Properties

Label 294.6.e.z.79.1
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.z.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(4.50000 + 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(2.25126 - 3.89930i) q^{5} +36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(2.00000 - 3.46410i) q^{2} +(4.50000 + 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(2.25126 - 3.89930i) q^{5} +36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(-9.00505 - 15.5972i) q^{10} +(58.0955 + 100.624i) q^{11} +(72.0000 - 124.708i) q^{12} +85.4773 q^{13} +40.5227 q^{15} +(-128.000 + 221.703i) q^{16} +(16.6331 + 28.8093i) q^{17} +(162.000 + 280.592i) q^{18} +(317.688 - 550.252i) q^{19} -72.0404 q^{20} +464.764 q^{22} +(-1363.71 + 2362.02i) q^{23} +(-288.000 - 498.831i) q^{24} +(1552.36 + 2688.77i) q^{25} +(170.955 - 296.102i) q^{26} -729.000 q^{27} +5860.48 q^{29} +(81.0455 - 140.375i) q^{30} +(139.568 + 241.739i) q^{31} +(512.000 + 886.810i) q^{32} +(-522.859 + 905.619i) q^{33} +133.065 q^{34} +1296.00 q^{36} +(-1519.25 + 2631.41i) q^{37} +(-1270.75 - 2201.01i) q^{38} +(384.648 + 666.229i) q^{39} +(-144.081 + 249.555i) q^{40} -819.415 q^{41} +11100.2 q^{43} +(929.527 - 1609.99i) q^{44} +(182.352 + 315.843i) q^{45} +(5454.85 + 9448.09i) q^{46} +(-3703.70 + 6415.00i) q^{47} -2304.00 q^{48} +12418.9 q^{50} +(-149.698 + 259.284i) q^{51} +(-683.818 - 1184.41i) q^{52} +(6849.40 + 11863.5i) q^{53} +(-1458.00 + 2525.33i) q^{54} +523.153 q^{55} +5718.39 q^{57} +(11721.0 - 20301.3i) q^{58} +(11187.8 + 19377.9i) q^{59} +(-324.182 - 561.499i) q^{60} +(-6346.04 + 10991.7i) q^{61} +1116.55 q^{62} +4096.00 q^{64} +(192.432 - 333.302i) q^{65} +(2091.44 + 3622.47i) q^{66} +(26151.7 + 45296.0i) q^{67} +(266.129 - 460.949i) q^{68} -24546.8 q^{69} +60230.2 q^{71} +(2592.00 - 4489.48i) q^{72} +(38479.2 + 66647.9i) q^{73} +(6076.98 + 10525.6i) q^{74} +(-13971.3 + 24199.0i) q^{75} -10166.0 q^{76} +3077.18 q^{78} +(16798.0 - 29095.0i) q^{79} +(576.323 + 998.221i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(-1638.83 + 2838.54i) q^{82} -60574.9 q^{83} +149.782 q^{85} +(22200.4 - 38452.3i) q^{86} +(26372.2 + 45677.9i) q^{87} +(-3718.11 - 6439.95i) q^{88} +(46095.1 - 79839.0i) q^{89} +1458.82 q^{90} +43638.8 q^{92} +(-1256.11 + 2175.65i) q^{93} +(14814.8 + 25660.0i) q^{94} +(-1430.40 - 2477.53i) q^{95} +(-4608.00 + 7981.29i) q^{96} -152287. q^{97} -9411.46 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 18 q^{3} - 32 q^{4} + 108 q^{5} + 144 q^{6} - 256 q^{8} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{2} + 18 q^{3} - 32 q^{4} + 108 q^{5} + 144 q^{6} - 256 q^{8} - 162 q^{9} - 432 q^{10} - 124 q^{11} + 288 q^{12} - 1440 q^{13} + 1944 q^{15} - 512 q^{16} - 1260 q^{17} + 648 q^{18} + 360 q^{19} - 3456 q^{20} - 992 q^{22} - 6524 q^{23} - 1152 q^{24} - 4482 q^{25} - 2880 q^{26} - 2916 q^{27} + 14176 q^{29} + 3888 q^{30} + 5904 q^{31} + 2048 q^{32} + 1116 q^{33} - 10080 q^{34} + 5184 q^{36} + 6040 q^{37} - 1440 q^{38} - 6480 q^{39} - 6912 q^{40} + 34776 q^{41} - 1216 q^{43} - 1984 q^{44} + 8748 q^{45} + 26096 q^{46} - 30456 q^{47} - 9216 q^{48} - 35856 q^{50} + 11340 q^{51} + 11520 q^{52} - 3964 q^{53} - 5832 q^{54} - 48672 q^{55} + 6480 q^{57} + 28352 q^{58} + 40752 q^{59} - 15552 q^{60} - 1368 q^{61} + 47232 q^{62} + 16384 q^{64} - 82980 q^{65} - 4464 q^{66} + 16224 q^{67} - 20160 q^{68} - 117432 q^{69} - 6408 q^{71} + 10368 q^{72} + 23976 q^{73} - 24160 q^{74} + 40338 q^{75} - 11520 q^{76} - 51840 q^{78} + 82160 q^{79} + 27648 q^{80} - 13122 q^{81} + 69552 q^{82} - 347472 q^{83} - 267400 q^{85} - 2432 q^{86} + 63792 q^{87} + 7936 q^{88} + 200556 q^{89} + 69984 q^{90} + 208768 q^{92} - 53136 q^{93} + 121824 q^{94} + 25640 q^{95} - 18432 q^{96} - 503856 q^{97} + 20088 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) 2.25126 3.89930i 0.0402718 0.0697528i −0.845187 0.534471i \(-0.820511\pi\)
0.885459 + 0.464718i \(0.153844\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) −9.00505 15.5972i −0.0284765 0.0493227i
\(11\) 58.0955 + 100.624i 0.144764 + 0.250739i 0.929285 0.369364i \(-0.120424\pi\)
−0.784521 + 0.620102i \(0.787091\pi\)
\(12\) 72.0000 124.708i 0.144338 0.250000i
\(13\) 85.4773 0.140279 0.0701394 0.997537i \(-0.477656\pi\)
0.0701394 + 0.997537i \(0.477656\pi\)
\(14\) 0 0
\(15\) 40.5227 0.0465019
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) 16.6331 + 28.8093i 0.0139589 + 0.0241775i 0.872920 0.487863i \(-0.162223\pi\)
−0.858962 + 0.512040i \(0.828890\pi\)
\(18\) 162.000 + 280.592i 0.117851 + 0.204124i
\(19\) 317.688 550.252i 0.201891 0.349686i −0.747247 0.664547i \(-0.768625\pi\)
0.949138 + 0.314861i \(0.101958\pi\)
\(20\) −72.0404 −0.0402718
