Properties

Label 296.2.a.c.1.2
Level $296$
Weight $2$
Character 296.1
Self dual yes
Analytic conductor $2.364$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [296,2,Mod(1,296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(296, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("296.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.36357189983\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.86081\) of defining polynomial
Character \(\chi\) \(=\) 296.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.46260 q^{3} +0.462598 q^{5} -0.323404 q^{7} -0.860806 q^{9} +O(q^{10})\) \(q+1.46260 q^{3} +0.462598 q^{5} -0.323404 q^{7} -0.860806 q^{9} +5.58242 q^{11} +6.58242 q^{13} +0.676596 q^{15} -6.64681 q^{17} -2.64681 q^{19} -0.473011 q^{21} +4.86081 q^{23} -4.78600 q^{25} -5.64681 q^{27} -4.86081 q^{29} +6.46260 q^{31} +8.16484 q^{33} -0.149606 q^{35} -1.00000 q^{37} +9.62743 q^{39} -0.815790 q^{41} -1.87122 q^{43} -0.398207 q^{45} -1.11982 q^{47} -6.89541 q^{49} -9.72161 q^{51} -12.6918 q^{53} +2.58242 q^{55} -3.87122 q^{57} -0.128782 q^{59} -1.10941 q^{61} +0.278388 q^{63} +3.04502 q^{65} +13.4778 q^{67} +7.10941 q^{69} -8.04502 q^{71} +3.58242 q^{73} -7.00000 q^{75} -1.80538 q^{77} -3.78600 q^{79} -5.67660 q^{81} -14.6918 q^{83} -3.07480 q^{85} -7.10941 q^{87} +2.14961 q^{89} -2.12878 q^{91} +9.45219 q^{93} -1.22441 q^{95} +1.05398 q^{97} -4.80538 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} - q^{5} + 7 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2 q^{3} - q^{5} + 7 q^{7} + 3 q^{9} + 3 q^{13} + 10 q^{15} - 4 q^{17} + 8 q^{19} - 3 q^{21} + 9 q^{23} - 4 q^{25} - q^{27} - 9 q^{29} + 17 q^{31} - 9 q^{33} - 10 q^{35} - 3 q^{37} - 7 q^{39} - 16 q^{41} - 4 q^{43} + 2 q^{45} + 11 q^{47} + 8 q^{49} - 18 q^{51} - 3 q^{53} - 9 q^{55} - 10 q^{57} - 2 q^{59} + 15 q^{61} + 12 q^{63} - 10 q^{65} - 5 q^{67} + 3 q^{69} - 5 q^{71} - 6 q^{73} - 21 q^{75} - 15 q^{77} - q^{79} - 25 q^{81} - 9 q^{83} - 14 q^{85} - 3 q^{87} + 16 q^{89} - 8 q^{91} + 22 q^{93} - 18 q^{95} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.46260 0.844432 0.422216 0.906495i \(-0.361252\pi\)
0.422216 + 0.906495i \(0.361252\pi\)
\(4\) 0 0
\(5\) 0.462598 0.206880 0.103440 0.994636i \(-0.467015\pi\)
0.103440 + 0.994636i \(0.467015\pi\)
\(6\) 0 0
\(7\) −0.323404 −0.122235 −0.0611177 0.998131i \(-0.519466\pi\)
−0.0611177 + 0.998131i \(0.519466\pi\)
\(8\) 0 0
\(9\) −0.860806 −0.286935
\(10\) 0 0
\(11\) 5.58242 1.68316 0.841581 0.540131i \(-0.181625\pi\)
0.841581 + 0.540131i \(0.181625\pi\)
\(12\) 0 0
\(13\) 6.58242 1.82563 0.912817 0.408369i \(-0.133902\pi\)
0.912817 + 0.408369i \(0.133902\pi\)
\(14\) 0 0
\(15\) 0.676596 0.174696
\(16\) 0 0
\(17\) −6.64681 −1.61209 −0.806044 0.591856i \(-0.798396\pi\)
−0.806044 + 0.591856i \(0.798396\pi\)
\(18\) 0 0
\(19\) −2.64681 −0.607220 −0.303610 0.952796i \(-0.598192\pi\)
−0.303610 + 0.952796i \(0.598192\pi\)
\(20\) 0 0
\(21\) −0.473011 −0.103219
\(22\) 0 0
\(23\) 4.86081 1.01355 0.506774 0.862079i \(-0.330838\pi\)
0.506774 + 0.862079i \(0.330838\pi\)
\(24\) 0 0
\(25\) −4.78600 −0.957201
\(26\) 0 0
\(27\) −5.64681 −1.08673
\(28\) 0 0
\(29\) −4.86081 −0.902629 −0.451314 0.892365i \(-0.649045\pi\)
−0.451314 + 0.892365i \(0.649045\pi\)
\(30\) 0 0
\(31\) 6.46260 1.16072 0.580358 0.814361i \(-0.302912\pi\)
0.580358 + 0.814361i \(0.302912\pi\)
\(32\) 0 0
\(33\) 8.16484 1.42132
\(34\) 0 0
\(35\) −0.149606 −0.0252881
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 9.62743 1.54162
\(40\) 0 0
\(41\) −0.815790 −0.127405 −0.0637025 0.997969i \(-0.520291\pi\)
−0.0637025 + 0.997969i \(0.520291\pi\)
\(42\) 0 0
\(43\) −1.87122 −0.285358 −0.142679 0.989769i \(-0.545572\pi\)
−0.142679 + 0.989769i \(0.545572\pi\)
\(44\) 0 0
\(45\) −0.398207 −0.0593613
\(46\) 0 0
\(47\) −1.11982 −0.163342 −0.0816712 0.996659i \(-0.526026\pi\)
−0.0816712 + 0.996659i \(0.526026\pi\)
\(48\) 0 0
\(49\) −6.89541 −0.985059
\(50\) 0 0
\(51\) −9.72161 −1.36130
\(52\) 0 0
\(53\) −12.6918 −1.74336 −0.871678 0.490079i \(-0.836968\pi\)
−0.871678 + 0.490079i \(0.836968\pi\)
\(54\) 0 0
\(55\) 2.58242 0.348213
\(56\) 0 0
\(57\) −3.87122 −0.512755
\(58\) 0 0
\(59\) −0.128782 −0.0167660 −0.00838299 0.999965i \(-0.502668\pi\)
−0.00838299 + 0.999965i \(0.502668\pi\)
