Properties

Label 297.2.a.f
Level $297$
Weight $2$
Character orbit 297.a
Self dual yes
Analytic conductor $2.372$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(1,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} + (2 \beta + 2) q^{4} + ( - \beta + 1) q^{5} + ( - \beta - 2) q^{7} + (2 \beta + 6) q^{8} - 2 q^{10} + q^{11} + (\beta - 2) q^{13} + ( - 3 \beta - 5) q^{14} + (4 \beta + 8) q^{16}+ \cdots + (4 \beta + 12) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 4 q^{4} + 2 q^{5} - 4 q^{7} + 12 q^{8} - 4 q^{10} + 2 q^{11} - 4 q^{13} - 10 q^{14} + 16 q^{16} + 2 q^{17} - 8 q^{20} + 2 q^{22} + 16 q^{23} - 2 q^{25} + 2 q^{26} - 20 q^{28} - 6 q^{29}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−0.732051 0 −1.46410 2.73205 0 −0.267949 2.53590 0 −2.00000
1.2 2.73205 0 5.46410 −0.732051 0 −3.73205 9.46410 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 297.2.a.f yes 2
3.b odd 2 1 297.2.a.e 2
4.b odd 2 1 4752.2.a.bf 2
5.b even 2 1 7425.2.a.z 2
9.c even 3 2 891.2.e.m 4
9.d odd 6 2 891.2.e.p 4
11.b odd 2 1 3267.2.a.l 2
12.b even 2 1 4752.2.a.w 2
15.d odd 2 1 7425.2.a.bl 2
33.d even 2 1 3267.2.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
297.2.a.e 2 3.b odd 2 1
297.2.a.f yes 2 1.a even 1 1 trivial
891.2.e.m 4 9.c even 3 2
891.2.e.p 4 9.d odd 6 2
3267.2.a.l 2 11.b odd 2 1
3267.2.a.q 2 33.d even 2 1
4752.2.a.w 2 12.b even 2 1
4752.2.a.bf 2 4.b odd 2 1
7425.2.a.z 2 5.b even 2 1
7425.2.a.bl 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 2T_{2} - 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(297))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 1 \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 1 \) Copy content Toggle raw display
$17$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$19$ \( T^{2} - 27 \) Copy content Toggle raw display
$23$ \( (T - 8)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 3 \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$43$ \( T^{2} - 12 \) Copy content Toggle raw display
$47$ \( T^{2} - 10T - 2 \) Copy content Toggle raw display
$53$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T - 2 \) Copy content Toggle raw display
$61$ \( T^{2} + 12T + 33 \) Copy content Toggle raw display
$67$ \( T^{2} + 2T - 47 \) Copy content Toggle raw display
$71$ \( T^{2} - 192 \) Copy content Toggle raw display
$73$ \( T^{2} + 4T - 23 \) Copy content Toggle raw display
$79$ \( T^{2} + 8T + 13 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 18T + 6 \) Copy content Toggle raw display
$97$ \( T^{2} - 10T - 83 \) Copy content Toggle raw display
show more
show less