\(21\) 0 0
\(22\) 464.764 0.204727
\(23\) −1363.71 + 2362.02i −0.537531 + 0.931031i 0.461505 + 0.887138i \(0.347310\pi\)
−0.999036 + 0.0438936i \(0.986024\pi\)
\(24\) −288.000 498.831i −0.102062 0.176777i
\(25\) 1552.36 + 2688.77i 0.496756 + 0.860407i
\(26\) 170.955 296.102i 0.0495961 0.0859029i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 5860.48 1.29401 0.647006 0.762485i \(-0.276021\pi\)
0.647006 + 0.762485i \(0.276021\pi\)
\(30\) 81.0455 140.375i 0.0164409 0.0284765i
\(31\) 139.568 + 241.739i 0.0260845 + 0.0451796i 0.878773 0.477240i \(-0.158363\pi\)
−0.852688 + 0.522420i \(0.825029\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) −522.859 + 905.619i −0.0835795 + 0.144764i
\(34\) 133.065 0.0197408
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −1519.25 + 2631.41i −0.182442 + 0.315998i −0.942711 0.333609i \(-0.891733\pi\)
0.760270 + 0.649607i \(0.225067\pi\)
\(38\) −1270.75 2201.01i −0.142759 0.247265i
\(39\) 384.648 + 666.229i 0.0404950 + 0.0701394i
\(40\) −144.081 + 249.555i −0.0142382 + 0.0246613i
\(41\) −819.415 −0.0761279 −0.0380640 0.999275i \(-0.512119\pi\)
−0.0380640 + 0.999275i \(0.512119\pi\)
\(42\) 0 0
\(43\) 11100.2 0.915504 0.457752 0.889080i \(-0.348655\pi\)
0.457752 + 0.889080i \(0.348655\pi\)
\(44\) 929.527 1609.99i 0.0723820 0.125369i
\(45\) 182.352 + 315.843i 0.0134239 + 0.0232509i
\(46\) 5454.85 + 9448.09i 0.380092 + 0.658338i
\(47\) −3703.70 + 6415.00i −0.244563 + 0.423596i −0.962009 0.273019i \(-0.911978\pi\)
0.717446 + 0.696615i \(0.245311\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) 12418.9 0.702520
\(51\) −149.698 + 259.284i −0.00805916 + 0.0139589i
\(52\) −683.818 1184.41i −0.0350697 0.0607425i
\(53\) 6849.40 + 11863.5i 0.334937 + 0.580128i 0.983473 0.181057i \(-0.0579517\pi\)
−0.648536 + 0.761184i \(0.724618\pi\)
\(54\) −1458.00 + 2525.33i −0.0680414 + 0.117851i
\(55\) 523.153 0.0233196
\(56\) 0 0
\(57\) 5718.39 0.233124
\(58\) 11721.0 20301.3i 0.457502 0.792417i
\(59\) 11187.8 + 19377.9i 0.418424 + 0.724732i 0.995781 0.0917601i \(-0.0292493\pi\)
−0.577357 + 0.816492i \(0.695916\pi\)
\(60\) −324.182 561.499i −0.0116255 0.0201359i
\(61\) −6346.04 + 10991.7i −0.218363 + 0.378215i −0.954308 0.298826i \(-0.903405\pi\)
0.735945 + 0.677041i \(0.236738\pi\)
\(62\) 1116.55 0.0368890
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 192.432 333.302i 0.00564928 0.00978485i
\(66\) 2091.44 + 3622.47i 0.0590996 + 0.102364i
\(67\) 26151.7 + 45296.0i 0.711725 + 1.23274i 0.964209 + 0.265143i \(0.0854193\pi\)
−0.252484 + 0.967601i \(0.581247\pi\)
\(68\) 266.129 460.949i 0.00697944 0.0120887i
\(69\) −24546.8 −0.620687
\(70\) 0 0
\(71\) 60230.2 1.41798 0.708988 0.705221i \(-0.249152\pi\)
0.708988 + 0.705221i \(0.249152\pi\)
\(72\) 2592.00 4489.48i 0.0589256 0.102062i
\(73\) 38479.2 + 66647.9i 0.845121 + 1.46379i 0.885516 + 0.464608i \(0.153805\pi\)
−0.0403954 + 0.999184i \(0.512862\pi\)
\(74\) 6076.98 + 10525.6i 0.129006 + 0.223444i
\(75\) −13971.3 + 24199.0i −0.286802 + 0.496756i
\(76\) −10166.0 −0.201891
\(77\) 0 0
\(78\) 3077.18 0.0572686
\(79\) 16798.0 29095.0i 0.302824 0.524506i −0.673951 0.738776i \(-0.735404\pi\)
0.976774 + 0.214270i \(0.0687374\pi\)
\(80\) 576.323 + 998.221i 0.0100680 + 0.0174382i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) −1638.83 + 2838.54i −0.0269153 + 0.0466187i
\(83\) −60574.9 −0.965157 −0.482578 0.875853i \(-0.660300\pi\)
−0.482578 + 0.875853i \(0.660300\pi\)
\(84\) 0 0
\(85\) 149.782 0.00224860
\(86\) 22200.4 38452.3i 0.323680 0.560630i
\(87\) 26372.2 + 45677.9i 0.373549 + 0.647006i
\(88\) −3718.11 6439.95i −0.0511818 0.0886495i
\(89\) 46095.1 79839.0i 0.616850 1.06841i −0.373207 0.927748i \(-0.621742\pi\)
0.990057 0.140667i \(-0.0449247\pi\)
\(90\) 1458.82 0.0189843
\(91\) 0 0
\(92\) 43638.8 0.537531
\(93\) −1256.11 + 2175.65i −0.0150599 + 0.0260845i
\(94\) 14814.8 + 25660.0i 0.172932 + 0.299528i
\(95\) −1430.40 2477.53i −0.0162610 0.0281650i
\(96\) −4608.00 + 7981.29i −0.0510310 + 0.0883883i
\(97\) −152287. −1.64336 −0.821680 0.569949i \(-0.806963\pi\)
−0.821680 + 0.569949i \(0.806963\pi\)
\(98\) 0 0
\(99\) −9411.46 −0.0965093
\(100\) 24837.8 43020.4i 0.248378 0.430204i
\(101\) 53822.1 + 93222.6i 0.524997 + 0.909322i 0.999576 + 0.0291091i \(0.00926701\pi\)
−0.474579 + 0.880213i \(0.657400\pi\)
\(102\) 598.791 + 1037.14i 0.00569869 + 0.00987041i
\(103\) 60319.6 104477.i 0.560229 0.970345i −0.437247 0.899341i \(-0.644047\pi\)
0.997476 0.0710033i \(-0.0226201\pi\)
\(104\) −5470.55 −0.0495961
\(105\) 0 0
\(106\) 54795.2 0.473672
\(107\) −43057.2 + 74577.2i −0.363568 + 0.629719i −0.988545 0.150924i \(-0.951775\pi\)
0.624977 + 0.780643i \(0.285108\pi\)
\(108\) 5832.00 + 10101.3i 0.0481125 + 0.0833333i