\(60\) 0 0
\(61\) −1.10941 −0.142045 −0.0710225 0.997475i \(-0.522626\pi\)
−0.0710225 + 0.997475i \(0.522626\pi\)
\(62\) 0 0
\(63\) 0.278388 0.0350736
\(64\) 0 0
\(65\) 3.04502 0.377688
\(66\) 0 0
\(67\) 13.4778 1.64658 0.823289 0.567622i \(-0.192136\pi\)
0.823289 + 0.567622i \(0.192136\pi\)
\(68\) 0 0
\(69\) 7.10941 0.855872
\(70\) 0 0
\(71\) −8.04502 −0.954768 −0.477384 0.878695i \(-0.658415\pi\)
−0.477384 + 0.878695i \(0.658415\pi\)
\(72\) 0 0
\(73\) 3.58242 0.419290 0.209645 0.977778i \(-0.432769\pi\)
0.209645 + 0.977778i \(0.432769\pi\)
\(74\) 0 0
\(75\) −7.00000 −0.808290
\(76\) 0 0
\(77\) −1.80538 −0.205742
\(78\) 0 0
\(79\) −3.78600 −0.425959 −0.212979 0.977057i \(-0.568317\pi\)
−0.212979 + 0.977057i \(0.568317\pi\)
\(80\) 0 0
\(81\) −5.67660 −0.630733
\(82\) 0 0
\(83\) −14.6918 −1.61264 −0.806319 0.591481i \(-0.798543\pi\)
−0.806319 + 0.591481i \(0.798543\pi\)
\(84\) 0 0
\(85\) −3.07480 −0.333509
\(86\) 0 0
\(87\) −7.10941 −0.762208
\(88\) 0 0
\(89\) 2.14961 0.227858 0.113929 0.993489i \(-0.463656\pi\)
0.113929 + 0.993489i \(0.463656\pi\)
\(90\) 0 0
\(91\) −2.12878 −0.223157
\(92\) 0 0
\(93\) 9.45219 0.980146
\(94\) 0 0
\(95\) −1.22441 −0.125622
\(96\) 0 0
\(97\) 1.05398 0.107015 0.0535077 0.998567i \(-0.482960\pi\)
0.0535077 + 0.998567i \(0.482960\pi\)
\(98\) 0 0
\(99\) −4.80538 −0.482959
\(100\) 0 0
\(101\) 8.69182 0.864869 0.432434 0.901665i \(-0.357655\pi\)
0.432434 + 0.901665i \(0.357655\pi\)
\(102\) 0 0
\(103\) 3.66618 0.361240 0.180620 0.983553i \(-0.442190\pi\)
0.180620 + 0.983553i \(0.442190\pi\)
\(104\) 0 0
\(105\) −0.218814 −0.0213541
\(106\) 0 0
\(107\) −18.0048 −1.74059 −0.870296 0.492530i \(-0.836072\pi\)
−0.870296 + 0.492530i \(0.836072\pi\)
\(108\) 0 0
\(109\) 16.7964 1.60880 0.804402 0.594085i \(-0.202486\pi\)
0.804402 + 0.594085i \(0.202486\pi\)
\(110\) 0 0
\(111\) −1.46260 −0.138824
\(112\) 0 0
\(113\) −7.59283 −0.714273 −0.357137 0.934052i \(-0.616247\pi\)
−0.357137 + 0.934052i \(0.616247\pi\)
\(114\) 0 0
\(115\) 2.24860 0.209683
\(116\) 0 0
\(117\) −5.66618 −0.523839
\(118\) 0 0
\(119\) 2.14961 0.197054
\(120\) 0 0
\(121\) 20.1634 1.83304
\(122\) 0 0
\(123\) −1.19317 −0.107585
\(124\) 0 0
\(125\) −4.52699 −0.404906
\(126\) 0 0
\(127\) 18.2847 1.62250 0.811250 0.584699i \(-0.198787\pi\)
0.811250 + 0.584699i \(0.198787\pi\)
\(128\) 0 0
\(129\) −2.73684 −0.240965
\(130\) 0 0
\(131\) 9.16484 0.800735 0.400368 0.916355i \(-0.368882\pi\)
0.400368 + 0.916355i \(0.368882\pi\)
\(132\) 0 0
\(133\) 0.855989 0.0742237
\(134\) 0 0
\(135\) −2.61220 −0.224823
\(136\) 0 0
\(137\) 15.4778 1.32236 0.661180 0.750227i \(-0.270056\pi\)
0.661180 + 0.750227i \(0.270056\pi\)
\(138\) 0 0
\(139\) −6.73202 −0.571003 −0.285501 0.958378i \(-0.592160\pi\)
−0.285501 + 0.958378i \(0.592160\pi\)
\(140\) 0 0
\(141\) −1.63785 −0.137931
\(142\) 0 0
\(143\) 36.7458 3.07284
\(144\) 0 0
\(145\) −2.24860 −0.186736
\(146\) 0 0
\(147\) −10.0852 −0.831815
\(148\) 0 0
\(149\) 0.323404 0.0264943 0.0132472 0.999912i \(-0.495783\pi\)
0.0132472 + 0.999912i \(0.495783\pi\)
\(150\) 0 0
\(151\) −11.8116 −0.961218 −0.480609 0.876935i \(-0.659584\pi\)
−0.480609 + 0.876935i \(0.659584\pi\)
\(152\) 0 0
\(153\) 5.72161 0.462565
\(154\) 0 0
\(155\) 2.98959 0.240129
\(156\) 0 0
\(157\) 12.6918 1.01292 0.506459 0.862264i \(-0.330954\pi\)
0.506459 + 0.862264i \(0.330954\pi\)
\(158\) 0 0
\(159\) −18.5630 −1.47215
\(160\) 0 0
\(161\) −1.57201 −0.123891
\(162\) 0 0
\(163\) 11.8504 0.928194 0.464097 0.885784i \(-0.346379\pi\)
0.464097 + 0.885784i \(0.346379\pi\)
\(164\) 0 0
\(165\) 3.77704 0.294042
\(166\) 0 0
\(167\) 6.20503 0.480160 0.240080 0.970753i \(-0.422826\pi\)
0.240080 + 0.970753i \(0.422826\pi\)
\(168\) 0 0
\(169\) 30.3282 2.33294
\(170\) 0 0
\(171\) 2.27839 0.174233
\(172\) 0 0
\(173\) −7.39821 −0.562475 −0.281238 0.959638i \(-0.590745\pi\)
−0.281238 + 0.959638i \(0.590745\pi\)
\(174\) 0 0
\(175\) 1.54781 0.117004
\(176\) 0 0
\(177\) −0.188356 −0.0141577
\(178\) 0 0
\(179\) 7.97918 0.596392 0.298196 0.954505i \(-0.403615\pi\)
0.298196 + 0.954505i \(0.403615\pi\)
\(180\) 0 0
\(181\) −9.48824 −0.705255 −0.352628 0.935764i \(-0.614712\pi\)
−0.352628 + 0.935764i \(0.614712\pi\)
\(182\) 0 0
\(183\) −1.62262 −0.119947
\(184\) 0 0
\(185\) −0.462598 −0.0340109
