Properties

Label 297.2.a.h
Level $297$
Weight $2$
Character orbit 297.a
Self dual yes
Analytic conductor $2.372$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(1,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + ( - \beta_{2} - 1) q^{5} + (\beta_1 + 2) q^{7} + (\beta_{2} + \beta_1 + 1) q^{8} + ( - \beta_{2} - 2 \beta_1 - 1) q^{10} - q^{11} + ( - \beta_{2} + 1) q^{13}+ \cdots + (5 \beta_{2} + 2 \beta_1 + 17) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 5 q^{4} - 2 q^{5} + 7 q^{7} + 3 q^{8} - 4 q^{10} - 3 q^{11} + 4 q^{13} + 13 q^{14} + 5 q^{16} + q^{17} + 2 q^{19} - 22 q^{20} - q^{22} + 5 q^{23} + 5 q^{25} - 2 q^{26} + 15 q^{28} + 3 q^{29}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.08613
0.571993
2.51414
−2.08613 0 2.35194 −1.35194 0 −0.0861302 −0.734191 0 2.82032
1.2 0.571993 0 −1.67282 2.67282 0 2.57199 −2.10083 0 1.52884
1.3 2.51414 0 4.32088 −3.32088 0 4.51414 5.83502 0 −8.34916
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 297.2.a.h yes 3
3.b odd 2 1 297.2.a.g 3
4.b odd 2 1 4752.2.a.bg 3
5.b even 2 1 7425.2.a.bm 3
9.c even 3 2 891.2.e.q 6
9.d odd 6 2 891.2.e.t 6
11.b odd 2 1 3267.2.a.t 3
12.b even 2 1 4752.2.a.bo 3
15.d odd 2 1 7425.2.a.bn 3
33.d even 2 1 3267.2.a.w 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
297.2.a.g 3 3.b odd 2 1
297.2.a.h yes 3 1.a even 1 1 trivial
891.2.e.q 6 9.c even 3 2
891.2.e.t 6 9.d odd 6 2
3267.2.a.t 3 11.b odd 2 1
3267.2.a.w 3 33.d even 2 1
4752.2.a.bg 3 4.b odd 2 1
4752.2.a.bo 3 12.b even 2 1
7425.2.a.bm 3 5.b even 2 1
7425.2.a.bn 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - T_{2}^{2} - 5T_{2} + 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(297))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} - 5T + 3 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 2 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{3} - T^{2} - 11T + 9 \) Copy content Toggle raw display
$19$ \( T^{3} - 2 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$23$ \( T^{3} - 5 T^{2} + \cdots + 141 \) Copy content Toggle raw display
$29$ \( T^{3} - 3 T^{2} + \cdots + 117 \) Copy content Toggle raw display
$31$ \( T^{3} - 4 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{3} + T^{2} + \cdots - 141 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} + \cdots - 57 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots - 51 \) Copy content Toggle raw display
$47$ \( T^{3} + 7 T^{2} + \cdots - 51 \) Copy content Toggle raw display
$53$ \( T^{3} + 12 T^{2} + \cdots - 432 \) Copy content Toggle raw display
$59$ \( T^{3} - 11 T^{2} + \cdots + 519 \) Copy content Toggle raw display
$61$ \( T^{3} + 16T^{2} - 564 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 124 \) Copy content Toggle raw display
$71$ \( T^{3} + 12 T^{2} + \cdots - 432 \) Copy content Toggle raw display
$73$ \( T^{3} - 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( T^{3} - 15 T^{2} + \cdots + 2083 \) Copy content Toggle raw display
$83$ \( T^{3} - 12 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$89$ \( T^{3} - 18 T^{2} + \cdots + 648 \) Copy content Toggle raw display
$97$ \( T^{3} + 3 T^{2} + \cdots - 1187 \) Copy content Toggle raw display
show more
show less