Properties

Label 297.2.d.a
Level $297$
Weight $2$
Character orbit 297.d
Analytic conductor $2.372$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(296,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.296");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.6754343583744.14
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 234x^{4} + 668x^{2} + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} + (\beta_{2} + 1) q^{4} - \beta_{5} q^{5} - \beta_{3} q^{7} - \beta_{6} q^{8} + (\beta_{4} + \beta_{3}) q^{10} + (\beta_{7} - \beta_{6} + \beta_1) q^{11} + \beta_{3} q^{13} + ( - \beta_{6} + \beta_{5} + 2 \beta_1) q^{14}+ \cdots + ( - 4 \beta_{7} - \beta_{6}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 16 q^{16} + 24 q^{22} - 48 q^{25} - 8 q^{31} + 24 q^{34} - 8 q^{37} - 40 q^{49} - 8 q^{55} - 24 q^{58} - 16 q^{64} + 64 q^{67} + 72 q^{70} + 48 q^{82} + 24 q^{88} + 96 q^{91} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 20x^{6} + 234x^{4} + 668x^{2} + 1369 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} - 8\nu^{4} - 23\nu^{2} + 758 ) / 460 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 9\nu^{6} + 187\nu^{4} + 1817\nu^{2} + 3183 ) / 920 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 13\nu^{6} + 219\nu^{4} + 2829\nu^{2} + 4751 ) / 920 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 53\nu^{7} + 1689\nu^{5} + 21689\nu^{3} + 109441\nu ) / 34040 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -38\nu^{7} - 649\nu^{5} - 8004\nu^{3} - 5811\nu ) / 17020 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 127\nu^{7} + 2281\nu^{5} + 23391\nu^{3} + 19309\nu ) / 34040 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + 2\beta_{2} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -7\beta_{7} - 11\beta_{6} + \beta_{5} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -14\beta_{4} + 22\beta_{3} + 8\beta_{2} - 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 94\beta_{7} + 178\beta_{6} + 30\beta_{5} - 89\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 89\beta_{4} - 153\beta_{3} - 570\beta_{2} + 1009 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -131\beta_{7} - 1171\beta_{6} - 723\beta_{5} + 1999\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
296.1
0.796225 + 1.47305i
0.796225 1.47305i
−1.53819 3.29092i
−1.53819 + 3.29092i
1.53819 3.29092i
1.53819 + 3.29092i
−0.796225 + 1.47305i
−0.796225 1.47305i
−2.17533 0 2.73205 4.02444i 0 3.20436i −1.59245 0 8.75449i
296.2 −2.17533 0 2.73205 4.02444i 0 3.20436i −1.59245 0 8.75449i
296.3 −1.12603 0 −0.732051 2.40912i 0 3.70568i 3.07638 0 2.71274i
296.4 −1.12603 0 −0.732051 2.40912i 0 3.70568i 3.07638 0 2.71274i
296.5 1.12603 0 −0.732051 2.40912i 0 3.70568i −3.07638 0 2.71274i
296.6 1.12603 0 −0.732051 2.40912i 0 3.70568i −3.07638 0 2.71274i
296.7 2.17533 0 2.73205 4.02444i 0 3.20436i 1.59245 0 8.75449i
296.8 2.17533 0 2.73205 4.02444i 0 3.20436i 1.59245 0 8.75449i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 296.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 297.2.d.a 8
3.b odd 2 1 inner 297.2.d.a 8
4.b odd 2 1 4752.2.b.e 8
9.c even 3 2 891.2.g.e 16
9.d odd 6 2 891.2.g.e 16
11.b odd 2 1 inner 297.2.d.a 8
12.b even 2 1 4752.2.b.e 8
33.d even 2 1 inner 297.2.d.a 8
44.c even 2 1 4752.2.b.e 8
99.g even 6 2 891.2.g.e 16
99.h odd 6 2 891.2.g.e 16
132.d odd 2 1 4752.2.b.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
297.2.d.a 8 1.a even 1 1 trivial
297.2.d.a 8 3.b odd 2 1 inner
297.2.d.a 8 11.b odd 2 1 inner
297.2.d.a 8 33.d even 2 1 inner
891.2.g.e 16 9.c even 3 2
891.2.g.e 16 9.d odd 6 2
891.2.g.e 16 99.g even 6 2
891.2.g.e 16 99.h odd 6 2
4752.2.b.e 8 4.b odd 2 1
4752.2.b.e 8 12.b even 2 1
4752.2.b.e 8 44.c even 2 1
4752.2.b.e 8 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 6T_{2}^{2} + 6 \) acting on \(S_{2}^{\mathrm{new}}(297, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 6 T^{2} + 6)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 22 T^{2} + 94)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 24 T^{2} + 141)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 8 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( (T^{4} + 24 T^{2} + 141)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 54 T^{2} + 54)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 72 T^{2} + 1269)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 52 T^{2} + 376)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 18 T^{2} + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T - 26)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T - 11)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 24 T^{2} + 96)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 84 T^{2} + 564)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 22 T^{2} + 94)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 82 T^{2} + 94)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 22 T^{2} + 94)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 144 T^{2} + 141)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 16 T + 37)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 124 T^{2} + 376)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 72 T^{2} + 1269)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 24 T^{2} + 141)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 132 T^{2} + 4056)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 22 T^{2} + 94)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 16 T + 37)^{4} \) Copy content Toggle raw display
show more
show less