\(186\) 0 0
\(187\) −37.1053 −2.71341
\(188\) 0 0
\(189\) 1.82620 0.132837
\(190\) 0 0
\(191\) 19.1994 1.38922 0.694611 0.719385i \(-0.255576\pi\)
0.694611 + 0.719385i \(0.255576\pi\)
\(192\) 0 0
\(193\) −16.0900 −1.15819 −0.579093 0.815262i \(-0.696593\pi\)
−0.579093 + 0.815262i \(0.696593\pi\)
\(194\) 0 0
\(195\) 4.45364 0.318931
\(196\) 0 0
\(197\) 0.691825 0.0492905 0.0246452 0.999696i \(-0.492154\pi\)
0.0246452 + 0.999696i \(0.492154\pi\)
\(198\) 0 0
\(199\) 2.79641 0.198233 0.0991163 0.995076i \(-0.468398\pi\)
0.0991163 + 0.995076i \(0.468398\pi\)
\(200\) 0 0
\(201\) 19.7126 1.39042
\(202\) 0 0
\(203\) 1.57201 0.110333
\(204\) 0 0
\(205\) −0.377383 −0.0263576
\(206\) 0 0
\(207\) −4.18421 −0.290823
\(208\) 0 0
\(209\) −14.7756 −1.02205
\(210\) 0 0
\(211\) 13.2140 0.909689 0.454845 0.890571i \(-0.349695\pi\)
0.454845 + 0.890571i \(0.349695\pi\)
\(212\) 0 0
\(213\) −11.7666 −0.806236
\(214\) 0 0
\(215\) −0.865623 −0.0590350
\(216\) 0 0
\(217\) −2.09003 −0.141881
\(218\) 0 0
\(219\) 5.23964 0.354062
\(220\) 0 0
\(221\) −43.7521 −2.94308
\(222\) 0 0
\(223\) 15.6170 1.04579 0.522897 0.852396i \(-0.324851\pi\)
0.522897 + 0.852396i \(0.324851\pi\)
\(224\) 0 0
\(225\) 4.11982 0.274655
\(226\) 0 0
\(227\) −3.07480 −0.204082 −0.102041 0.994780i \(-0.532537\pi\)
−0.102041 + 0.994780i \(0.532537\pi\)
\(228\) 0 0
\(229\) −12.7306 −0.841260 −0.420630 0.907232i \(-0.638191\pi\)
−0.420630 + 0.907232i \(0.638191\pi\)
\(230\) 0 0
\(231\) −2.64054 −0.173735
\(232\) 0 0
\(233\) −18.8221 −1.23307 −0.616537 0.787326i \(-0.711465\pi\)
−0.616537 + 0.787326i \(0.711465\pi\)
\(234\) 0 0
\(235\) −0.518027 −0.0337923
\(236\) 0 0
\(237\) −5.53740 −0.359693
\(238\) 0 0
\(239\) −6.18421 −0.400023 −0.200012 0.979794i \(-0.564098\pi\)
−0.200012 + 0.979794i \(0.564098\pi\)
\(240\) 0 0
\(241\) 17.9404 1.15564 0.577822 0.816163i \(-0.303903\pi\)
0.577822 + 0.816163i \(0.303903\pi\)
\(242\) 0 0
\(243\) 8.63785 0.554118
\(244\) 0 0
\(245\) −3.18981 −0.203789
\(246\) 0 0
\(247\) −17.4224 −1.10856
\(248\) 0 0
\(249\) −21.4882 −1.36176
\(250\) 0 0
\(251\) −5.20359 −0.328447 −0.164224 0.986423i \(-0.552512\pi\)
−0.164224 + 0.986423i \(0.552512\pi\)
\(252\) 0 0
\(253\) 27.1350 1.70597
\(254\) 0 0
\(255\) −4.49720 −0.281626
\(256\) 0 0
\(257\) −6.38924 −0.398550 −0.199275 0.979944i \(-0.563859\pi\)
−0.199275 + 0.979944i \(0.563859\pi\)
\(258\) 0 0
\(259\) 0.323404 0.0200954
\(260\) 0 0
\(261\) 4.18421 0.258996
\(262\) 0 0
\(263\) −20.0063 −1.23364 −0.616820 0.787105i \(-0.711579\pi\)
−0.616820 + 0.787105i \(0.711579\pi\)
\(264\) 0 0
\(265\) −5.87122 −0.360666
\(266\) 0 0
\(267\) 3.14401 0.192410
\(268\) 0 0
\(269\) 27.7908 1.69444 0.847218 0.531245i \(-0.178276\pi\)
0.847218 + 0.531245i \(0.178276\pi\)
\(270\) 0 0
\(271\) −16.8414 −1.02304 −0.511522 0.859270i \(-0.670918\pi\)
−0.511522 + 0.859270i \(0.670918\pi\)
\(272\) 0 0
\(273\) −3.11355 −0.188441
\(274\) 0 0
\(275\) −26.7175 −1.61112
\(276\) 0 0
\(277\) 4.55263 0.273541 0.136771 0.990603i \(-0.456328\pi\)
0.136771 + 0.990603i \(0.456328\pi\)
\(278\) 0 0
\(279\) −5.56304 −0.333051
\(280\) 0 0
\(281\) 18.8864 1.12667 0.563335 0.826228i \(-0.309518\pi\)
0.563335 + 0.826228i \(0.309518\pi\)
\(282\) 0 0
\(283\) 27.8116 1.65323 0.826615 0.562767i \(-0.190263\pi\)
0.826615 + 0.562767i \(0.190263\pi\)
\(284\) 0 0
\(285\) −1.79082 −0.106079
\(286\) 0 0
\(287\) 0.263830 0.0155734
\(288\) 0 0
\(289\) 27.1801 1.59883
\(290\) 0 0
\(291\) 1.54155 0.0903671
\(292\) 0 0
\(293\) −22.1288 −1.29278 −0.646389 0.763008i \(-0.723721\pi\)
−0.646389 + 0.763008i \(0.723721\pi\)
\(294\) 0 0
\(295\) −0.0595743 −0.00346855
\(296\) 0 0
\(297\) −31.5228 −1.82914
\(298\) 0 0
\(299\) 31.9959 1.85037
\(300\) 0 0
\(301\) 0.605160 0.0348808
\(302\) 0 0
\(303\) 12.7126 0.730323
\(304\) 0 0
\(305\) −0.513210 −0.0293863
\(306\) 0 0
\(307\) −15.3130 −0.873959 −0.436979 0.899472i \(-0.643952\pi\)
−0.436979 + 0.899472i \(0.643952\pi\)
\(308\) 0 0
\(309\) 5.36215 0.305042
\(310\) 0 0
\(311\) 22.0644 1.25116 0.625578 0.780161i \(-0.284863\pi\)
0.625578 + 0.780161i \(0.284863\pi\)
\(312\) 0 0
\(313\) −24.2188 −1.36893 −0.684464 0.729047i \(-0.739964\pi\)
−0.684464 + 0.729047i \(0.739964\pi\)
\(314\) 0 0
\(315\) 0.128782 0.00725604
\(316\) 0 0
