Newspace parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.q (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.36357189983\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
85.1 | −1.39280 | − | 0.245152i | −0.0574215 | − | 0.0331523i | 1.87980 | + | 0.682898i | −0.0588225 | + | 0.101884i | 0.0718494 | + | 0.0602516i | 1.40284 | − | 2.42979i | −2.45078 | − | 1.41198i | −1.49780 | − | 2.59427i | 0.106905 | − | 0.127483i |
85.2 | −1.38029 | − | 0.307877i | −1.31634 | − | 0.759988i | 1.81042 | + | 0.849922i | 0.762054 | − | 1.31992i | 1.58295 | + | 1.45428i | −2.35964 | + | 4.08701i | −2.23725 | − | 1.73053i | −0.344836 | − | 0.597274i | −1.45823 | + | 1.58725i |
85.3 | −1.36412 | + | 0.373059i | 2.16163 | + | 1.24802i | 1.72165 | − | 1.01780i | 0.890777 | − | 1.54287i | −3.41431 | − | 0.896032i | −1.76150 | + | 3.05101i | −1.96885 | + | 2.03068i | 1.61510 | + | 2.79744i | −0.639545 | + | 2.43698i |
85.4 | −1.34606 | + | 0.433734i | −2.63548 | − | 1.52159i | 1.62375 | − | 1.16766i | 1.82516 | − | 3.16127i | 4.20748 | + | 0.905059i | 1.55620 | − | 2.69542i | −1.67921 | + | 2.27602i | 3.13050 | + | 5.42218i | −1.08562 | + | 5.04689i |
85.5 | −1.33470 | − | 0.467534i | 2.44339 | + | 1.41069i | 1.56282 | + | 1.24803i | 0.380208 | − | 0.658539i | −2.60164 | − | 3.02522i | 1.51623 | − | 2.62619i | −1.50239 | − | 2.39642i | 2.48012 | + | 4.29569i | −0.815351 | + | 0.701189i |
85.6 | −1.26611 | + | 0.630052i | 0.593819 | + | 0.342841i | 1.20607 | − | 1.59543i | 1.02589 | − | 1.77690i | −0.967848 | − | 0.0599385i | 0.355330 | − | 0.615450i | −0.521814 | + | 2.77988i | −1.26492 | − | 2.19090i | −0.179356 | + | 2.89612i |
85.7 | −1.26355 | − | 0.635167i | −2.54245 | − | 1.46788i | 1.19312 | + | 1.60513i | −2.01329 | + | 3.48712i | 2.28016 | + | 3.46962i | 0.477860 | − | 0.827678i | −0.488046 | − | 2.78600i | 2.80936 | + | 4.86595i | 4.75880 | − | 3.12738i |
85.8 | −1.17870 | + | 0.781458i | −0.593819 | − | 0.342841i | 0.778648 | − | 1.84220i | −1.02589 | + | 1.77690i | 0.967848 | − | 0.0599385i | 0.355330 | − | 0.615450i | 0.521814 | + | 2.77988i | −1.26492 | − | 2.19090i | −0.179356 | − | 2.89612i |
85.9 | −1.07776 | − | 0.915657i | 1.20571 | + | 0.696117i | 0.323144 | + | 1.97372i | −1.27097 | + | 2.20138i | −0.662065 | − | 1.85427i | −0.577919 | + | 1.00099i | 1.45898 | − | 2.42309i | −0.530841 | − | 0.919444i | 3.38552 | − | 1.20880i |
85.10 | −1.04865 | + | 0.948854i | 2.63548 | + | 1.52159i | 0.199351 | − | 1.99004i | −1.82516 | + | 3.16127i | −4.20748 | + | 0.905059i | 1.55620 | − | 2.69542i | 1.67921 | + | 2.27602i | 3.13050 | + | 5.42218i | −1.08562 | − | 5.04689i |
85.11 | −1.00514 | + | 0.994834i | −2.16163 | − | 1.24802i | 0.0206105 | − | 1.99989i | −0.890777 | + | 1.54287i | 3.41431 | − | 0.896032i | −1.76150 | + | 3.05101i | 1.96885 | + | 2.03068i | 1.61510 | + | 2.79744i | −0.639545 | − | 2.43698i |
85.12 | −0.913372 | − | 1.07970i | 1.03067 | + | 0.595057i | −0.331504 | + | 1.97233i | 1.89805 | − | 3.28751i | −0.298901 | − | 1.65632i | 0.213384 | − | 0.369592i | 2.43232 | − | 1.44355i | −0.791813 | − | 1.37146i | −5.28315 | + | 0.953401i |
