0.323489i \(-0.895144\pi\)
0.192966 0.981205i \(-0.438189\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.00000 10.3923i −0.204956 0.354994i 0.745163 0.666883i \(-0.232372\pi\)
−0.950119 + 0.311888i \(0.899038\pi\)
\(858\) 0 0
\(859\) 6.50000 11.2583i 0.221777 0.384129i −0.733571 0.679613i \(-0.762148\pi\)
0.955348 + 0.295484i \(0.0954809\pi\)
\(860\) 24.0000 41.5692i 0.818393 1.41750i
\(861\) 0 0
\(862\) 0 0
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) 0 0
\(865\) −54.0000 −1.83606
\(866\) 0 0
\(867\) 0 0
\(868\) −32.0000 + 55.4256i −1.08615 + 1.88127i
\(869\) 1.00000 1.73205i 0.0339227 0.0587558i
\(870\) 0 0
\(871\) 13.0000 + 22.5167i 0.440488 + 0.762948i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.00000 10.3923i −0.202837 0.351324i
\(876\) 0 0
\(877\) 20.0000 34.6410i 0.675352 1.16974i −0.301014 0.953620i \(-0.597325\pi\)
0.976366 0.216124i \(-0.0693416\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 6.00000 + 10.3923i 0.202260 + 0.350325i
\(881\) 39.0000 1.31394 0.656972 0.753915i \(-0.271837\pi\)
0.656972 + 0.753915i \(0.271837\pi\)
\(882\) 0 0
\(883\) 5.00000 0.168263 0.0841317 0.996455i \(-0.473188\pi\)
0.0841317 + 0.996455i \(0.473188\pi\)
\(884\) 12.0000 + 20.7846i 0.403604 + 0.699062i
\(885\) 0 0
\(886\) 0 0
\(887\) −15.0000 + 25.9808i −0.503651 + 0.872349i 0.496340 + 0.868128i \(0.334677\pi\)
−0.999991 + 0.00422062i \(0.998657\pi\)
\(888\) 0 0
\(889\) −8.00000 13.8564i −0.268311 0.464729i
\(890\) 0 0
\(891\) 0 0
\(892\) −22.0000 −0.736614
\(893\) 3.00000 + 5.19615i 0.100391 + 0.173883i
\(894\) 0 0
\(895\) 22.5000 38.9711i 0.752092 1.30266i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.50000 2.59808i 0.0498617 0.0863630i
\(906\) 0 0
\(907\) 14.0000 + 24.2487i 0.464862 + 0.805165i 0.999195 0.0401089i \(-0.0127705\pi\)
−0.534333 + 0.845274i \(0.679437\pi\)
\(908\) 36.0000 1.19470
\(909\) 0 0
\(910\) 0 0
\(911\) −7.50000 12.9904i −0.248486 0.430391i 0.714620 0.699513i \(-0.246600\pi\)
−0.963106 + 0.269122i \(0.913266\pi\)
\(912\) 0 0
\(913\) 9.00000 15.5885i 0.297857 0.515903i
\(914\) 0 0
\(915\) 0 0
\(916\) 23.0000 + 39.8372i 0.759941 + 1.31626i
\(917\) 72.0000 2.37765
\(918\) 0 0
\(919\) 56.0000 1.84727 0.923635 0.383274i \(-0.125203\pi\)
0.923635 + 0.383274i \(0.125203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.5000 + 18.1865i 0.344494 + 0.596681i 0.985262 0.171054i \(-0.0547172\pi\)
−0.640768 + 0.767735i \(0.721384\pi\)
\(930\) 0 0
\(931\) −9.00000 + 15.5885i −0.294963 + 0.510891i
\(932\) 6.00000 10.3923i 0.196537 0.340411i
\(933\) 0 0
\(934\) 0 0
\(935\) −18.0000 −0.588663
\(936\) 0 0
\(937\) −28.0000 −0.914720 −0.457360 0.889282i \(-0.651205\pi\)
−0.457360 + 0.889282i \(0.651205\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −9.00000 + 15.5885i −0.293548 + 0.508439i
\(941\) −27.0000 + 46.7654i −0.880175 + 1.52451i −0.0290288 + 0.999579i \(0.509241\pi\)
−0.851146 + 0.524929i \(0.824092\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.50000 + 2.59808i 0.0487435 + 0.0844261i 0.889368 0.457193i \(-0.151145\pi\)
−0.840624 + 0.541619i \(0.817812\pi\)
\(948\) 0 0
\(949\) −2.00000 + 3.46410i −0.0649227 + 0.112449i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) −9.00000 −0.291233
\(956\) 12.0000 + 20.7846i 0.388108 + 0.672222i
\(957\) 0 0
\(958\) 0 0
\(959\) −36.0000 + 62.3538i −1.16250 + 2.01351i
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) 0 0
\(963\) 0 0
\(964\) −4.00000 −0.128831
\(965\) 6.00000 + 10.3923i 0.193147 + 0.334540i
\(966\) 0 0
\(967\) 20.0000 34.6410i 0.643157 1.11398i −0.341567 0.939857i \(-0.610958\pi\)
0.984724 0.174123i \(-0.0557089\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −27.0000 −0.866471 −0.433236 0.901281i \(-0.642628\pi\)
−0.433236 + 0.901281i \(0.642628\pi\)
\(972\) 0 0
\(973\) 40.0000 1.28234
\(974\) 0 0
\(975\) 0 0
\(976\) −16.0000 + 27.7128i −0.512148 + 0.887066i
\(977\) 22.5000 38.9711i 0.719839 1.24680i −0.241225 0.970469i \(-0.577549\pi\)
0.961063 0.276328i \(-0.0891176\pi\)
\(978\) 0 0
\(979\) −1.50000 2.59808i −0.0479402 0.0830349i
\(980\) −54.0000 −1.72497
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) 0 0
\(985\) 27.0000 46.7654i 0.860292 1.49007i
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 + 6.92820i 0.127257 + 0.220416i
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.5000 + 28.5788i −0.523085 + 0.906010i
\(996\) 0 0
\(997\) 5.00000 + 8.66025i 0.158352 + 0.274273i 0.934274 0.356555i \(-0.116049\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.e.b.199.1 2
3.2 odd 2 99.2.e.b.67.1 yes 2
9.2 odd 6 99.2.e.b.34.1 2
9.4 even 3 891.2.a.e.1.1 1
9.5 odd 6 891.2.a.d.1.1 1
9.7 even 3 inner 297.2.e.b.100.1 2
33.32 even 2 1089.2.e.b.364.1 2
99.32 even 6 9801.2.a.f.1.1 1
99.65 even 6 1089.2.e.b.727.1 2
99.76 odd 6 9801.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.b.34.1 2 9.2 odd 6
99.2.e.b.67.1 yes 2 3.2 odd 2
297.2.e.b.100.1 2 9.7 even 3 inner
297.2.e.b.199.1 2 1.1 even 1 trivial
891.2.a.d.1.1 1 9.5 odd 6
891.2.a.e.1.1 1 9.4 even 3
1089.2.e.b.364.1 2 33.32 even 2
1089.2.e.b.727.1 2 99.65 even 6
9801.2.a.f.1.1 1 99.32 even 6
9801.2.a.g.1.1 1 99.76 odd 6