\(317\) −13.3836 −0.751701 −0.375850 0.926680i \(-0.622649\pi\)
−0.375850 + 0.926680i \(0.622649\pi\)
\(318\) 0 0
\(319\) −27.1350 −1.51927
\(320\) 0 0
\(321\) −26.3338 −1.46981
\(322\) 0 0
\(323\) 17.5928 0.978891
\(324\) 0 0
\(325\) −31.5035 −1.74750
\(326\) 0 0
\(327\) 24.5664 1.35853
\(328\) 0 0
\(329\) 0.362154 0.0199662
\(330\) 0 0
\(331\) 8.09003 0.444668 0.222334 0.974971i \(-0.428632\pi\)
0.222334 + 0.974971i \(0.428632\pi\)
\(332\) 0 0
\(333\) 0.860806 0.0471719
\(334\) 0 0
\(335\) 6.23482 0.340645
\(336\) 0 0
\(337\) −12.4176 −0.676429 −0.338214 0.941069i \(-0.609823\pi\)
−0.338214 + 0.941069i \(0.609823\pi\)
\(338\) 0 0
\(339\) −11.1053 −0.603155
\(340\) 0 0
\(341\) 36.0769 1.95367
\(342\) 0 0
\(343\) 4.49383 0.242644
\(344\) 0 0
\(345\) 3.28880 0.177063
\(346\) 0 0
\(347\) −31.7216 −1.70291 −0.851453 0.524431i \(-0.824278\pi\)
−0.851453 + 0.524431i \(0.824278\pi\)
\(348\) 0 0
\(349\) 19.7216 1.05567 0.527837 0.849346i \(-0.323003\pi\)
0.527837 + 0.849346i \(0.323003\pi\)
\(350\) 0 0
\(351\) −37.1697 −1.98397
\(352\) 0 0
\(353\) 7.07480 0.376554 0.188277 0.982116i \(-0.439710\pi\)
0.188277 + 0.982116i \(0.439710\pi\)
\(354\) 0 0
\(355\) −3.72161 −0.197523
\(356\) 0 0
\(357\) 3.14401 0.166399
\(358\) 0 0
\(359\) 20.9910 1.10786 0.553932 0.832562i \(-0.313127\pi\)
0.553932 + 0.832562i \(0.313127\pi\)
\(360\) 0 0
\(361\) −11.9944 −0.631284
\(362\) 0 0
\(363\) 29.4909 1.54787
\(364\) 0 0
\(365\) 1.65722 0.0867429
\(366\) 0 0
\(367\) 12.8656 0.671580 0.335790 0.941937i \(-0.390997\pi\)
0.335790 + 0.941937i \(0.390997\pi\)
\(368\) 0 0
\(369\) 0.702237 0.0365570
\(370\) 0 0
\(371\) 4.10459 0.213100
\(372\) 0 0
\(373\) −27.7071 −1.43462 −0.717308 0.696756i \(-0.754626\pi\)
−0.717308 + 0.696756i \(0.754626\pi\)
\(374\) 0 0
\(375\) −6.62117 −0.341916
\(376\) 0 0
\(377\) −31.9959 −1.64787
\(378\) 0 0
\(379\) −18.0194 −0.925593 −0.462797 0.886465i \(-0.653154\pi\)
−0.462797 + 0.886465i \(0.653154\pi\)
\(380\) 0 0
\(381\) 26.7431 1.37009
\(382\) 0 0
\(383\) 24.1801 1.23554 0.617772 0.786357i \(-0.288036\pi\)
0.617772 + 0.786357i \(0.288036\pi\)
\(384\) 0 0
\(385\) −0.835165 −0.0425639
\(386\) 0 0
\(387\) 1.61076 0.0818793
\(388\) 0 0
\(389\) 23.7860 1.20600 0.602999 0.797742i \(-0.293972\pi\)
0.602999 + 0.797742i \(0.293972\pi\)
\(390\) 0 0
\(391\) −32.3088 −1.63393
\(392\) 0 0
\(393\) 13.4045 0.676166
\(394\) 0 0
\(395\) −1.75140 −0.0881224
\(396\) 0 0
\(397\) −17.2099 −0.863738 −0.431869 0.901936i \(-0.642146\pi\)
−0.431869 + 0.901936i \(0.642146\pi\)
\(398\) 0 0
\(399\) 1.25197 0.0626768
\(400\) 0 0
\(401\) −4.21881 −0.210678 −0.105339 0.994436i \(-0.533593\pi\)
−0.105339 + 0.994436i \(0.533593\pi\)
\(402\) 0 0
\(403\) 42.5395 2.11904
\(404\) 0 0
\(405\) −2.62598 −0.130486
\(406\) 0 0
\(407\) −5.58242 −0.276710
\(408\) 0 0
\(409\) 37.4045 1.84953 0.924766 0.380536i \(-0.124261\pi\)
0.924766 + 0.380536i \(0.124261\pi\)
\(410\) 0 0
\(411\) 22.6378 1.11664
\(412\) 0 0
\(413\) 0.0416486 0.00204940
\(414\) 0 0
\(415\) −6.79641 −0.333623
\(416\) 0 0
\(417\) −9.84625 −0.482173
\(418\) 0 0
\(419\) −6.62743 −0.323771 −0.161886 0.986810i \(-0.551758\pi\)
−0.161886 + 0.986810i \(0.551758\pi\)
\(420\) 0 0
\(421\) −33.5589 −1.63556 −0.817780 0.575531i \(-0.804796\pi\)
−0.817780 + 0.575531i \(0.804796\pi\)
\(422\) 0 0
\(423\) 0.963947 0.0468687
\(424\) 0 0
\(425\) 31.8116 1.54309
\(426\) 0 0
\(427\) 0.358787 0.0173629
\(428\) 0 0
\(429\) 53.7444 2.59480
\(430\) 0 0
\(431\) −6.53885 −0.314965 −0.157483 0.987522i \(-0.550338\pi\)
−0.157483 + 0.987522i \(0.550338\pi\)
\(432\) 0 0
\(433\) −18.3699 −0.882800 −0.441400 0.897311i \(-0.645518\pi\)
−0.441400 + 0.897311i \(0.645518\pi\)
\(434\) 0 0
\(435\) −3.28880 −0.157686
\(436\) 0 0
\(437\) −12.8656 −0.615446
\(438\) 0 0
\(439\) 19.3580 0.923907 0.461954 0.886904i \(-0.347149\pi\)
0.461954 + 0.886904i \(0.347149\pi\)
\(440\) 0 0
\(441\) 5.93561 0.282648
\(442\) 0 0
\(443\) −5.28320 −0.251013 −0.125506 0.992093i \(-0.540056\pi\)
−0.125506 + 0.992093i \(0.540056\pi\)
\(444\) 0 0
\(445\) 0.994404 0.0471393
\(446\) 0 0
\(447\) 0.473011 0.0223726
\(448\) 0 0
\(449\) −10.3476 −0.488333 −0.244167 0.969733i \(-0.578514\pi\)
−0.244167 + 0.969733i \(0.578514\pi\)
\(450\) 0 0
\(451\) −4.55408 −0.214443
\(452\) 0 0
\(453\) −17.2757 −0.811683
\(454\) 0 0