\(109\) 33069.6 + 57278.2i 0.266602 + 0.461767i 0.967982 0.251020i \(-0.0807659\pi\)
−0.701380 + 0.712787i \(0.747433\pi\)
\(110\) 1046.31 1812.25i 0.00824473 0.0142803i
\(111\) −27346.4 −0.210665
\(112\) 0 0
\(113\) 131608. 0.969588 0.484794 0.874628i \(-0.338895\pi\)
0.484794 + 0.874628i \(0.338895\pi\)
\(114\) 11436.8 19809.1i 0.0824217 0.142759i
\(115\) 6140.16 + 10635.1i 0.0432947 + 0.0749886i
\(116\) −46883.9 81205.2i −0.323503 0.560324i
\(117\) −3461.83 + 5996.06i −0.0233798 + 0.0404950i
\(118\) 89502.8 0.591741
\(119\) 0 0
\(120\) −2593.45 −0.0164409
\(121\) 73775.3 127783.i 0.458087 0.793430i
\(122\) 25384.2 + 43966.7i 0.154406 + 0.267439i
\(123\) −3687.37 6386.71i −0.0219762 0.0380640i
\(124\) 2233.09 3867.83i 0.0130422 0.0225898i
\(125\) 28049.5 0.160565
\(126\) 0 0
\(127\) 14437.3 0.0794284 0.0397142 0.999211i \(-0.487355\pi\)
0.0397142 + 0.999211i \(0.487355\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) 49951.0 + 86517.6i 0.264283 + 0.457752i
\(130\) −769.727 1333.21i −0.00399465 0.00691893i
\(131\) 159608. 276450.i 0.812600 1.40747i −0.0984380 0.995143i \(-0.531385\pi\)
0.911038 0.412322i \(-0.135282\pi\)
\(132\) 16731.5 0.0835795
\(133\) 0 0
\(134\) 209213. 1.00653
\(135\) −1641.17 + 2842.59i −0.00775031 + 0.0134239i
\(136\) −1064.52 1843.80i −0.00493521 0.00854803i
\(137\) 25267.0 + 43763.7i 0.115014 + 0.199211i 0.917785 0.397077i \(-0.129975\pi\)
−0.802771 + 0.596287i \(0.796642\pi\)
\(138\) −49093.7 + 85032.8i −0.219446 + 0.380092i
\(139\) −223787. −0.982422 −0.491211 0.871041i \(-0.663446\pi\)
−0.491211 + 0.871041i \(0.663446\pi\)
\(140\) 0 0
\(141\) −66666.6 −0.282397
\(142\) 120460. 208644.i 0.501330 0.868329i
\(143\) 4965.84 + 8601.09i 0.0203073 + 0.0351733i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) 13193.5 22851.8i 0.0521122 0.0902610i
\(146\) 307834. 1.19518
\(147\) 0 0
\(148\) 48615.9 0.182442
\(149\) −129761. + 224752.i −0.478825 + 0.829350i −0.999705 0.0242802i \(-0.992271\pi\)
0.520880 + 0.853630i \(0.325604\pi\)
\(150\) 55885.1 + 96795.8i 0.202800 + 0.351260i
\(151\) 55446.4 + 96036.0i 0.197893 + 0.342761i 0.947845 0.318731i \(-0.103257\pi\)
−0.749952 + 0.661492i \(0.769923\pi\)
\(152\) −20332.1 + 35216.2i −0.0713793 + 0.123633i
\(153\) −2694.56 −0.00930592
\(154\) 0 0
\(155\) 1256.82 0.00420188
\(156\) 6154.36 10659.7i 0.0202475 0.0350697i
\(157\) −202693. 351074.i −0.656280 1.13671i −0.981571 0.191096i \(-0.938796\pi\)
0.325291 0.945614i \(-0.394538\pi\)
\(158\) −67192.0 116380.i −0.214129 0.370882i
\(159\) −61644.6 + 106772.i −0.193376 + 0.334937i
\(160\) 4610.59 0.0142382
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) −19309.3 + 33444.8i −0.0569244 + 0.0985959i −0.893083 0.449891i \(-0.851463\pi\)
0.836159 + 0.548487i \(0.184796\pi\)
\(164\) 6555.32 + 11354.1i 0.0190320 + 0.0329644i
\(165\) 2354.19 + 4077.57i 0.00673180 + 0.0116598i
\(166\) −121150. + 209838.i −0.341234 + 0.591035i
\(167\) 207255. 0.575060 0.287530 0.957772i \(-0.407166\pi\)
0.287530 + 0.957772i \(0.407166\pi\)
\(168\) 0 0
\(169\) −363987. −0.980322
\(170\) 299.563 518.859i 0.000794999 0.00137698i
\(171\) 25732.8 + 44570.4i 0.0672971 + 0.116562i
\(172\) −88801.7 153809.i −0.228876 0.396425i
\(173\) −64128.7 + 111074.i −0.162906 + 0.282161i −0.935910 0.352240i \(-0.885420\pi\)
0.773004 + 0.634401i \(0.218753\pi\)
\(174\) 210977. 0.528278
\(175\) 0 0
\(176\) −29744.9 −0.0723820
\(177\) −100691. + 174401.i −0.241577 + 0.418424i
\(178\) −184380. 319356.i −0.436179 0.755483i
\(179\) 49299.7 + 85389.6i 0.115004 + 0.199192i 0.917781 0.397086i \(-0.129979\pi\)
−0.802778 + 0.596279i \(0.796645\pi\)
\(180\) 2917.64 5053.49i 0.00671197 0.0116255i
\(181\) −599225. −1.35954 −0.679772 0.733423i \(-0.737921\pi\)
−0.679772 + 0.733423i \(0.737921\pi\)
\(182\) 0 0
\(183\) −114229. −0.252144
\(184\) 87277.7 151169.i 0.190046 0.329169i
\(185\) 6840.44 + 11848.0i 0.0146945 + 0.0254516i
\(186\) 5024.45 + 8702.61i 0.0106489 + 0.0184445i
\(187\) −1932.61 + 3347.38i −0.00404148 + 0.00700005i
\(188\) 118518. 0.244563
\(189\) 0 0
\(190\) −11443.2 −0.0229966
\(191\) −414608. + 718122.i −0.822346 + 1.42434i 0.0815852 + 0.996666i \(0.474002\pi\)
−0.903931 + 0.427678i \(0.859332\pi\)
\(192\) 18432.0 + 31925.2i 0.0360844 + 0.0625000i
\(193\) 208193. + 360600.i 0.402320 + 0.696839i 0.994006 0.109330i \(-0.0348705\pi\)
−0.591685 + 0.806169i \(0.701537\pi\)
\(194\) −304574. + 527537.i −0.581016 + 1.00635i
\(195\) 3463.77 0.00652323
\(196\) 0 0
\(197\) −592061. −1.08693 −0.543464 0.839433i \(-0.682887\pi\)
−0.543464 + 0.839433i \(0.682887\pi\)
\(198\) −18822.9 + 32602.3i −0.0341212 + 0.0590996i
\(199\) −533040. 923253.i −0.954173 1.65268i −0.736249 0.676711i \(-0.763405\pi\)
