Properties

Label 2960.2.a.j.1.1
Level $2960$
Weight $2$
Character 2960.1
Self dual yes
Analytic conductor $23.636$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2960 = 2^{4} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2960.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(23.6357189983\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 370)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2960.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000 q^{3} -1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{3} -1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} -3.00000 q^{11} -4.00000 q^{13} -2.00000 q^{15} +3.00000 q^{17} -2.00000 q^{19} +2.00000 q^{21} -6.00000 q^{23} +1.00000 q^{25} -4.00000 q^{27} +3.00000 q^{29} -5.00000 q^{31} -6.00000 q^{33} -1.00000 q^{35} +1.00000 q^{37} -8.00000 q^{39} +3.00000 q^{41} +1.00000 q^{43} -1.00000 q^{45} -12.0000 q^{47} -6.00000 q^{49} +6.00000 q^{51} +3.00000 q^{53} +3.00000 q^{55} -4.00000 q^{57} -1.00000 q^{61} +1.00000 q^{63} +4.00000 q^{65} +4.00000 q^{67} -12.0000 q^{69} -6.00000 q^{71} -16.0000 q^{73} +2.00000 q^{75} -3.00000 q^{77} -8.00000 q^{79} -11.0000 q^{81} +12.0000 q^{83} -3.00000 q^{85} +6.00000 q^{87} -6.00000 q^{89} -4.00000 q^{91} -10.0000 q^{93} +2.00000 q^{95} +17.0000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) −8.00000 −1.28103
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) −12.0000 −1.44463
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 2.00000 0.230940
\(76\) 0 0
\(77\) −3.00000 −0.341882
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) −10.0000 −1.03695
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 17.0000 1.72609 0.863044 0.505128i \(-0.168555\pi\)
0.863044 + 0.505128i \(0.168555\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) −24.0000 −2.02116
\(142\) 0 0
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) −3.00000 −0.249136
\(146\) 0 0
\(147\) −12.0000 −0.989743
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) 5.00000 0.401610
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −11.0000 −0.861586 −0.430793 0.902451i \(-0.641766\pi\)
−0.430793 + 0.902451i \(0.641766\pi\)
\(164\) 0 0
\(165\) 6.00000 0.467099
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) 0 0
\(173\) 15.0000 1.14043 0.570214 0.821496i \(-0.306860\pi\)
0.570214 + 0.821496i \(0.306860\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) −1.00000 −0.0735215
\(186\) 0 0
\(187\) −9.00000 −0.658145
\(188\) 0 0
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 8.00000 0.572892
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) −3.00000 −0.209529
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) −1.00000 −0.0681994
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) 0 0
\(219\) −32.0000 −2.16236
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −17.0000 −1.13840 −0.569202 0.822198i \(-0.692748\pi\)
−0.569202 + 0.822198i \(0.692748\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 27.0000 1.79205 0.896026 0.444001i \(-0.146441\pi\)
0.896026 + 0.444001i \(0.146441\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) −6.00000 −0.394771
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 0 0
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 0 0
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 24.0000 1.52094
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) −6.00000 −0.375735
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) −3.00000 −0.184289
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) −5.00000 −0.299342
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 34.0000 1.99312
\(292\) 0 0
\(293\) 21.0000 1.22683 0.613417 0.789760i \(-0.289795\pi\)
0.613417 + 0.789760i \(0.289795\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 12.0000 0.696311
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 1.00000 0.0576390
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) 34.0000 1.94048 0.970241 0.242140i \(-0.0778494\pi\)
0.970241 + 0.242140i \(0.0778494\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 9.00000 0.510343 0.255172 0.966896i \(-0.417868\pi\)
0.255172 + 0.966896i \(0.417868\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) −1.00000 −0.0563436
\(316\) 0 0
\(317\) −21.0000 −1.17948 −0.589739 0.807594i \(-0.700769\pi\)
−0.589739 + 0.807594i \(0.700769\pi\)
\(318\) 0 0
\(319\) −9.00000 −0.503903
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 22.0000 1.21660
