Properties

Label 294.8.a.h
Level 294294
Weight 88
Character orbit 294.a
Self dual yes
Analytic conductor 91.84191.841
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,8,Mod(1,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 294.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-8,27,64,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 91.841197492391.8411974923
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q8q2+27q3+64q4+18q5216q6512q8+729q9144q10+8172q11+1728q12+14242q13+486q15+4096q16+21462q175832q18+5884q19++5957388q99+O(q100) q - 8 q^{2} + 27 q^{3} + 64 q^{4} + 18 q^{5} - 216 q^{6} - 512 q^{8} + 729 q^{9} - 144 q^{10} + 8172 q^{11} + 1728 q^{12} + 14242 q^{13} + 486 q^{15} + 4096 q^{16} + 21462 q^{17} - 5832 q^{18} + 5884 q^{19}+ \cdots + 5957388 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−8.00000 27.0000 64.0000 18.0000 −216.000 0 −512.000 729.000 −144.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.8.a.h 1
7.b odd 2 1 42.8.a.b 1
7.c even 3 2 294.8.e.i 2
7.d odd 6 2 294.8.e.o 2
21.c even 2 1 126.8.a.f 1
28.d even 2 1 336.8.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.a.b 1 7.b odd 2 1
126.8.a.f 1 21.c even 2 1
294.8.a.h 1 1.a even 1 1 trivial
294.8.e.i 2 7.c even 3 2
294.8.e.o 2 7.d odd 6 2
336.8.a.h 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T518 T_{5} - 18 acting on S8new(Γ0(294))S_{8}^{\mathrm{new}}(\Gamma_0(294)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+8 T + 8 Copy content Toggle raw display
33 T27 T - 27 Copy content Toggle raw display
55 T18 T - 18 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T8172 T - 8172 Copy content Toggle raw display
1313 T14242 T - 14242 Copy content Toggle raw display
1717 T21462 T - 21462 Copy content Toggle raw display
1919 T5884 T - 5884 Copy content Toggle raw display
2323 T+98784 T + 98784 Copy content Toggle raw display
2929 T165174 T - 165174 Copy content Toggle raw display
3131 T241312 T - 241312 Copy content Toggle raw display
3737 T185438 T - 185438 Copy content Toggle raw display
4141 T+59682 T + 59682 Copy content Toggle raw display
4343 T+809308 T + 809308 Copy content Toggle raw display
4747 T+942096 T + 942096 Copy content Toggle raw display
5353 T226398 T - 226398 Copy content Toggle raw display
5959 T2205732 T - 2205732 Copy content Toggle raw display
6161 T1156690 T - 1156690 Copy content Toggle raw display
6767 T+3740404 T + 3740404 Copy content Toggle raw display
7171 T+2593296 T + 2593296 Copy content Toggle raw display
7373 T1038742 T - 1038742 Copy content Toggle raw display
7979 T2280032 T - 2280032 Copy content Toggle raw display
8383 T283404 T - 283404 Copy content Toggle raw display
8989 T5227230 T - 5227230 Copy content Toggle raw display
9797 T+6168770 T + 6168770 Copy content Toggle raw display
show more
show less