−0.217925 0.975966i \(-0.569929\pi\)
\(200\) −99351.3 172081.i −0.175630 0.304200i
\(201\) −235365. + 407664.i −0.410915 + 0.711725i
\(202\) 430577. 0.742458
\(203\) 0 0
\(204\) 4790.33 0.00805916
\(205\) −1844.72 + 3195.14i −0.00306581 + 0.00531014i
\(206\) −241278. 417906.i −0.396142 0.686137i
\(207\) −110461. 191324.i −0.179177 0.310344i
\(208\) −10941.1 + 18950.5i −0.0175349 + 0.0303713i
\(209\) 73825.0 0.116906
\(210\) 0 0
\(211\) −846029. −1.30822 −0.654108 0.756401i \(-0.726956\pi\)
−0.654108 + 0.756401i \(0.726956\pi\)
\(212\) 109590. 189816.i 0.167468 0.290064i
\(213\) 271036. + 469448.i 0.409334 + 0.708988i
\(214\) 172229. + 298309.i 0.257082 + 0.445278i
\(215\) 24989.5 43283.1i 0.0368690 0.0638590i
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) 264557. 0.377032
\(219\) −346313. + 599831.i −0.487931 + 0.845121i
\(220\) −4185.22 7249.01i −0.00582991 0.0100977i
\(221\) 1421.75 + 2462.54i 0.00195814 + 0.00339159i
\(222\) −54692.8 + 94730.8i −0.0744814 + 0.129006i
\(223\) −112299. −0.151222 −0.0756109 0.997137i \(-0.524091\pi\)
−0.0756109 + 0.997137i \(0.524091\pi\)
\(224\) 0 0
\(225\) −251483. −0.331171
\(226\) 263217. 455904.i 0.342801 0.593749i
\(227\) −89238.4 154565.i −0.114944 0.199089i 0.802813 0.596231i \(-0.203336\pi\)
−0.917757 + 0.397141i \(0.870002\pi\)
\(228\) −45747.1 79236.3i −0.0582810 0.100946i
\(229\) 229877. 398158.i 0.289672 0.501726i −0.684060 0.729426i \(-0.739787\pi\)
0.973731 + 0.227700i \(0.0731205\pi\)
\(230\) 49121.2 0.0612280
\(231\) 0 0
\(232\) −375071. −0.457502
\(233\) −374334. + 648365.i −0.451720 + 0.782402i −0.998493 0.0548792i \(-0.982523\pi\)
0.546773 + 0.837281i \(0.315856\pi\)
\(234\) 13847.3 + 23984.3i 0.0165320 + 0.0286343i
\(235\) 16676.0 + 28883.7i 0.0196980 + 0.0341179i
\(236\) 179006. 310047.i 0.209212 0.362366i
\(237\) 302364. 0.349670
\(238\) 0 0
\(239\) −814752. −0.922637 −0.461319 0.887235i \(-0.652623\pi\)
−0.461319 + 0.887235i \(0.652623\pi\)
\(240\) −5186.91 + 8983.99i −0.00581274 + 0.0100680i
\(241\) −523816. 907276.i −0.580947 1.00623i −0.995367 0.0961439i \(-0.969349\pi\)
0.414421 0.910085i \(-0.363984\pi\)
\(242\) −295101. 511131.i −0.323916 0.561039i
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 203073. 0.218363
\(245\) 0 0
\(246\) −29498.9 −0.0310791
\(247\) 27155.1 47034.1i 0.0283211 0.0490535i
\(248\) −8932.36 15471.3i −0.00922226 0.0159734i
\(249\) −272587. 472135.i −0.278617 0.482578i
\(250\) 56099.0 97166.3i 0.0567682 0.0983254i
\(251\) 1.09401e6 1.09607 0.548034 0.836456i \(-0.315377\pi\)
0.548034 + 0.836456i \(0.315377\pi\)
\(252\) 0 0
\(253\) −316902. −0.311261
\(254\) 28874.5 50012.2i 0.0280822 0.0486398i
\(255\) 674.018 + 1167.43i 0.000649114 + 0.00112430i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −389195. + 674106.i −0.367566 + 0.636642i −0.989184 0.146678i \(-0.953142\pi\)
0.621619 + 0.783320i \(0.286475\pi\)
\(258\) 399608. 0.373753
\(259\) 0 0
\(260\) −6157.82 −0.00564928
\(261\) −237350. + 411101.i −0.215669 + 0.373549i
\(262\) −638433. 1.10580e6i −0.574595 0.995228i
\(263\) −554881. 961083.i −0.494664 0.856784i 0.505317 0.862934i \(-0.331376\pi\)
−0.999981 + 0.00615004i \(0.998042\pi\)
\(264\) 33463.0 57959.6i 0.0295498 0.0511818i
\(265\) 61679.2 0.0539540
\(266\) 0 0
\(267\) 829711. 0.712277
\(268\) 418427. 724736.i 0.355863 0.616372i
\(269\) 668202. + 1.15736e6i 0.563024 + 0.975187i 0.997230 + 0.0743731i \(0.0236956\pi\)
−0.434206 + 0.900813i \(0.642971\pi\)
\(270\) 6564.68 + 11370.4i 0.00548030 + 0.00949216i
\(271\) 896005. 1.55193e6i 0.741118 1.28365i −0.210869 0.977514i \(-0.567629\pi\)
0.951987 0.306140i \(-0.0990374\pi\)
\(272\) −8516.14 −0.00697944
\(273\) 0 0
\(274\) 202136. 0.162655
\(275\) −180371. + 312411.i −0.143825 + 0.249112i
\(276\) 196375. + 340131.i 0.155172 + 0.268766i
\(277\) −28788.8 49863.6i −0.0225436 0.0390467i 0.854533 0.519396i \(-0.173843\pi\)
−0.877077 + 0.480350i \(0.840510\pi\)
\(278\) −447574. + 775221.i −0.347339 + 0.601608i
\(279\) −22610.0 −0.0173897
\(280\) 0 0
\(281\) −550257. −0.415719 −0.207860 0.978159i \(-0.566650\pi\)
−0.207860 + 0.978159i \(0.566650\pi\)
\(282\) −133333. + 230940.i −0.0998425 + 0.172932i
\(283\) −588940. 1.02007e6i −0.437125 0.757122i 0.560342 0.828261i \(-0.310670\pi\)
−0.997466 + 0.0711395i \(0.977336\pi\)
\(284\) −481842. 834575.i −0.354494 0.614001i
\(285\) 12873.6 22297.7i 0.00938832 0.0162610i
\(286\) 39726.7 0.0287189
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) 709375. 1.22867e6i 0.499610 0.865350i
\(290\) −52773.9 91407.1i −0.0368489 0.0638242i
\(291\) −685290. 1.18696e6i −0.474397 0.821680i
\(292\) 615667. 1.06637e6i 0.422560 0.731896i