\(455\) −0.984771 −0.0461668
\(456\) 0 0
\(457\) 26.3684 1.23346 0.616731 0.787174i \(-0.288456\pi\)
0.616731 + 0.787174i \(0.288456\pi\)
\(458\) 0 0
\(459\) 37.5333 1.75190
\(460\) 0 0
\(461\) −3.89204 −0.181270 −0.0906352 0.995884i \(-0.528890\pi\)
−0.0906352 + 0.995884i \(0.528890\pi\)
\(462\) 0 0
\(463\) −33.4689 −1.55543 −0.777715 0.628617i \(-0.783621\pi\)
−0.777715 + 0.628617i \(0.783621\pi\)
\(464\) 0 0
\(465\) 4.37257 0.202773
\(466\) 0 0
\(467\) 29.1261 1.34779 0.673897 0.738825i \(-0.264619\pi\)
0.673897 + 0.738825i \(0.264619\pi\)
\(468\) 0 0
\(469\) −4.35879 −0.201270
\(470\) 0 0
\(471\) 18.5630 0.855340
\(472\) 0 0
\(473\) −10.4459 −0.480304
\(474\) 0 0
\(475\) 12.6676 0.581231
\(476\) 0 0
\(477\) 10.9252 0.500230
\(478\) 0 0
\(479\) −8.00482 −0.365749 −0.182875 0.983136i \(-0.558540\pi\)
−0.182875 + 0.983136i \(0.558540\pi\)
\(480\) 0 0
\(481\) −6.58242 −0.300132
\(482\) 0 0
\(483\) −2.29921 −0.104618
\(484\) 0 0
\(485\) 0.487569 0.0221394
\(486\) 0 0
\(487\) −10.1496 −0.459923 −0.229961 0.973200i \(-0.573860\pi\)
−0.229961 + 0.973200i \(0.573860\pi\)
\(488\) 0 0
\(489\) 17.3324 0.783797
\(490\) 0 0
\(491\) −4.88163 −0.220305 −0.110152 0.993915i \(-0.535134\pi\)
−0.110152 + 0.993915i \(0.535134\pi\)
\(492\) 0 0
\(493\) 32.3088 1.45512
\(494\) 0 0
\(495\) −2.22296 −0.0999146
\(496\) 0 0
\(497\) 2.60179 0.116706
\(498\) 0 0
\(499\) 13.1648 0.589339 0.294669 0.955599i \(-0.404790\pi\)
0.294669 + 0.955599i \(0.404790\pi\)
\(500\) 0 0
\(501\) 9.07547 0.405462
\(502\) 0 0
\(503\) 16.9806 0.757129 0.378564 0.925575i \(-0.376418\pi\)
0.378564 + 0.925575i \(0.376418\pi\)
\(504\) 0 0
\(505\) 4.02082 0.178924
\(506\) 0 0
\(507\) 44.3580 1.97001
\(508\) 0 0
\(509\) 24.1142 1.06884 0.534422 0.845218i \(-0.320529\pi\)
0.534422 + 0.845218i \(0.320529\pi\)
\(510\) 0 0
\(511\) −1.15857 −0.0512521
\(512\) 0 0
\(513\) 14.9460 0.659883
\(514\) 0 0
\(515\) 1.69597 0.0747334
\(516\) 0 0
\(517\) −6.25130 −0.274932
\(518\) 0 0
\(519\) −10.8206 −0.474972
\(520\) 0 0
\(521\) 14.1046 0.617933 0.308967 0.951073i \(-0.400017\pi\)
0.308967 + 0.951073i \(0.400017\pi\)
\(522\) 0 0
\(523\) −41.2549 −1.80395 −0.901975 0.431789i \(-0.857883\pi\)
−0.901975 + 0.431789i \(0.857883\pi\)
\(524\) 0 0
\(525\) 2.26383 0.0988016
\(526\) 0 0
\(527\) −42.9557 −1.87118
\(528\) 0 0
\(529\) 0.627434 0.0272797
\(530\) 0 0
\(531\) 0.110856 0.00481075
\(532\) 0 0
\(533\) −5.36987 −0.232595
\(534\) 0 0
\(535\) −8.32900 −0.360094
\(536\) 0 0
\(537\) 11.6703 0.503612
\(538\) 0 0
\(539\) −38.4931 −1.65801
\(540\) 0 0
\(541\) −1.10941 −0.0476971 −0.0238486 0.999716i \(-0.507592\pi\)
−0.0238486 + 0.999716i \(0.507592\pi\)
\(542\) 0 0
\(543\) −13.8775 −0.595540
\(544\) 0 0
\(545\) 7.77000 0.332830
\(546\) 0 0
\(547\) −22.7756 −0.973814 −0.486907 0.873454i \(-0.661875\pi\)
−0.486907 + 0.873454i \(0.661875\pi\)
\(548\) 0 0
\(549\) 0.954984 0.0407577
\(550\) 0 0
\(551\) 12.8656 0.548094
\(552\) 0 0
\(553\) 1.22441 0.0520672
\(554\) 0 0
\(555\) −0.676596 −0.0287199
\(556\) 0 0
\(557\) −4.72016 −0.200000 −0.0999998 0.994987i \(-0.531884\pi\)
−0.0999998 + 0.994987i \(0.531884\pi\)
\(558\) 0 0
\(559\) −12.3171 −0.520959
\(560\) 0 0
\(561\) −54.2701 −2.29129
\(562\) 0 0
\(563\) −44.7673 −1.88672 −0.943358 0.331776i \(-0.892352\pi\)
−0.943358 + 0.331776i \(0.892352\pi\)
\(564\) 0 0
\(565\) −3.51243 −0.147769
\(566\) 0 0
\(567\) 1.83584 0.0770978
\(568\) 0 0
\(569\) 23.7008 0.993589 0.496794 0.867868i \(-0.334510\pi\)
0.496794 + 0.867868i \(0.334510\pi\)
\(570\) 0 0
\(571\) 32.2590 1.35000 0.674999 0.737819i \(-0.264144\pi\)
0.674999 + 0.737819i \(0.264144\pi\)
\(572\) 0 0
\(573\) 28.0811 1.17310
\(574\) 0 0
\(575\) −23.2638 −0.970169
\(576\) 0 0
\(577\) 0.427995 0.0178176 0.00890882 0.999960i \(-0.497164\pi\)
0.00890882 + 0.999960i \(0.497164\pi\)
\(578\) 0 0
\(579\) −23.5333 −0.978009
\(580\) 0 0
\(581\) 4.75140 0.197121
\(582\) 0 0
\(583\) −70.8511 −2.93435
\(584\) 0 0
\(585\) −2.62117 −0.108372
\(586\) 0 0
\(587\) 35.3836 1.46044 0.730220 0.683212i \(-0.239418\pi\)
0.730220 + 0.683212i \(0.239418\pi\)
\(588\) 0 0
\(589\) −17.1053 −0.704810
\(590\) 0 0
\(591\) 1.01186 0.0416224
\(592\) 0 0
\(593\) −1.27357 −0.0522993 −0.0261497 0.999658i \(-0.508325\pi\)
−0.0261497 + 0.999658i \(0.508325\pi\)