\(328\) 0 0
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 0 0
\(333\) 1.00000 0.0547997
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −4.00000 −0.217894 −0.108947 0.994048i \(-0.534748\pi\)
−0.108947 + 0.994048i \(0.534748\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 15.0000 0.812296
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 16.0000 0.854017
\(352\) 0 0
\(353\) −21.0000 −1.11772 −0.558859 0.829263i \(-0.688761\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 0 0
\(357\) 6.00000 0.317554
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −4.00000 −0.209946
\(364\) 0 0
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) −35.0000 −1.82699 −0.913493 0.406855i \(-0.866625\pi\)
−0.913493 + 0.406855i \(0.866625\pi\)
\(368\) 0 0
\(369\) 3.00000 0.156174
\(370\) 0 0
\(371\) 3.00000 0.155752
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) −2.00000 −0.103280
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) −40.0000 −2.04926
\(382\) 0 0
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 3.00000 0.152894
\(386\) 0 0
\(387\) 1.00000 0.0508329
\(388\) 0 0
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 20.0000 0.996271
\(404\) 0 0
\(405\) 11.0000 0.546594
\(406\) 0 0
\(407\) −3.00000 −0.148704
\(408\) 0 0
\(409\) 32.0000 1.58230 0.791149 0.611623i \(-0.209483\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) 0 0
\(411\) 24.0000 1.18383
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 26.0000 1.27323
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) 3.00000 0.145521
\(426\) 0 0
\(427\) −1.00000 −0.0483934
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) −15.0000 −0.722525 −0.361262 0.932464i \(-0.617654\pi\)
−0.361262 + 0.932464i \(0.617654\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) −6.00000 −0.287678
\(436\) 0 0
\(437\) 12.0000 0.574038
\(438\) 0 0
\(439\) −35.0000 −1.67046 −0.835229 0.549902i \(-0.814665\pi\)
−0.835229 + 0.549902i \(0.814665\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) −30.0000 −1.42534 −0.712672 0.701498i \(-0.752515\pi\)
−0.712672 + 0.701498i \(0.752515\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −9.00000 −0.423793
\(452\) 0 0
\(453\) −16.0000 −0.751746
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) 0 0
\(459\) −12.0000 −0.560112
\(460\) 0 0
\(461\) 33.0000 1.53696 0.768482 0.639872i \(-0.221013\pi\)
0.768482 + 0.639872i \(0.221013\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 10.0000 0.463739
\(466\) 0 0
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −26.0000 −1.19802
\(472\) 0 0
\(473\) −3.00000 −0.137940
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) −12.0000 −0.546019
\(484\) 0 0
\(485\) −17.0000 −0.771930
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) −22.0000 −0.994874
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 9.00000 0.405340
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) 0 0
\(497\) −6.00000 −0.269137
\(498\) 0 0
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −16.0000 −0.707798
\(512\) 0 0
\(513\) 8.00000 0.353209
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 36.0000 1.58328
\(518\) 0 0
\(519\) 30.0000 1.31685
\(520\) 0 0
\(521\) −39.0000 −1.70862 −0.854311 0.519763i \(-0.826020\pi\)
−0.854311 + 0.519763i \(0.826020\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) −15.0000 −0.653410
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 4.00000 0.171656
\(544\) 0 0
\(545\) −11.0000 −0.471188
\(546\) 0 0
\(547\) 1.00000 0.0427569 0.0213785 0.999771i \(-0.493195\pi\)
0.0213785 + 0.999771i \(0.493195\pi\)
\(548\) 0 0
\(549\) −1.00000 −0.0426790
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) −2.00000 −0.0848953
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) −18.0000 −0.759961
\(562\) 0 0
\(563\) 3.00000 0.126435 0.0632175 0.998000i \(-0.479864\pi\)
0.0632175 + 0.998000i \(0.479864\pi\)
\(564\) 0 0
\(565\) −9.00000 −0.378633
\(566\) 0 0
\(567\) −11.0000 −0.461957
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 31.0000 1.29731 0.648655 0.761083i \(-0.275332\pi\)
0.648655 + 0.761083i \(0.275332\pi\)
\(572\) 0 0
\(573\) −6.00000 −0.250654
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 0 0
\(579\) 28.0000 1.16364
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) −27.0000 −1.11441 −0.557205 0.830375i \(-0.688126\pi\)
−0.557205 + 0.830375i \(0.688126\pi\)
\(588\) 0 0
\(589\) 10.0000 0.412043