\(293\) −300762. −0.204670 −0.102335 0.994750i \(-0.532631\pi\)
−0.102335 + 0.994750i \(0.532631\pi\)
\(294\) 0 0
\(295\) 100747. 0.0674028
\(296\) 97231.7 168410.i 0.0645028 0.111722i
\(297\) −42351.6 73355.1i −0.0278598 0.0482547i
\(298\) 519042. + 899008.i 0.338581 + 0.586439i
\(299\) −116567. + 201899.i −0.0754043 + 0.130604i
\(300\) 447081. 0.286802
\(301\) 0 0
\(302\) 443571. 0.279863
\(303\) −484399. + 839003.i −0.303107 + 0.524997i
\(304\) 81328.2 + 140865.i 0.0504728 + 0.0874214i
\(305\) 28573.2 + 49490.3i 0.0175877 + 0.0304628i
\(306\) −5389.12 + 9334.23i −0.00329014 + 0.00569869i
\(307\) −146787. −0.0888874 −0.0444437 0.999012i \(-0.514152\pi\)
−0.0444437 + 0.999012i \(0.514152\pi\)
\(308\) 0 0
\(309\) 1.08575e6 0.646896
\(310\) 2513.64 4353.75i 0.00148559 0.00257311i
\(311\) 851554. + 1.47494e6i 0.499242 + 0.864713i 1.00000 0.000874814i \(-0.000278462\pi\)
−0.500757 + 0.865588i \(0.666945\pi\)
\(312\) −24617.5 42638.7i −0.0143172 0.0247980i
\(313\) 558474. 967305.i 0.322212 0.558088i −0.658732 0.752378i \(-0.728907\pi\)
0.980944 + 0.194290i \(0.0622403\pi\)
\(314\) −1.62154e6 −0.928120
\(315\) 0 0
\(316\) −537536. −0.302824
\(317\) 481447. 833891.i 0.269092 0.466081i −0.699536 0.714598i \(-0.746610\pi\)
0.968628 + 0.248517i \(0.0799432\pi\)
\(318\) 246578. + 427086.i 0.136737 + 0.236836i
\(319\) 340467. + 589707.i 0.187326 + 0.324459i
\(320\) 9221.17 15971.5i 0.00503398 0.00871910i
\(321\) −775029. −0.419812
\(322\) 0 0
\(323\) 21136.5 0.0112727
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 132692. + 229829.i 0.0696844 + 0.120697i
\(326\) 77237.3 + 133779.i 0.0402516 + 0.0697178i
\(327\) −297626. + 515504.i −0.153922 + 0.266602i
\(328\) 52442.5 0.0269153
\(329\) 0 0
\(330\) 18833.5 0.00952020
\(331\) 1.12998e6 1.95718e6i 0.566891 0.981883i −0.429980 0.902838i \(-0.641480\pi\)
0.996871 0.0790451i \(-0.0251871\pi\)
\(332\) 484600. + 839351.i 0.241289 + 0.417925i
\(333\) −123059. 213144.i −0.0608138 0.105333i
\(334\) 414509. 717951.i 0.203314 0.352151i
\(335\) 235497. 0.114650
\(336\) 0 0
\(337\) 1.33338e6 0.639557 0.319778 0.947492i \(-0.396392\pi\)
0.319778 + 0.947492i \(0.396392\pi\)
\(338\) −727973. + 1.26089e6i −0.346596 + 0.600322i
\(339\) 592237. + 1.02578e6i 0.279896 + 0.484794i
\(340\) −1198.25 2075.44i −0.000562149 0.000973671i
\(341\) −16216.6 + 28087.9i −0.00755219 + 0.0130808i
\(342\) 205862. 0.0951724
\(343\) 0 0
\(344\) −710414. −0.323680
\(345\) −55261.4 + 95715.5i −0.0249962 + 0.0432947i
\(346\) 256515. + 444296.i 0.115192 + 0.199518i
\(347\) 717431. + 1.24263e6i 0.319857 + 0.554009i 0.980458 0.196728i \(-0.0630317\pi\)
−0.660601 + 0.750737i \(0.729698\pi\)
\(348\) 421955. 730847.i 0.186775 0.323503i
\(349\) −3.34711e6 −1.47098 −0.735489 0.677536i \(-0.763048\pi\)
−0.735489 + 0.677536i \(0.763048\pi\)
\(350\) 0 0
\(351\) −62312.9 −0.0269967
\(352\) −59489.7 + 103039.i −0.0255909 + 0.0443247i
\(353\) 2.00209e6 + 3.46772e6i 0.855160 + 1.48118i 0.876497 + 0.481408i \(0.159874\pi\)
−0.0213370 + 0.999772i \(0.506792\pi\)
\(354\) 402763. + 697605.i 0.170821 + 0.295870i
\(355\) 135594. 234856.i 0.0571044 0.0989078i
\(356\) −1.47504e6 −0.616850
\(357\) 0 0
\(358\) 394398. 0.162640
\(359\) 297993. 516139.i 0.122031 0.211364i −0.798538 0.601945i \(-0.794393\pi\)
0.920568 + 0.390581i \(0.127726\pi\)
\(360\) −11670.5 20214.0i −0.00474608 0.00822045i
\(361\) 1.03620e6 + 1.79475e6i 0.418480 + 0.724828i
\(362\) −1.19845e6 + 2.07578e6i −0.480672 + 0.832548i
\(363\) 1.32796e6 0.528953
\(364\) 0 0
\(365\) 346507. 0.136138
\(366\) −228458. + 395700.i −0.0891462 + 0.154406i
\(367\) −1.65195e6 2.86126e6i −0.640224 1.10890i −0.985383 0.170356i \(-0.945508\pi\)
0.345159 0.938544i \(-0.387825\pi\)
\(368\) −349111. 604677.i −0.134383 0.232758i
\(369\) 33186.3 57480.3i 0.0126880 0.0219762i
\(370\) 54723.5 0.0207812
\(371\) 0 0
\(372\) 40195.6 0.0150599
\(373\) 1.41532e6 2.45140e6i 0.526722 0.912309i −0.472794 0.881173i \(-0.656754\pi\)
0.999515 0.0311353i \(-0.00991229\pi\)
\(374\) 7730.45 + 13389.5i 0.00285776 + 0.00494979i
\(375\) 126223. + 218624.i 0.0463510 + 0.0802824i
\(376\) 237037. 410560.i 0.0864661 0.149764i
\(377\) 500938. 0.181523
\(378\) 0 0
\(379\) 2.45025e6 0.876218 0.438109 0.898922i \(-0.355648\pi\)
0.438109 + 0.898922i \(0.355648\pi\)
\(380\) −22886.4 + 39640.4i −0.00813052 + 0.0140825i
\(381\) 64967.7 + 112527.i 0.0229290 + 0.0397142i
\(382\) 1.65843e6 + 2.87249e6i 0.581486 + 1.00716i
\(383\) −1.69202e6 + 2.93067e6i −0.589399 + 1.02087i 0.404912 + 0.914356i \(0.367302\pi\)
−0.994311 + 0.106514i \(0.966031\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 1.66554e6 0.568967
\(387\) −449559. + 778659.i −0.152584 + 0.264283i