\(594\) 0 0
\(595\) 0.994404 0.0407666
\(596\) 0 0
\(597\) 4.09003 0.167394
\(598\) 0 0
\(599\) 27.2791 1.11459 0.557296 0.830314i \(-0.311839\pi\)
0.557296 + 0.830314i \(0.311839\pi\)
\(600\) 0 0
\(601\) −25.2590 −1.03034 −0.515168 0.857089i \(-0.672271\pi\)
−0.515168 + 0.857089i \(0.672271\pi\)
\(602\) 0 0
\(603\) −11.6018 −0.472462
\(604\) 0 0
\(605\) 9.32755 0.379219
\(606\) 0 0
\(607\) 17.9356 0.727984 0.363992 0.931402i \(-0.381414\pi\)
0.363992 + 0.931402i \(0.381414\pi\)
\(608\) 0 0
\(609\) 2.29921 0.0931688
\(610\) 0 0
\(611\) −7.37112 −0.298203
\(612\) 0 0
\(613\) 8.30548 0.335455 0.167728 0.985833i \(-0.446357\pi\)
0.167728 + 0.985833i \(0.446357\pi\)
\(614\) 0 0
\(615\) −0.551960 −0.0222572
\(616\) 0 0
\(617\) −10.5762 −0.425780 −0.212890 0.977076i \(-0.568288\pi\)
−0.212890 + 0.977076i \(0.568288\pi\)
\(618\) 0 0
\(619\) 6.39676 0.257107 0.128554 0.991703i \(-0.458967\pi\)
0.128554 + 0.991703i \(0.458967\pi\)
\(620\) 0 0
\(621\) −27.4480 −1.10145
\(622\) 0 0
\(623\) −0.695192 −0.0278523
\(624\) 0 0
\(625\) 21.8358 0.873433
\(626\) 0 0
\(627\) −21.6108 −0.863050
\(628\) 0 0
\(629\) 6.64681 0.265026
\(630\) 0 0
\(631\) −18.4924 −0.736170 −0.368085 0.929792i \(-0.619987\pi\)
−0.368085 + 0.929792i \(0.619987\pi\)
\(632\) 0 0
\(633\) 19.3268 0.768170
\(634\) 0 0
\(635\) 8.45845 0.335663
\(636\) 0 0
\(637\) −45.3885 −1.79836
\(638\) 0 0
\(639\) 6.92520 0.273957
\(640\) 0 0
\(641\) 5.59138 0.220846 0.110423 0.993885i \(-0.464779\pi\)
0.110423 + 0.993885i \(0.464779\pi\)
\(642\) 0 0
\(643\) 6.36842 0.251146 0.125573 0.992084i \(-0.459923\pi\)
0.125573 + 0.992084i \(0.459923\pi\)
\(644\) 0 0
\(645\) −1.26606 −0.0498510
\(646\) 0 0
\(647\) 4.34278 0.170732 0.0853661 0.996350i \(-0.472794\pi\)
0.0853661 + 0.996350i \(0.472794\pi\)
\(648\) 0 0
\(649\) −0.718915 −0.0282199
\(650\) 0 0
\(651\) −3.05688 −0.119808
\(652\) 0 0
\(653\) −15.6572 −0.612714 −0.306357 0.951917i \(-0.599110\pi\)
−0.306357 + 0.951917i \(0.599110\pi\)
\(654\) 0 0
\(655\) 4.23964 0.165656
\(656\) 0 0
\(657\) −3.08377 −0.120309
\(658\) 0 0
\(659\) −2.36697 −0.0922041 −0.0461020 0.998937i \(-0.514680\pi\)
−0.0461020 + 0.998937i \(0.514680\pi\)
\(660\) 0 0
\(661\) 20.1365 0.783219 0.391609 0.920132i \(-0.371918\pi\)
0.391609 + 0.920132i \(0.371918\pi\)
\(662\) 0 0
\(663\) −63.9917 −2.48523
\(664\) 0 0
\(665\) 0.395979 0.0153554
\(666\) 0 0
\(667\) −23.6274 −0.914858
\(668\) 0 0
\(669\) 22.8414 0.883101
\(670\) 0 0
\(671\) −6.19317 −0.239085
\(672\) 0 0
\(673\) −26.3670 −1.01637 −0.508186 0.861247i \(-0.669684\pi\)
−0.508186 + 0.861247i \(0.669684\pi\)
\(674\) 0 0
\(675\) 27.0256 1.04022
\(676\) 0 0
\(677\) −43.9050 −1.68741 −0.843704 0.536809i \(-0.819630\pi\)
−0.843704 + 0.536809i \(0.819630\pi\)
\(678\) 0 0
\(679\) −0.340861 −0.0130811
\(680\) 0 0
\(681\) −4.49720 −0.172333
\(682\) 0 0
\(683\) 16.3476 0.625523 0.312762 0.949832i \(-0.398746\pi\)
0.312762 + 0.949832i \(0.398746\pi\)
\(684\) 0 0
\(685\) 7.16002 0.273570
\(686\) 0 0
\(687\) −18.6197 −0.710387
\(688\) 0 0
\(689\) −83.5429 −3.18273
\(690\) 0 0
\(691\) 32.1801 1.22419 0.612094 0.790785i \(-0.290328\pi\)
0.612094 + 0.790785i \(0.290328\pi\)
\(692\) 0 0
\(693\) 1.55408 0.0590346
\(694\) 0 0
\(695\) −3.11422 −0.118129
\(696\) 0 0
\(697\) 5.42240 0.205388
\(698\) 0 0
\(699\) −27.5291 −1.04125
\(700\) 0 0
\(701\) 22.9598 0.867180 0.433590 0.901110i \(-0.357247\pi\)
0.433590 + 0.901110i \(0.357247\pi\)
\(702\) 0 0
\(703\) 2.64681 0.0998263
\(704\) 0 0
\(705\) −0.757665 −0.0285353
\(706\) 0 0
\(707\) −2.81097 −0.105718
\(708\) 0 0
\(709\) −11.8158 −0.443751 −0.221876 0.975075i \(-0.571218\pi\)
−0.221876 + 0.975075i \(0.571218\pi\)
\(710\) 0 0
\(711\) 3.25901 0.122223
\(712\) 0 0
\(713\) 31.4134 1.17644
\(714\) 0 0
\(715\) 16.9986 0.635710
\(716\) 0 0
\(717\) −9.04502 −0.337792
\(718\) 0 0
\(719\) 20.7998 0.775701 0.387850 0.921722i \(-0.373218\pi\)
0.387850 + 0.921722i \(0.373218\pi\)
\(720\) 0 0
\(721\) −1.18566 −0.0441563
\(722\) 0 0
\(723\) 26.2396 0.975863
\(724\) 0 0
\(725\) 23.2638 0.863997
\(726\) 0 0
\(727\) −8.79227 −0.326087 −0.163044 0.986619i \(-0.552131\pi\)
−0.163044 + 0.986619i \(0.552131\pi\)
\(728\) 0 0
\(729\) 29.6635 1.09865
\(730\) 0 0
\(731\) 12.4376 0.460022
\(732\) 0 0
