Properties

Label 2960.1.cw
Level $2960$
Weight $1$
Character orbit 2960.cw
Rep. character $\chi_{2960}(639,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $456$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2960 = 2^{4} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2960.cw (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 740 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(456\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2960, [\chi])\).

Total New Old
Modular forms 28 4 24
Cusp forms 4 4 0
Eisenstein series 24 0 24

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - q^{5} + 2 q^{9} + O(q^{10}) \) \( 4 q - q^{5} + 2 q^{9} + q^{25} - 4 q^{29} - 2 q^{41} - 2 q^{45} + 2 q^{49} - 2 q^{61} - 2 q^{81} + 6 q^{85} + 2 q^{89} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2960, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2960.1.cw.a \(2\) \(1.477\) \(\Q(\sqrt{-3}) \) \(D_{6}\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-2\) \(0\) \(q-q^{5}-\zeta_{6}^{2}q^{9}+(-1-\zeta_{6})q^{17}+q^{25}+\cdots\)
2960.1.cw.b \(2\) \(1.477\) \(\Q(\sqrt{-3}) \) \(D_{6}\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(1\) \(0\) \(q-\zeta_{6}^{2}q^{5}-\zeta_{6}^{2}q^{9}+(1+\zeta_{6})q^{17}+\cdots\)