\(388\) 1.21829e6 + 2.11015e6i 0.410840 + 0.711596i
\(389\) 2.07480e6 + 3.59366e6i 0.695189 + 1.20410i 0.970117 + 0.242638i \(0.0780127\pi\)
−0.274928 + 0.961465i \(0.588654\pi\)
\(390\) 6927.54 11998.9i 0.00230631 0.00399465i
\(391\) −90731.0 −0.0300133
\(392\) 0 0
\(393\) 2.87295e6 0.938310
\(394\) −1.18412e6 + 2.05096e6i −0.384287 + 0.665605i
\(395\) −75633.4 131001.i −0.0243905 0.0422456i
\(396\) 75291.7 + 130409.i 0.0241273 + 0.0417898i
\(397\) −823330. + 1.42605e6i −0.262179 + 0.454107i −0.966821 0.255456i \(-0.917774\pi\)
0.704642 + 0.709563i \(0.251108\pi\)
\(398\) −4.26432e6 −1.34940
\(399\) 0 0
\(400\) −794810. −0.248378
\(401\) 2.19332e6 3.79894e6i 0.681147 1.17978i −0.293484 0.955964i \(-0.594815\pi\)
0.974631 0.223817i \(-0.0718520\pi\)
\(402\) 941460. + 1.63066e6i 0.290561 + 0.503266i
\(403\) 11929.9 + 20663.2i 0.00365910 + 0.00633775i
\(404\) 861153. 1.49156e6i 0.262499 0.454661i
\(405\) −29541.1 −0.00894929
\(406\) 0 0
\(407\) −353045. −0.105644
\(408\) 9580.65 16594.2i 0.00284934 0.00493521i
\(409\) 177296. + 307086.i 0.0524072 + 0.0907719i 0.891039 0.453927i \(-0.149977\pi\)
−0.838632 + 0.544699i \(0.816644\pi\)
\(410\) 7378.87 + 12780.6i 0.00216786 + 0.00375484i
\(411\) −227403. + 393873.i −0.0664035 + 0.115014i
\(412\) −1.93023e6 −0.560229
\(413\) 0 0
\(414\) −883686. −0.253395
\(415\) −136370. + 236200.i −0.0388686 + 0.0673224i
\(416\) 43764.4 + 75802.1i 0.0123990 + 0.0214757i
\(417\) −1.00704e6 1.74425e6i −0.283601 0.491211i
\(418\) 147650. 255737.i 0.0413326 0.0715902i
\(419\) 1.79802e6 0.500335 0.250167 0.968203i \(-0.419514\pi\)
0.250167 + 0.968203i \(0.419514\pi\)
\(420\) 0 0
\(421\) 6.10881e6 1.67978 0.839888 0.542760i \(-0.182621\pi\)
0.839888 + 0.542760i \(0.182621\pi\)
\(422\) −1.69206e6 + 2.93073e6i −0.462524 + 0.801115i
\(423\) −300000. 519615.i −0.0815211 0.141199i
\(424\) −438362. 759265.i −0.118418 0.205106i
\(425\) −51641.2 + 89445.1i −0.0138683 + 0.0240206i
\(426\) 2.16829e6 0.578886
\(427\) 0 0
\(428\) 1.37783e6 0.363568
\(429\) −44692.6 + 77409.8i −0.0117244 + 0.0203073i
\(430\) −99958.0 173132.i −0.0260703 0.0451551i
\(431\) 955880. + 1.65563e6i 0.247862 + 0.429310i 0.962932 0.269743i \(-0.0869387\pi\)
−0.715070 + 0.699053i \(0.753605\pi\)
\(432\) 93312.0 161621.i 0.0240563 0.0416667i
\(433\) −385530. −0.0988186 −0.0494093 0.998779i \(-0.515734\pi\)
−0.0494093 + 0.998779i \(0.515734\pi\)
\(434\) 0 0
\(435\) 237483. 0.0601740
\(436\) 529114. 916452.i 0.133301 0.230884i
\(437\) 866472. + 1.50077e6i 0.217046 + 0.375934i
\(438\) 1.38525e6 + 2.39933e6i 0.345019 + 0.597591i
\(439\) −916909. + 1.58813e6i −0.227073 + 0.393302i −0.956939 0.290288i \(-0.906249\pi\)
0.729866 + 0.683590i \(0.239582\pi\)
\(440\) −33481.8 −0.00824473
\(441\) 0 0
\(442\) 11374.0 0.00276922
\(443\) 966960. 1.67482e6i 0.234099 0.405471i −0.724912 0.688842i \(-0.758119\pi\)
0.959010 + 0.283371i \(0.0914527\pi\)
\(444\) 218771. + 378923.i 0.0526663 + 0.0912208i
\(445\) −207544. 359477.i −0.0496833 0.0860540i
\(446\) −224598. + 389016.i −0.0534650 + 0.0926041i
\(447\) −2.33569e6 −0.552900
\(448\) 0 0
\(449\) 6.76354e6 1.58328 0.791641 0.610987i \(-0.209227\pi\)
0.791641 + 0.610987i \(0.209227\pi\)
\(450\) −502966. + 871162.i −0.117087 + 0.202800i
\(451\) −47604.3 82453.0i −0.0110206 0.0190882i
\(452\) −1.05287e6 1.82362e6i −0.242397 0.419844i
\(453\) −499018. + 864324.i −0.114254 + 0.197893i
\(454\) −713907. −0.162556
\(455\) 0 0
\(456\) −365977. −0.0824217
\(457\) 1.19746e6 2.07406e6i 0.268207 0.464548i −0.700192 0.713955i \(-0.746902\pi\)
0.968399 + 0.249407i \(0.0802356\pi\)
\(458\) −919507. 1.59263e6i −0.204829 0.354774i
\(459\) −12125.5 21002.0i −0.00268639 0.00465296i
\(460\) 98242.5 170161.i 0.0216474 0.0374943i
\(461\) 6.42949e6 1.40904 0.704522 0.709682i \(-0.251162\pi\)
0.704522 + 0.709682i \(0.251162\pi\)
\(462\) 0 0
\(463\) 1.36524e6 0.295976 0.147988 0.988989i \(-0.452720\pi\)
0.147988 + 0.988989i \(0.452720\pi\)
\(464\) −750142. + 1.29928e6i −0.161752 + 0.280162i
\(465\) 5655.68 + 9795.93i 0.00121298 + 0.00210094i
\(466\) 1.49733e6 + 2.59346e6i 0.319414 + 0.553241i
\(467\) 2.18181e6 3.77900e6i 0.462940 0.801835i −0.536166 0.844113i \(-0.680128\pi\)
0.999106 + 0.0422772i \(0.0134613\pi\)
\(468\) 110779. 0.0233798
\(469\) 0 0
\(470\) 133408. 0.0278572
\(471\) 1.82423e6 3.15967e6i 0.378903 0.656280i
\(472\) −716022. 1.24019e6i −0.147935 0.256231i
\(473\) 644872. + 1.11695e6i 0.132532 + 0.229552i
\(474\) 604728. 1.04742e6i 0.123627 0.214129i
\(475\) 1.97267e6 0.401163
\(476\) 0 0
\(477\) −1.10960e6 −0.223291
\(478\) −1.62950e6 + 2.82239e6i −0.326201 + 0.564998i
\(479\) −696248. 1.20594e6i −0.138652 0.240152i 0.788335 0.615247i \(-0.210944\pi\)
−0.926986 + 0.375095i \(0.877610\pi\)