\(733\) −20.9010 −0.771996 −0.385998 0.922500i \(-0.626143\pi\)
−0.385998 + 0.922500i \(0.626143\pi\)
\(734\) 0 0
\(735\) −4.66540 −0.172086
\(736\) 0 0
\(737\) 75.2389 2.77146
\(738\) 0 0
\(739\) −26.3401 −0.968936 −0.484468 0.874809i \(-0.660987\pi\)
−0.484468 + 0.874809i \(0.660987\pi\)
\(740\) 0 0
\(741\) −25.4820 −0.936104
\(742\) 0 0
\(743\) 32.5630 1.19462 0.597311 0.802010i \(-0.296236\pi\)
0.597311 + 0.802010i \(0.296236\pi\)
\(744\) 0 0
\(745\) 0.149606 0.00548115
\(746\) 0 0
\(747\) 12.6468 0.462723
\(748\) 0 0
\(749\) 5.82283 0.212762
\(750\) 0 0
\(751\) 1.54781 0.0564805 0.0282403 0.999601i \(-0.491010\pi\)
0.0282403 + 0.999601i \(0.491010\pi\)
\(752\) 0 0
\(753\) −7.61076 −0.277351
\(754\) 0 0
\(755\) −5.46405 −0.198857
\(756\) 0 0
\(757\) 51.2299 1.86198 0.930991 0.365042i \(-0.118945\pi\)
0.930991 + 0.365042i \(0.118945\pi\)
\(758\) 0 0
\(759\) 39.6877 1.44057
\(760\) 0 0
\(761\) 20.4391 0.740916 0.370458 0.928849i \(-0.379201\pi\)
0.370458 + 0.928849i \(0.379201\pi\)
\(762\) 0 0
\(763\) −5.43203 −0.196653
\(764\) 0 0
\(765\) 2.64681 0.0956956
\(766\) 0 0
\(767\) −0.847697 −0.0306086
\(768\) 0 0
\(769\) −24.8864 −0.897428 −0.448714 0.893675i \(-0.648118\pi\)
−0.448714 + 0.893675i \(0.648118\pi\)
\(770\) 0 0
\(771\) −9.34490 −0.336548
\(772\) 0 0
\(773\) 28.1530 1.01259 0.506296 0.862360i \(-0.331014\pi\)
0.506296 + 0.862360i \(0.331014\pi\)
\(774\) 0 0
\(775\) −30.9300 −1.11104
\(776\) 0 0
\(777\) 0.473011 0.0169692
\(778\) 0 0
\(779\) 2.15924 0.0773628
\(780\) 0 0
\(781\) −44.9106 −1.60703
\(782\) 0 0
\(783\) 27.4480 0.980913
\(784\) 0 0
\(785\) 5.87122 0.209553
\(786\) 0 0
\(787\) −24.8898 −0.887226 −0.443613 0.896218i \(-0.646304\pi\)
−0.443613 + 0.896218i \(0.646304\pi\)
\(788\) 0 0
\(789\) −29.2611 −1.04172
\(790\) 0 0
\(791\) 2.45555 0.0873094
\(792\) 0 0
\(793\) −7.30258 −0.259322
\(794\) 0 0
\(795\) −8.58723 −0.304558
\(796\) 0 0
\(797\) −28.6420 −1.01455 −0.507276 0.861784i \(-0.669347\pi\)
−0.507276 + 0.861784i \(0.669347\pi\)
\(798\) 0 0
\(799\) 7.44322 0.263322
\(800\) 0 0
\(801\) −1.85039 −0.0653804
\(802\) 0 0
\(803\) 19.9986 0.705734
\(804\) 0 0
\(805\) −0.727207 −0.0256307
\(806\) 0 0
\(807\) 40.6468 1.43084
\(808\) 0 0
\(809\) −32.9557 −1.15866 −0.579330 0.815093i \(-0.696686\pi\)
−0.579330 + 0.815093i \(0.696686\pi\)
\(810\) 0 0
\(811\) 42.5768 1.49507 0.747537 0.664220i \(-0.231236\pi\)
0.747537 + 0.664220i \(0.231236\pi\)
\(812\) 0 0
\(813\) −24.6323 −0.863891
\(814\) 0 0
\(815\) 5.48197 0.192025
\(816\) 0 0
\(817\) 4.95276 0.173275
\(818\) 0 0
\(819\) 1.83247 0.0640316
\(820\) 0 0
\(821\) −44.5727 −1.55560 −0.777799 0.628514i \(-0.783664\pi\)
−0.777799 + 0.628514i \(0.783664\pi\)
\(822\) 0 0
\(823\) −1.11355 −0.0388160 −0.0194080 0.999812i \(-0.506178\pi\)
−0.0194080 + 0.999812i \(0.506178\pi\)
\(824\) 0 0
\(825\) −39.0769 −1.36048
\(826\) 0 0
\(827\) −26.0692 −0.906515 −0.453258 0.891380i \(-0.649738\pi\)
−0.453258 + 0.891380i \(0.649738\pi\)
\(828\) 0 0
\(829\) −3.78600 −0.131493 −0.0657467 0.997836i \(-0.520943\pi\)
−0.0657467 + 0.997836i \(0.520943\pi\)
\(830\) 0 0
\(831\) 6.65867 0.230987
\(832\) 0 0
\(833\) 45.8325 1.58800
\(834\) 0 0
\(835\) 2.87044 0.0993356
\(836\) 0 0
\(837\) −36.4931 −1.26138
\(838\) 0 0
\(839\) 34.2605 1.18280 0.591401 0.806377i \(-0.298575\pi\)
0.591401 + 0.806377i \(0.298575\pi\)
\(840\) 0 0
\(841\) −5.37257 −0.185261
\(842\) 0 0
\(843\) 27.6233 0.951397
\(844\) 0 0
\(845\) 14.0298 0.482639
\(846\) 0 0
\(847\) −6.52093 −0.224062
\(848\) 0 0
\(849\) 40.6773 1.39604
\(850\) 0 0
\(851\) −4.86081 −0.166626
\(852\) 0 0
\(853\) −36.0167 −1.23319 −0.616594 0.787281i \(-0.711488\pi\)
−0.616594 + 0.787281i \(0.711488\pi\)
\(854\) 0 0
\(855\) 1.05398 0.0360453
\(856\) 0 0
\(857\) 41.9709 1.43370 0.716849 0.697228i \(-0.245584\pi\)
0.716849 + 0.697228i \(0.245584\pi\)
\(858\) 0 0
\(859\) 46.7077 1.59365 0.796823 0.604212i \(-0.206512\pi\)
0.796823 + 0.604212i \(0.206512\pi\)
\(860\) 0 0
\(861\) 0.385877 0.0131507
\(862\) 0 0
\(863\) 22.0305 0.749925 0.374963 0.927040i \(-0.377655\pi\)
0.374963 + 0.927040i \(0.377655\pi\)
\(864\) 0 0
\(865\) −3.42240 −0.116365
\(866\) 0 0
\(867\) 39.7535 1.35010
\(868\) 0 0
\(869\) −21.1350 −0.716957
\(870\) 0 0
\(871\) 88.7167 3.00605
\(872\) 0 0
\(873\) −0.907271 −0.0307065
