gp: [N,k,chi] = [294,8,Mod(1,294)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(294, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("294.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [1,-8,27,64,18]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 5 − 18 T_{5} - 18 T 5 − 1 8
T5 - 18
acting on S 8 n e w ( Γ 0 ( 294 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(294)) S 8 n e w ( Γ 0 ( 2 9 4 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 8 T + 8 T + 8
T + 8
3 3 3
T − 27 T - 27 T − 2 7
T - 27
5 5 5
T − 18 T - 18 T − 1 8
T - 18
7 7 7
T T T
T
11 11 1 1
T − 8172 T - 8172 T − 8 1 7 2
T - 8172
13 13 1 3
T − 14242 T - 14242 T − 1 4 2 4 2
T - 14242
17 17 1 7
T − 21462 T - 21462 T − 2 1 4 6 2
T - 21462
19 19 1 9
T − 5884 T - 5884 T − 5 8 8 4
T - 5884
23 23 2 3
T + 98784 T + 98784 T + 9 8 7 8 4
T + 98784
29 29 2 9
T − 165174 T - 165174 T − 1 6 5 1 7 4
T - 165174
31 31 3 1
T − 241312 T - 241312 T − 2 4 1 3 1 2
T - 241312
37 37 3 7
T − 185438 T - 185438 T − 1 8 5 4 3 8
T - 185438
41 41 4 1
T + 59682 T + 59682 T + 5 9 6 8 2
T + 59682
43 43 4 3
T + 809308 T + 809308 T + 8 0 9 3 0 8
T + 809308
47 47 4 7
T + 942096 T + 942096 T + 9 4 2 0 9 6
T + 942096
53 53 5 3
T − 226398 T - 226398 T − 2 2 6 3 9 8
T - 226398
59 59 5 9
T − 2205732 T - 2205732 T − 2 2 0 5 7 3 2
T - 2205732
61 61 6 1
T − 1156690 T - 1156690 T − 1 1 5 6 6 9 0
T - 1156690
67 67 6 7
T + 3740404 T + 3740404 T + 3 7 4 0 4 0 4
T + 3740404
71 71 7 1
T + 2593296 T + 2593296 T + 2 5 9 3 2 9 6
T + 2593296
73 73 7 3
T − 1038742 T - 1038742 T − 1 0 3 8 7 4 2
T - 1038742
79 79 7 9
T − 2280032 T - 2280032 T − 2 2 8 0 0 3 2
T - 2280032
83 83 8 3
T − 283404 T - 283404 T − 2 8 3 4 0 4
T - 283404
89 89 8 9
T − 5227230 T - 5227230 T − 5 2 2 7 2 3 0
T - 5227230
97 97 9 7
T + 6168770 T + 6168770 T + 6 1 6 8 7 7 0
T + 6168770
show more
show less