\(480\) 20747.6 + 35936.0i 0.00411022 + 0.00711912i
\(481\) −129861. + 224926.i −0.0255927 + 0.0443278i
\(482\) −4.19053e6 −0.821583
\(483\) 0 0
\(484\) −2.36081e6 −0.458087
\(485\) −342837. + 593812.i −0.0661811 + 0.114629i
\(486\) −118098. 204552.i −0.0226805 0.0392837i
\(487\) −4.91460e6 8.51233e6i −0.939000 1.62640i −0.767341 0.641239i \(-0.778421\pi\)
−0.171659 0.985156i \(-0.554913\pi\)
\(488\) 406147. 703467.i 0.0772029 0.133719i
\(489\) −347568. −0.0657306
\(490\) 0 0
\(491\) −7.67255e6 −1.43627 −0.718135 0.695904i \(-0.755004\pi\)
−0.718135 + 0.695904i \(0.755004\pi\)
\(492\) −58997.9 + 102187.i −0.0109881 + 0.0190320i
\(493\) 97477.9 + 168837.i 0.0180630 + 0.0312859i
\(494\) −108621. 188136.i −0.0200260 0.0346861i
\(495\) −21187.7 + 36698.1i −0.00388660 + 0.00673180i
\(496\) −71458.9 −0.0130422
\(497\) 0 0
\(498\) −2.18070e6 −0.394024
\(499\) −1.69691e6 + 2.93914e6i −0.305076 + 0.528408i −0.977278 0.211960i \(-0.932015\pi\)
0.672202 + 0.740368i \(0.265349\pi\)
\(500\) −224396. 388665.i −0.0401412 0.0695266i
\(501\) 932646. + 1.61539e6i 0.166006 + 0.287530i
\(502\) 2.18802e6 3.78976e6i 0.387518 0.671201i
\(503\) 8.36268e6 1.47376 0.736878 0.676026i \(-0.236299\pi\)
0.736878 + 0.676026i \(0.236299\pi\)
\(504\) 0 0
\(505\) 484671. 0.0845704
\(506\) −633805. + 1.09778e6i −0.110047 + 0.190607i
\(507\) −1.63794e6 2.83700e6i −0.282995 0.490161i
\(508\) −115498. 200049.i −0.0198571 0.0343935i
\(509\) 1.93662e6 3.35432e6i 0.331322 0.573866i −0.651450 0.758692i \(-0.725839\pi\)
0.982771 + 0.184826i \(0.0591722\pi\)
\(510\) 5392.14 0.000917986
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −231595. + 401134.i −0.0388540 + 0.0672971i
\(514\) 1.55678e6 + 2.69642e6i 0.259908 + 0.450174i
\(515\) −271590. 470409.i −0.0451228 0.0781551i
\(516\) 799216. 1.38428e6i 0.132142 0.228876i
\(517\) −860672. −0.141616
\(518\) 0 0
\(519\) −1.15432e6 −0.188108
\(520\) −12315.6 + 21331.3i −0.00199732 + 0.00345947i
\(521\) 365532. + 633120.i 0.0589971 + 0.102186i 0.894015 0.448036i \(-0.147876\pi\)
−0.835018 + 0.550222i \(0.814543\pi\)
\(522\) 949398. + 1.64441e6i 0.152501 + 0.264139i
\(523\) −3.55427e6 + 6.15618e6i −0.568193 + 0.984140i 0.428551 + 0.903517i \(0.359024\pi\)
−0.996745 + 0.0806223i \(0.974309\pi\)
\(524\) −5.10746e6 −0.812600
\(525\) 0 0
\(526\) −4.43905e6 −0.699561
\(527\) −4642.90 + 8041.73i −0.000728220 + 0.00126131i
\(528\) −133852. 231838.i −0.0208949 0.0361910i
\(529\) −501258. 868205.i −0.0778794 0.134891i
\(530\) 123358. 213663.i 0.0190756 0.0330400i
\(531\) −1.81243e6 −0.278949
\(532\) 0 0
\(533\) −70041.3 −0.0106791
\(534\) 1.65942e6 2.87420e6i 0.251828 0.436179i
\(535\) 193866. + 335786.i 0.0292831 + 0.0507198i
\(536\) −1.67371e6 2.89895e6i −0.251633 0.435841i
\(537\) −443698. + 768507.i −0.0663974 + 0.115004i
\(538\) 5.34562e6 0.796237
\(539\) 0 0
\(540\) 52517.5 0.00775031
\(541\) −1.89757e6 + 3.28669e6i −0.278743 + 0.482798i −0.971073 0.238784i \(-0.923251\pi\)
0.692329 + 0.721582i \(0.256585\pi\)
\(542\) −3.58402e6 6.20771e6i −0.524050 0.907680i
\(543\) −2.69651e6 4.67050e6i −0.392467 0.679772i
\(544\) −17032.3 + 29500.8i −0.00246760 + 0.00427401i
\(545\) 297793. 0.0429461
\(546\) 0 0
\(547\) −1.34686e7 −1.92466 −0.962332 0.271879i \(-0.912355\pi\)
−0.962332 + 0.271879i \(0.912355\pi\)
\(548\) 404272. 700219.i 0.0575072 0.0996053i
\(549\) −514030. 890325.i −0.0727876 0.126072i
\(550\) 721482. + 1.24964e6i 0.101700 + 0.176149i
\(551\) 1.86181e6 3.22474e6i 0.261250 0.452498i
\(552\) 1.57100e6 0.219446
\(553\) 0 0
\(554\) −230310. −0.0318815
\(555\) −61564.0 + 106632.i −0.00848387 + 0.0146945i
\(556\) 1.79030e6 + 3.10089e6i 0.245606 + 0.425401i
\(557\) −2.44744e6 4.23908e6i −0.334251 0.578941i 0.649089 0.760712i \(-0.275150\pi\)
−0.983341 + 0.181772i \(0.941817\pi\)
\(558\) −45220.1 + 78323.5i −0.00614817 + 0.0106489i
\(559\) 948816. 0.128426
\(560\) 0 0
\(561\) −34787.0 −0.00466670
\(562\) −1.10051e6 + 1.90615e6i −0.146979 + 0.254575i
\(563\) −3.12803e6 5.41790e6i −0.415910 0.720378i 0.579613 0.814892i \(-0.303204\pi\)
−0.995524 + 0.0945139i \(0.969870\pi\)
\(564\) 533333. + 923759.i 0.0705993 + 0.122282i
\(565\) 296285. 513180.i 0.0390470 0.0676315i
\(566\) −4.71152e6 −0.618188
\(567\) 0 0
\(568\) −3.85474e6 −0.501330
\(569\) −714125. + 1.23690e6i −0.0924685 + 0.160160i −0.908549 0.417778i \(-0.862809\pi\)
0.816081 + 0.577938i \(0.196142\pi\)
\(570\) −51494.4 89190.9i −0.00663854 0.0114983i
\(571\) −4.52573e6 7.83880e6i −0.580897 1.00614i −0.995373 0.0960825i \(-0.969369\pi\)
0.414477 0.910060i \(-0.363965\pi\)
\(572\) 79453.5 137617.i 0.0101537 0.0175867i
\(573\) −7.46295e6 −0.949563
\(574\) 0 0
\(575\) −8.46792e6 −1.06809