\(874\) 0 0
\(875\) 1.46405 0.0494938
\(876\) 0 0
\(877\) 7.89204 0.266495 0.133248 0.991083i \(-0.457459\pi\)
0.133248 + 0.991083i \(0.457459\pi\)
\(878\) 0 0
\(879\) −32.3655 −1.09166
\(880\) 0 0
\(881\) −3.73539 −0.125849 −0.0629243 0.998018i \(-0.520043\pi\)
−0.0629243 + 0.998018i \(0.520043\pi\)
\(882\) 0 0
\(883\) 34.0305 1.14522 0.572608 0.819829i \(-0.305932\pi\)
0.572608 + 0.819829i \(0.305932\pi\)
\(884\) 0 0
\(885\) −0.0871333 −0.00292896
\(886\) 0 0
\(887\) −12.2251 −0.410478 −0.205239 0.978712i \(-0.565797\pi\)
−0.205239 + 0.978712i \(0.565797\pi\)
\(888\) 0 0
\(889\) −5.91334 −0.198327
\(890\) 0 0
\(891\) −31.6891 −1.06163
\(892\) 0 0
\(893\) 2.96395 0.0991847
\(894\) 0 0
\(895\) 3.69115 0.123382
\(896\) 0 0
\(897\) 46.7971 1.56251
\(898\) 0 0
\(899\) −31.4134 −1.04770
\(900\) 0 0
\(901\) 84.3601 2.81044
\(902\) 0 0
\(903\) 0.885106 0.0294545
\(904\) 0 0
\(905\) −4.38924 −0.145903
\(906\) 0 0
\(907\) −11.3836 −0.377988 −0.188994 0.981978i \(-0.560523\pi\)
−0.188994 + 0.981978i \(0.560523\pi\)
\(908\) 0 0
\(909\) −7.48197 −0.248161
\(910\) 0 0
\(911\) −21.6829 −0.718385 −0.359193 0.933263i \(-0.616948\pi\)
−0.359193 + 0.933263i \(0.616948\pi\)
\(912\) 0 0
\(913\) −82.0159 −2.71433
\(914\) 0 0
\(915\) −0.750620 −0.0248147
\(916\) 0 0
\(917\) −2.96395 −0.0978781
\(918\) 0 0
\(919\) −29.0844 −0.959407 −0.479704 0.877431i \(-0.659256\pi\)
−0.479704 + 0.877431i \(0.659256\pi\)
\(920\) 0 0
\(921\) −22.3968 −0.737998
\(922\) 0 0
\(923\) −52.9557 −1.74306
\(924\) 0 0
\(925\) 4.78600 0.157363
\(926\) 0 0
\(927\) −3.15587 −0.103652
\(928\) 0 0
\(929\) 11.4086 0.374305 0.187152 0.982331i \(-0.440074\pi\)
0.187152 + 0.982331i \(0.440074\pi\)
\(930\) 0 0
\(931\) 18.2508 0.598147
\(932\) 0 0
\(933\) 32.2713 1.05652
\(934\) 0 0
\(935\) −17.1648 −0.561350
\(936\) 0 0
\(937\) 29.9806 0.979424 0.489712 0.871884i \(-0.337102\pi\)
0.489712 + 0.871884i \(0.337102\pi\)
\(938\) 0 0
\(939\) −35.4224 −1.15597
\(940\) 0 0
\(941\) 45.1953 1.47332 0.736662 0.676261i \(-0.236401\pi\)
0.736662 + 0.676261i \(0.236401\pi\)
\(942\) 0 0
\(943\) −3.96540 −0.129131
\(944\) 0 0
\(945\) 0.844798 0.0274813
\(946\) 0 0
\(947\) 30.5872 0.993952 0.496976 0.867764i \(-0.334444\pi\)
0.496976 + 0.867764i \(0.334444\pi\)
\(948\) 0 0
\(949\) 23.5810 0.765471
\(950\) 0 0
\(951\) −19.5749 −0.634760
\(952\) 0 0
\(953\) −53.1253 −1.72090 −0.860449 0.509537i \(-0.829817\pi\)
−0.860449 + 0.509537i \(0.829817\pi\)
\(954\) 0 0
\(955\) 8.88163 0.287403
\(956\) 0 0
\(957\) −39.6877 −1.28292
\(958\) 0 0
\(959\) −5.00560 −0.161639
\(960\) 0 0
\(961\) 10.7652 0.347264
\(962\) 0 0
\(963\) 15.4987 0.499437
\(964\) 0 0
\(965\) −7.44322 −0.239606
\(966\) 0 0
\(967\) 4.14546 0.133309 0.0666545 0.997776i \(-0.478767\pi\)
0.0666545 + 0.997776i \(0.478767\pi\)
\(968\) 0 0
\(969\) 25.7312 0.826607
\(970\) 0 0
\(971\) −1.51948 −0.0487623 −0.0243812 0.999703i \(-0.507762\pi\)
−0.0243812 + 0.999703i \(0.507762\pi\)
\(972\) 0 0
\(973\) 2.17717 0.0697967
\(974\) 0 0
\(975\) −46.0769 −1.47564
\(976\) 0 0
\(977\) −7.76036 −0.248276 −0.124138 0.992265i \(-0.539617\pi\)
−0.124138 + 0.992265i \(0.539617\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) −14.4585 −0.461623
\(982\) 0 0
\(983\) 50.2251 1.60193 0.800966 0.598710i \(-0.204320\pi\)
0.800966 + 0.598710i \(0.204320\pi\)
\(984\) 0 0
\(985\) 0.320037 0.0101972
\(986\) 0 0
\(987\) 0.529686 0.0168601
\(988\) 0 0
\(989\) −9.09563 −0.289224
\(990\) 0 0
\(991\) 38.3761 1.21906 0.609529 0.792764i \(-0.291359\pi\)
0.609529 + 0.792764i \(0.291359\pi\)
\(992\) 0 0
\(993\) 11.8325 0.375492
\(994\) 0 0
\(995\) 1.29362 0.0410104
\(996\) 0 0
\(997\) 2.00000 0.0633406 0.0316703 0.999498i \(-0.489917\pi\)
0.0316703 + 0.999498i \(0.489917\pi\)
\(998\) 0 0
\(999\) 5.64681 0.178657
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 296.2.a.c.1.2 3
3.2 odd 2 2664.2.a.p.1.2 3
4.3 odd 2 592.2.a.i.1.2 3
5.4 even 2 7400.2.a.k.1.2 3
8.3 odd 2 2368.2.a.be.1.2 3
8.5 even 2 2368.2.a.bb.1.2 3
12.11 even 2 5328.2.a.bn.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.a.c.1.2 3 1.1 even 1 trivial
592.2.a.i.1.2 3 4.3 odd 2
2368.2.a.bb.1.2 3 8.5 even 2
2368.2.a.be.1.2 3 8.3 odd 2
2664.2.a.p.1.2 3 3.2 odd 2
5328.2.a.bn.1.2 3 12.11 even 2
7400.2.a.k.1.2 3 5.4 even 2