Properties

Label 2960.2.a.b
Level $2960$
Weight $2$
Character orbit 2960.a
Self dual yes
Analytic conductor $23.636$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2960 = 2^{4} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2960.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(23.6357189983\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1480)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2 q^{3} + q^{5} - 3 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{3} + q^{5} - 3 q^{7} + q^{9} - 3 q^{11} - 2 q^{15} + 5 q^{17} + 2 q^{19} + 6 q^{21} + 6 q^{23} + q^{25} + 4 q^{27} + q^{29} + q^{31} + 6 q^{33} - 3 q^{35} + q^{37} - 5 q^{41} - q^{43} + q^{45} - 4 q^{47} + 2 q^{49} - 10 q^{51} - 9 q^{53} - 3 q^{55} - 4 q^{57} - 8 q^{59} + 5 q^{61} - 3 q^{63} - 12 q^{69} + 2 q^{71} - 4 q^{73} - 2 q^{75} + 9 q^{77} - 8 q^{79} - 11 q^{81} + 4 q^{83} + 5 q^{85} - 2 q^{87} + 10 q^{89} - 2 q^{93} + 2 q^{95} - 9 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −2.00000 0 1.00000 0 −3.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(-1\)
\(37\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2960.2.a.b 1
4.b odd 2 1 1480.2.a.d 1
20.d odd 2 1 7400.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1480.2.a.d 1 4.b odd 2 1
2960.2.a.b 1 1.a even 1 1 trivial
7400.2.a.a 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2960))\):

\( T_{3} + 2 \) Copy content Toggle raw display
\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 3 \) Copy content Toggle raw display
$11$ \( T + 3 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 5 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T + 5 \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T + 4 \) Copy content Toggle raw display
$53$ \( T + 9 \) Copy content Toggle raw display
$59$ \( T + 8 \) Copy content Toggle raw display
$61$ \( T - 5 \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T - 2 \) Copy content Toggle raw display
$73$ \( T + 4 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T + 9 \) Copy content Toggle raw display
show more
show less