\(590\) 0 0
\(591\) −12.0000 −0.493614
\(592\) 0 0
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) −3.00000 −0.122988
\(596\) 0 0
\(597\) 32.0000 1.30967
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −19.0000 −0.775026 −0.387513 0.921864i \(-0.626666\pi\)
−0.387513 + 0.921864i \(0.626666\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 2.00000 0.0813116
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 29.0000 1.17130 0.585649 0.810564i \(-0.300840\pi\)
0.585649 + 0.810564i \(0.300840\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −35.0000 −1.40677 −0.703384 0.710810i \(-0.748329\pi\)
−0.703384 + 0.710810i \(0.748329\pi\)
\(620\) 0 0
\(621\) 24.0000 0.963087
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 12.0000 0.479234
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) −10.0000 −0.397464
\(634\) 0 0
\(635\) 20.0000 0.793676
\(636\) 0 0
\(637\) 24.0000 0.950915
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 15.0000 0.592464 0.296232 0.955116i \(-0.404270\pi\)
0.296232 + 0.955116i \(0.404270\pi\)
\(642\) 0 0
\(643\) 13.0000 0.512670 0.256335 0.966588i \(-0.417485\pi\)
0.256335 + 0.966588i \(0.417485\pi\)
\(644\) 0 0
\(645\) −2.00000 −0.0787499
\(646\) 0 0
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −10.0000 −0.391931
\(652\) 0 0
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −16.0000 −0.624219
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 5.00000 0.194477 0.0972387 0.995261i \(-0.468999\pi\)
0.0972387 + 0.995261i \(0.468999\pi\)
\(662\) 0 0
\(663\) −24.0000 −0.932083
\(664\) 0 0
\(665\) 2.00000 0.0775567
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) 0 0
\(669\) −34.0000 −1.31452
\(670\) 0 0
\(671\) 3.00000 0.115814
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) 17.0000 0.652400
\(680\) 0 0
\(681\) 54.0000 2.06928
\(682\) 0 0
\(683\) 15.0000 0.573959 0.286980 0.957937i \(-0.407349\pi\)
0.286980 + 0.957937i \(0.407349\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 28.0000 1.06827
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 19.0000 0.722794 0.361397 0.932412i \(-0.382300\pi\)
0.361397 + 0.932412i \(0.382300\pi\)
\(692\) 0 0
\(693\) −3.00000 −0.113961
\(694\) 0 0
\(695\) −13.0000 −0.493118
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) 24.0000 0.903892
\(706\) 0 0
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) 35.0000 1.31445 0.657226 0.753693i \(-0.271730\pi\)
0.657226 + 0.753693i \(0.271730\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 30.0000 1.12351
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) 18.0000 0.672222
\(718\) 0 0
\(719\) 42.0000 1.56634 0.783168 0.621810i \(-0.213603\pi\)
0.783168 + 0.621810i \(0.213603\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 0 0
\(723\) −56.0000 −2.08266
\(724\) 0 0
\(725\) 3.00000 0.111417
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) −31.0000 −1.14501 −0.572506 0.819901i \(-0.694029\pi\)
−0.572506 + 0.819901i \(0.694029\pi\)
\(734\) 0 0
\(735\) 12.0000 0.442627
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) −11.0000 −0.404642 −0.202321 0.979319i \(-0.564848\pi\)
−0.202321 + 0.979319i \(0.564848\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 0 0
\(743\) 51.0000 1.87101 0.935504 0.353315i \(-0.114946\pi\)
0.935504 + 0.353315i \(0.114946\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) −14.0000 −0.510867 −0.255434 0.966827i \(-0.582218\pi\)
−0.255434 + 0.966827i \(0.582218\pi\)
\(752\) 0 0
\(753\) −36.0000 −1.31191
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) 36.0000 1.30672
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 0 0
\(763\) 11.0000 0.398227
\(764\) 0 0
\(765\) −3.00000 −0.108465
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 36.0000 1.29651
\(772\) 0 0
\(773\) −39.0000 −1.40273 −0.701366 0.712801i \(-0.747426\pi\)
−0.701366 + 0.712801i \(0.747426\pi\)
\(774\) 0 0
\(775\) −5.00000 −0.179605
\(776\) 0 0
\(777\) 2.00000 0.0717496
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) −12.0000 −0.428845
\(784\) 0 0
\(785\) 13.0000 0.463990
\(786\) 0 0
\(787\) 22.0000 0.784215 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(788\) 0 0
\(789\) −18.0000 −0.640817
\(790\) 0 0
\(791\) 9.00000 0.320003
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) −36.0000 −1.27359
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 48.0000 1.69388
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) 0 0