85.13 | −0.833130 | − | 1.14276i | −1.81291 | − | 1.04668i | −0.611788 | + | 1.90413i | 1.03003 | − | 1.78406i | 0.314285 | + | 2.94374i | 1.21757 | − | 2.10889i | 2.68566 | − | 0.887265i | 0.691097 | + | 1.19702i | −2.89690 | + | 0.309284i |
85.14 | −0.484093 | + | 1.32878i | 0.0574215 | + | 0.0331523i | −1.53131 | − | 1.28651i | 0.0588225 | − | 0.101884i | −0.0718494 | + | 0.0602516i | 1.40284 | − | 2.42979i | 2.45078 | − | 1.41198i | −1.49780 | − | 2.59427i | 0.106905 | + | 0.127483i |
85.15 | −0.423518 | + | 1.34931i | 1.31634 | + | 0.759988i | −1.64127 | − | 1.14291i | −0.762054 | + | 1.31992i | −1.58295 | + | 1.45428i | −2.35964 | + | 4.08701i | 2.23725 | − | 1.73053i | −0.344836 | − | 0.597274i | −1.45823 | − | 1.58725i |
85.16 | −0.410393 | − | 1.35336i | −1.78951 | − | 1.03318i | −1.66315 | + | 1.11082i | −0.216072 | + | 0.374248i | −0.663852 | + | 2.84586i | −0.770459 | + | 1.33447i | 2.18588 | + | 1.79497i | 0.634902 | + | 1.09968i | 0.595166 | + | 0.138834i |
85.17 | −0.288005 | − | 1.38458i | 2.75173 | + | 1.58871i | −1.83411 | + | 0.797529i | −0.352717 | + | 0.610924i | 1.40718 | − | 4.26753i | −1.43310 | + | 2.48220i | 1.63247 | + | 2.30977i | 3.54800 | + | 6.14532i | 0.947455 | + | 0.312415i |
85.18 | −0.269353 | − | 1.38833i | 0.280448 | + | 0.161917i | −1.85490 | + | 0.747900i | −1.57735 | + | 2.73205i | 0.149254 | − | 0.432966i | 2.58572 | − | 4.47860i | 1.53795 | + | 2.37375i | −1.44757 | − | 2.50726i | 4.21784 | + | 1.45399i |
85.19 | −0.262451 | + | 1.38965i | −2.44339 | − | 1.41069i | −1.86224 | − | 0.729429i | −0.380208 | + | 0.658539i | 2.60164 | − | 3.02522i | 1.51623 | − | 2.62619i | 1.50239 | − | 2.39642i | 2.48012 | + | 4.29569i | −0.815351 | − | 0.701189i |
85.20 | −0.0817045 | + | 1.41185i | 2.54245 | + | 1.46788i | −1.98665 | − | 0.230709i | 2.01329 | − | 3.48712i | −2.28016 | + | 3.46962i | 0.477860 | − | 0.827678i | 0.488046 | − | 2.78600i | 2.80936 | + | 4.86595i | 4.75880 | + | 3.12738i |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
37.e | even | 6 | 1 | inner |
296.q | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 296.2.q.a | ✓ | 72 |
4.b | odd | 2 | 1 | 1184.2.y.a | 72 | ||
8.b | even | 2 | 1 | inner | 296.2.q.a | ✓ | 72 |
8.d | odd | 2 | 1 | 1184.2.y.a | 72 | ||
37.e | even | 6 | 1 | inner | 296.2.q.a | ✓ | 72 |
148.j | odd | 6 | 1 | 1184.2.y.a | 72 | ||
296.n | odd | 6 | 1 | 1184.2.y.a | 72 | ||
296.q | even | 6 | 1 | inner | 296.2.q.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
296.2.q.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
296.2.q.a | ✓ | 72 | 8.b | even | 2 | 1 | inner |
296.2.q.a | ✓ | 72 | 37.e | even | 6 | 1 | inner |
296.2.q.a | ✓ | 72 | 296.q | even | 6 | 1 | inner |
1184.2.y.a | 72 | 4.b | odd | 2 | 1 | ||
1184.2.y.a | 72 | 8.d | odd | 2 | 1 | ||
1184.2.y.a | 72 | 148.j | odd | 6 | 1 | ||
1184.2.y.a | 72 | 296.n | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(296, [\chi])\).