Properties

Label 2940.2.q.h
Level $2940$
Weight $2$
Character orbit 2940.q
Analytic conductor $23.476$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{3} + \zeta_{6} q^{5} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{3} + \zeta_{6} q^{5} -\zeta_{6} q^{9} + ( 2 - 2 \zeta_{6} ) q^{11} - q^{13} - q^{15} + ( -4 + 4 \zeta_{6} ) q^{17} -\zeta_{6} q^{19} -4 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} + q^{27} + ( -5 + 5 \zeta_{6} ) q^{31} + 2 \zeta_{6} q^{33} + 5 \zeta_{6} q^{37} + ( 1 - \zeta_{6} ) q^{39} -2 q^{41} -9 q^{43} + ( 1 - \zeta_{6} ) q^{45} -2 \zeta_{6} q^{47} -4 \zeta_{6} q^{51} + ( -12 + 12 \zeta_{6} ) q^{53} + 2 q^{55} + q^{57} + ( -8 + 8 \zeta_{6} ) q^{59} -14 \zeta_{6} q^{61} -\zeta_{6} q^{65} + ( -9 + 9 \zeta_{6} ) q^{67} + 4 q^{69} + 2 q^{71} + ( 1 - \zeta_{6} ) q^{73} -\zeta_{6} q^{75} + 3 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 18 q^{83} -4 q^{85} -4 \zeta_{6} q^{89} -5 \zeta_{6} q^{93} + ( 1 - \zeta_{6} ) q^{95} -10 q^{97} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{5} - q^{9} + O(q^{10}) \) \( 2 q - q^{3} + q^{5} - q^{9} + 2 q^{11} - 2 q^{13} - 2 q^{15} - 4 q^{17} - q^{19} - 4 q^{23} - q^{25} + 2 q^{27} - 5 q^{31} + 2 q^{33} + 5 q^{37} + q^{39} - 4 q^{41} - 18 q^{43} + q^{45} - 2 q^{47} - 4 q^{51} - 12 q^{53} + 4 q^{55} + 2 q^{57} - 8 q^{59} - 14 q^{61} - q^{65} - 9 q^{67} + 8 q^{69} + 4 q^{71} + q^{73} - q^{75} + 3 q^{79} - q^{81} + 36 q^{83} - 8 q^{85} - 4 q^{89} - 5 q^{93} + q^{95} - 20 q^{97} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 0 0 −0.500000 0.866025i 0
961.1 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 0 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2940.2.q.h 2
7.b odd 2 1 420.2.q.a 2
7.c even 3 1 2940.2.a.h 1
7.c even 3 1 inner 2940.2.q.h 2
7.d odd 6 1 420.2.q.a 2
7.d odd 6 1 2940.2.a.d 1
21.c even 2 1 1260.2.s.d 2
21.g even 6 1 1260.2.s.d 2
21.g even 6 1 8820.2.a.j 1
21.h odd 6 1 8820.2.a.y 1
28.d even 2 1 1680.2.bg.a 2
28.f even 6 1 1680.2.bg.a 2
35.c odd 2 1 2100.2.q.a 2
35.f even 4 2 2100.2.bc.c 4
35.i odd 6 1 2100.2.q.a 2
35.k even 12 2 2100.2.bc.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.2.q.a 2 7.b odd 2 1
420.2.q.a 2 7.d odd 6 1
1260.2.s.d 2 21.c even 2 1
1260.2.s.d 2 21.g even 6 1
1680.2.bg.a 2 28.d even 2 1
1680.2.bg.a 2 28.f even 6 1
2100.2.q.a 2 35.c odd 2 1
2100.2.q.a 2 35.i odd 6 1
2100.2.bc.c 4 35.f even 4 2
2100.2.bc.c 4 35.k even 12 2
2940.2.a.d 1 7.d odd 6 1
2940.2.a.h 1 7.c even 3 1
2940.2.q.h 2 1.a even 1 1 trivial
2940.2.q.h 2 7.c even 3 1 inner
8820.2.a.j 1 21.g even 6 1
8820.2.a.y 1 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2940, [\chi])\):

\( T_{11}^{2} - 2 T_{11} + 4 \)
\( T_{13} + 1 \)
\( T_{17}^{2} + 4 T_{17} + 16 \)
\( T_{31}^{2} + 5 T_{31} + 25 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 4 - 2 T + T^{2} \)
$13$ \( ( 1 + T )^{2} \)
$17$ \( 16 + 4 T + T^{2} \)
$19$ \( 1 + T + T^{2} \)
$23$ \( 16 + 4 T + T^{2} \)
$29$ \( T^{2} \)
$31$ \( 25 + 5 T + T^{2} \)
$37$ \( 25 - 5 T + T^{2} \)
$41$ \( ( 2 + T )^{2} \)
$43$ \( ( 9 + T )^{2} \)
$47$ \( 4 + 2 T + T^{2} \)
$53$ \( 144 + 12 T + T^{2} \)
$59$ \( 64 + 8 T + T^{2} \)
$61$ \( 196 + 14 T + T^{2} \)
$67$ \( 81 + 9 T + T^{2} \)
$71$ \( ( -2 + T )^{2} \)
$73$ \( 1 - T + T^{2} \)
$79$ \( 9 - 3 T + T^{2} \)
$83$ \( ( -18 + T )^{2} \)
$89$ \( 16 + 4 T + T^{2} \)
$97$ \( ( 10 + T )^{2} \)
show more
show less