\(807\) −36.0000 −1.26726
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 0 0
\(813\) −4.00000 −0.140286
\(814\) 0 0
\(815\) 11.0000 0.385313
\(816\) 0 0
\(817\) −2.00000 −0.0699711
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 36.0000 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 0 0
\(825\) −6.00000 −0.208893
\(826\) 0 0
\(827\) 3.00000 0.104320 0.0521601 0.998639i \(-0.483389\pi\)
0.0521601 + 0.998639i \(0.483389\pi\)
\(828\) 0 0
\(829\) 47.0000 1.63238 0.816189 0.577785i \(-0.196083\pi\)
0.816189 + 0.577785i \(0.196083\pi\)
\(830\) 0 0
\(831\) −56.0000 −1.94262
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) 20.0000 0.691301
\(838\) 0 0
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 48.0000 1.65321
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 0 0
\(849\) 8.00000 0.274559
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 2.00000 0.0683986
\(856\) 0 0
\(857\) −15.0000 −0.512390 −0.256195 0.966625i \(-0.582469\pi\)
−0.256195 + 0.966625i \(0.582469\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) 6.00000 0.204479
\(862\) 0 0
\(863\) −39.0000 −1.32758 −0.663788 0.747921i \(-0.731052\pi\)
−0.663788 + 0.747921i \(0.731052\pi\)
\(864\) 0 0
\(865\) −15.0000 −0.510015
\(866\) 0 0
\(867\) −16.0000 −0.543388
\(868\) 0 0
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 0 0
\(873\) 17.0000 0.575363
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −13.0000 −0.438979 −0.219489 0.975615i \(-0.570439\pi\)
−0.219489 + 0.975615i \(0.570439\pi\)
\(878\) 0 0
\(879\) 42.0000 1.41662
\(880\) 0 0
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) 0 0
\(883\) −29.0000 −0.975928 −0.487964 0.872864i \(-0.662260\pi\)
−0.487964 + 0.872864i \(0.662260\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.0000 −1.10803 −0.554016 0.832506i \(-0.686905\pi\)
−0.554016 + 0.832506i \(0.686905\pi\)
\(888\) 0 0
\(889\) −20.0000 −0.670778
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) 0 0
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 48.0000 1.60267
\(898\) 0 0
\(899\) −15.0000 −0.500278
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) 2.00000 0.0665558
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) 0 0
\(915\) 2.00000 0.0661180
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 68.0000 2.24068
\(922\) 0 0
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 0 0
\(927\) 4.00000 0.131377
\(928\) 0 0
\(929\) 45.0000 1.47640 0.738201 0.674581i \(-0.235676\pi\)
0.738201 + 0.674581i \(0.235676\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) 0 0
\(933\) 18.0000 0.589294
\(934\) 0 0
\(935\) 9.00000 0.294331
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 0 0
\(939\) 52.0000 1.69696
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) −18.0000 −0.586161
\(944\) 0 0
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) −33.0000 −1.07236 −0.536178 0.844105i \(-0.680132\pi\)
−0.536178 + 0.844105i \(0.680132\pi\)
\(948\) 0 0
\(949\) 64.0000 2.07753
\(950\) 0 0
\(951\) −42.0000 −1.36194
\(952\) 0 0
\(953\) −60.0000 −1.94359 −0.971795 0.235826i \(-0.924220\pi\)
−0.971795 + 0.235826i \(0.924220\pi\)
\(954\) 0 0
\(955\) 3.00000 0.0970777
\(956\) 0 0
\(957\) −18.0000 −0.581857
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) −57.0000 −1.82922 −0.914609 0.404341i \(-0.867501\pi\)
−0.914609 + 0.404341i \(0.867501\pi\)
\(972\) 0 0
\(973\) 13.0000 0.416761
\(974\) 0 0
\(975\) −8.00000 −0.256205
\(976\) 0 0
\(977\) −45.0000 −1.43968 −0.719839 0.694141i \(-0.755784\pi\)
−0.719839 + 0.694141i \(0.755784\pi\)
\(978\) 0 0
\(979\) 18.0000 0.575282
\(980\) 0 0
\(981\) 11.0000 0.351203
\(982\) 0 0
\(983\) −51.0000 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) −24.0000 −0.763928
\(988\) 0 0
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) −47.0000 −1.49300 −0.746502 0.665383i \(-0.768268\pi\)
−0.746502 + 0.665383i \(0.768268\pi\)
\(992\) 0 0
\(993\) −52.0000 −1.65017
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 0 0
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2960.2.a.j.1.1 1
4.3 odd 2 370.2.a.a.1.1 1
12.11 even 2 3330.2.a.v.1.1 1
20.3 even 4 1850.2.b.g.149.2 2
20.7 even 4 1850.2.b.g.149.1 2
20.19 odd 2 1850.2.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.a.a.1.1 1 4.3 odd 2
1850.2.a.o.1.1 1 20.19 odd 2
1850.2.b.g.149.1 2 20.7 even 4
1850.2.b.g.149.2 2 20.3 even 4
2960.2.a.j.1.1 1 1.1 even 1 trivial
3330.2.a.v.1.1 1 12.11 even 2