Properties

Label 2940.2.q.e
Level $2940$
Weight $2$
Character orbit 2940.q
Analytic conductor $23.476$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,2,Mod(361,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,1,0,0,0,-1,0,-6,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} + \zeta_{6} q^{5} - \zeta_{6} q^{9} + (6 \zeta_{6} - 6) q^{11} - 4 q^{13} - q^{15} + (6 \zeta_{6} - 6) q^{17} - 2 \zeta_{6} q^{19} + (\zeta_{6} - 1) q^{25} + q^{27} + 6 q^{29} + \cdots + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{5} - q^{9} - 6 q^{11} - 8 q^{13} - 2 q^{15} - 6 q^{17} - 2 q^{19} - q^{25} + 2 q^{27} + 12 q^{29} + 10 q^{31} - 6 q^{33} - 2 q^{37} + 4 q^{39} - 12 q^{41} - 8 q^{43} + q^{45} - 6 q^{51}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 0 0 −0.500000 0.866025i 0
961.1 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 0 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2940.2.q.e 2
7.b odd 2 1 2940.2.q.i 2
7.c even 3 1 420.2.a.c 1
7.c even 3 1 inner 2940.2.q.e 2
7.d odd 6 1 2940.2.a.f 1
7.d odd 6 1 2940.2.q.i 2
21.g even 6 1 8820.2.a.b 1
21.h odd 6 1 1260.2.a.i 1
28.g odd 6 1 1680.2.a.a 1
35.j even 6 1 2100.2.a.d 1
35.l odd 12 2 2100.2.k.j 2
56.k odd 6 1 6720.2.a.ch 1
56.p even 6 1 6720.2.a.x 1
84.n even 6 1 5040.2.a.bc 1
105.o odd 6 1 6300.2.a.a 1
105.x even 12 2 6300.2.k.a 2
140.p odd 6 1 8400.2.a.cj 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.2.a.c 1 7.c even 3 1
1260.2.a.i 1 21.h odd 6 1
1680.2.a.a 1 28.g odd 6 1
2100.2.a.d 1 35.j even 6 1
2100.2.k.j 2 35.l odd 12 2
2940.2.a.f 1 7.d odd 6 1
2940.2.q.e 2 1.a even 1 1 trivial
2940.2.q.e 2 7.c even 3 1 inner
2940.2.q.i 2 7.b odd 2 1
2940.2.q.i 2 7.d odd 6 1
5040.2.a.bc 1 84.n even 6 1
6300.2.a.a 1 105.o odd 6 1
6300.2.k.a 2 105.x even 12 2
6720.2.a.x 1 56.p even 6 1
6720.2.a.ch 1 56.k odd 6 1
8400.2.a.cj 1 140.p odd 6 1
8820.2.a.b 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2940, [\chi])\):

\( T_{11}^{2} + 6T_{11} + 36 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 6T_{17} + 36 \) Copy content Toggle raw display
\( T_{31}^{2} - 10T_{31} + 100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$13$ \( (T + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$79$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$97$ \( (T + 16)^{2} \) Copy content Toggle raw display
show more
show less