gp: [N,k,chi] = [296,3,Mod(17,296)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("296.17");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(296, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([0, 0, 7]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [120]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{120} + 126 T_{3}^{116} - 1080 T_{3}^{115} - 74754 T_{3}^{114} + 39282 T_{3}^{113} + \cdots + 69\!\cdots\!36 \)
T3^120 + 126*T3^116 - 1080*T3^115 - 74754*T3^114 + 39282*T3^113 - 84834*T3^112 - 136080*T3^111 - 5744004*T3^110 + 37331202*T3^109 + 3777718895*T3^108 - 1918976610*T3^107 - 582391722*T3^106 + 8014057578*T3^105 + 116953164909*T3^104 - 1391069104398*T3^103 - 100035002053590*T3^102 + 61949528225712*T3^101 + 81688214341197*T3^100 - 600048708018594*T3^99 + 2428486364707332*T3^98 + 16298038411877592*T3^97 + 1881584227670029430*T3^96 - 761000029482990312*T3^95 - 7181386558103402268*T3^94 + 28921786543646503650*T3^93 - 148141508142832941795*T3^92 - 597244199859790317258*T3^91 - 18519330612871045089350*T3^90 - 2250754254867541935126*T3^89 + 99973163586949458249495*T3^88 - 195133038197605371431124*T3^87 + 1552135884802966277017212*T3^86 + 8136727556647149408906156*T3^85 + 135040862661231286929714714*T3^84 + 84251963959903498321705602*T3^83 - 715688741741196994895667972*T3^82 - 103900767583632198282444768*T3^81 - 15523413522949855477941192834*T3^80 - 55950368681411515131099175146*T3^79 - 559606747432403060880631172260*T3^78 - 663339916676369515702114729830*T3^77 + 2078441668238222755787417915202*T3^76 + 4857937326667635010030010179350*T3^75 + 83922299808694951343119215545964*T3^74 + 283860851096864163866962199855676*T3^73 + 1854757539860829456185909811694516*T3^72 + 2706548888675670913513530169427196*T3^71 - 3903069528119657348323185997002066*T3^70 - 23430452338866644321904993902967990*T3^69 - 249565109958097167158900783929602693*T3^68 - 754982493139889964375962917464648060*T3^67 - 3982576265337041363755676149623247072*T3^66 - 6860797873735321886093773930273576362*T3^65 - 2521897247680079533114180198031426205*T3^64 + 25398737315192306876786479500714814704*T3^63 + 380705459809765051389117375061591954008*T3^62 + 1205023366447741228881860799795000117828*T3^61 + 6540033639702612638084871169581043513667*T3^60 + 14656865361233693377918492974240437071212*T3^59 + 35801246215985364510391261004076607225956*T3^58 + 72226860536947995226567524141588755426454*T3^57 - 25258354847837975352147908887257554910174*T3^56 - 59323309909639419770809304787898086723432*T3^55 - 2752609157425658524631002721434099940156392*T3^54 - 4613730541732503889810454229879509618578398*T3^53 - 18477333754216705741245150452283865684269768*T3^52 - 33113898523101939402416408753843661146417628*T3^51 - 14577727543579582677334084376540545302987966*T3^50 - 99062820670394039996380977515048684129429556*T3^49 + 1114005512999916099069281787001692277534669351*T3^48 + 785810565605763182427634759611941522684074662*T3^47 + 10819626539287920891202480152515716953103146150*T3^46 + 9806123720632686041193735395612538758128722294*T3^45 + 59685605070648151845990288833886815148522900090*T3^44 + 65426072258903090075982247190145475779511736130*T3^43 + 159294802236105652388140431771063399272134157260*T3^42 + 236707572176514330204726821184165662457262350756*T3^41 - 64538246841221221434565274681415774855172195371*T3^40 + 392000399517000501602960320644919446255006228264*T3^39 - 2572462726897614124920354509425847339518283440794*T3^38 - 2200325250486297049159060688927344035548662808520*T3^37 - 7367918766137169992565770467484063124590465083547*T3^36 - 13229486305870240596587919445569750753481446722304*T3^35 + 4781300376127483418503408285420376885000769989448*T3^34 - 26896879596606071686267870195514793185785196946156*T3^33 + 110869767515413391255088365858040833197529896102251*T3^32 + 107040176661219876537580720721851366333617724553538*T3^31 + 418083897716488979624791923689099876473485132027092*T3^30 + 631850276703562769780435636689147666036061080783956*T3^29 + 878908943238833992129775169808594400875123096485189*T3^28 + 1424294329946858359742975614715772792291848870273388*T3^27 + 843034907708975993512746293660901717052499758700466*T3^26 + 873966734472119598537305336275789084237287100916964*T3^25 - 294223344936165750004082790801911778712807642237691*T3^24 - 796876272836084418211405557248136599327605464678774*T3^23 - 1517207787324467003038195594820361189963239823899934*T3^22 - 2665552637724465228892575249484381323968890839241068*T3^21 + 835720160120415684663821727845847822541229786742732*T3^20 - 1013094283031391043729051411366792158752097779519784*T3^19 + 2036920504972822900142086929315261029881198399875632*T3^18 - 300785591824757246516301603287889993466150045581408*T3^17 + 2179739209866552029102298220086622210427701441446240*T3^16 - 68872222575129077262793729240839009593082069777600*T3^15 - 1344595287324527800330896454285180319697429172732128*T3^14 - 277553140778150177876848942240008673256566175396928*T3^13 + 356462032106740163139274294242484215738819525823040*T3^12 + 1138521636941689524806572744238716995134510039825664*T3^11 - 1154426816693582602458783740837820397914073770567168*T3^10 - 960447170835149184271581351966620222225713491879936*T3^9 + 851945319971297869636438701272700128227129357086720*T3^8 + 421500026886866530263510466308637285232459286331392*T3^7 - 181798113550107207687144670365645587277268747485184*T3^6 - 117634635680664605164596265845484487132882158485504*T3^5 + 1063723953618774546435311575052457344029272047616*T3^4 + 14258756711764579443585249120676827764891634892800*T3^3 + 2983857254409619242397645498251585912957076242432*T3^2 - 58239309401735185923932287370329022720536215552*T3 + 699064260235334233078085315855577234156814336
acting on \(S_{3}^{\mathrm{new}}(296, [\chi])\).