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) 4.00960e6 + 6.94482e6i 0.501373 + 0.868404i 0.999999 + 0.00158626i \(0.000504922\pi\)
−0.498626 + 0.866817i \(0.666162\pi\)
\(578\) −2.83750e6 4.91470e6i −0.353278 0.611895i
\(579\) −1.87373e6 + 3.24540e6i −0.232280 + 0.402320i
\(580\) −422191. −0.0521122
\(581\) 0 0
\(582\) −5.48232e6 −0.670899
\(583\) −795838. + 1.37843e6i −0.0969735 + 0.167963i
\(584\) −2.46267e6 4.26547e6i −0.298795 0.517529i
\(585\) 15587.0 + 26997.4i 0.00188309 + 0.00326162i
\(586\) −601524. + 1.04187e6i −0.0723617 + 0.125334i
\(587\) 8.28470e6 0.992388 0.496194 0.868212i \(-0.334730\pi\)
0.496194 + 0.868212i \(0.334730\pi\)
\(588\) 0 0
\(589\) 177357. 0.0210649
\(590\) 201494. 348998.i 0.0238305 0.0412756i
\(591\) −2.66427e6 4.61466e6i −0.313769 0.543464i
\(592\) −388927. 673641.i −0.0456104 0.0789995i
\(593\) 2.95722e6 5.12205e6i 0.345340 0.598146i −0.640076 0.768312i \(-0.721097\pi\)
0.985415 + 0.170166i \(0.0544304\pi\)
\(594\) −338813. −0.0393998
\(595\) 0 0
\(596\) 4.15234e6 0.478825
\(597\) 4.79736e6 8.30927e6i 0.550892 0.954173i
\(598\) 466266. + 807597.i 0.0533189 + 0.0923510i
\(599\) −1.66449e6 2.88298e6i −0.189545 0.328302i 0.755553 0.655087i \(-0.227368\pi\)
−0.945099 + 0.326785i \(0.894035\pi\)
\(600\) 894161. 1.54873e6i 0.101400 0.175630i
\(601\) 4.87081e6 0.550066 0.275033 0.961435i \(-0.411311\pi\)
0.275033 + 0.961435i \(0.411311\pi\)
\(602\) 0 0
\(603\) −4.23657e6 −0.474484
\(604\) 887142. 1.53658e6i 0.0989466 0.171381i
\(605\) −332175. 575345.i −0.0368960 0.0639057i
\(606\) 1.93760e6 + 3.35601e6i 0.214329 + 0.371229i
\(607\) −7.58504e6 + 1.31377e7i −0.835577 + 1.44726i 0.0579835 + 0.998318i \(0.481533\pi\)
−0.893560 + 0.448944i \(0.851800\pi\)
\(608\) 650626. 0.0713793
\(609\) 0 0
\(610\) 228586. 0.0248728
\(611\) −316582. + 548336.i −0.0343070 + 0.0594216i
\(612\) 21556.5 + 37336.9i 0.00232648 + 0.00402958i
\(613\) −2.59078e6 4.48736e6i −0.278471 0.482325i 0.692534 0.721385i \(-0.256494\pi\)
−0.971005 + 0.239060i \(0.923161\pi\)
\(614\) −293573. + 508483.i −0.0314264 + 0.0544322i
\(615\) −33204.9 −0.00354009
\(616\) 0 0
\(617\) 1.55854e6 0.164818 0.0824092 0.996599i \(-0.473739\pi\)
0.0824092 + 0.996599i \(0.473739\pi\)
\(618\) 2.17151e6 3.76116e6i 0.228712 0.396142i
\(619\) −703756. 1.21894e6i −0.0738236 0.127866i 0.826750 0.562569i \(-0.190187\pi\)
−0.900574 + 0.434703i \(0.856854\pi\)
\(620\) −10054.5 17415.0i −0.00105047 0.00181947i
\(621\) 994147. 1.72191e6i 0.103448 0.179177i
\(622\) 6.81243e6 0.706035
\(623\) 0 0
\(624\) −196940. −0.0202475
\(625\) −4.78799e6 + 8.29304e6i −0.490290 + 0.849207i
\(626\) −2.23389e6 3.86922e6i −0.227838 0.394628i
\(627\) 332213. + 575409.i 0.0337479 + 0.0584531i
\(628\) −3.24308e6 + 5.61719e6i −0.328140 + 0.568355i
\(629\) −101079. −0.0101867
\(630\) 0 0
\(631\) −1.09643e7 −1.09624 −0.548120 0.836399i \(-0.684656\pi\)
−0.548120 + 0.836399i \(0.684656\pi\)
\(632\) −1.07507e6 + 1.86208e6i −0.107064 + 0.185441i
\(633\) −3.80713e6 6.59415e6i −0.377649 0.654108i
\(634\) −1.92579e6 3.33556e6i −0.190277 0.329569i
\(635\) 32502.1 56295.3i 0.00319873 0.00554036i
\(636\) 1.97263e6 0.193376
\(637\) 0 0
\(638\) 2.72374e6 0.264919
\(639\) −2.43932e6 + 4.22503e6i −0.236329 + 0.409334i
\(640\) −36884.7 63886.2i −0.00355956 0.00616534i
\(641\) 7.10609e6 + 1.23081e7i 0.683103 + 1.18317i 0.974029 + 0.226423i \(0.0727032\pi\)
−0.290926 + 0.956745i \(0.593964\pi\)
\(642\) −1.55006e6 + 2.68478e6i −0.148426 + 0.257082i
\(643\) 9.13928e6 0.871735 0.435868 0.900011i \(-0.356442\pi\)
0.435868 + 0.900011i \(0.356442\pi\)
\(644\) 0 0
\(645\) 449811. 0.0425727
\(646\) 42273.1 73219.1i 0.00398550 0.00690309i
\(647\) −9.46362e6 1.63915e7i −0.888785 1.53942i −0.841313 0.540549i \(-0.818217\pi\)
−0.0474724 0.998873i \(-0.515117\pi\)
\(648\) 209952. + 363648.i 0.0196419 + 0.0340207i
\(649\) −1.29993e6 + 2.25154e6i −0.121145 + 0.209830i
\(650\) 1.06153e6 0.0985487
\(651\) 0 0
\(652\) 617899. 0.0569244
\(653\) 2.14991e6 3.72376e6i 0.197305 0.341742i −0.750349 0.661042i \(-0.770114\pi\)
0.947654 + 0.319300i \(0.103448\pi\)
\(654\) 1.19051e6 + 2.06202e6i 0.108840 + 0.188516i
\(655\) −718640. 1.24472e6i −0.0654498 0.113362i
\(656\) 104885. 181666.i 0.00951599 0.0164822i
\(657\) −6.23363e6 −0.563414
\(658\) 0 0
\(659\) −1.15303e7 −1.03425 −0.517126 0.855909i \(-0.672998\pi\)
−0.517126 + 0.855909i \(0.672998\pi\)
\(660\) 37667.0 65241.1i 0.00336590 0.00582991i
\(661\) 7.35237e6 + 1.27347e7i 0.654521 + 1.13366i 0.982014 + 0.188810i \(0.0604631\pi\)
−0.327492 + 0.944854i \(0.606204\pi\)
\(662\) −4.51990e6 7.82870e6i −0.400852 0.694296i
\(663\) −12795.8 + 22162.9i −0.00113053 + 0.00195814i
\(664\) 3.87680e6 0.341234
\(665\) 0 0
\(666\) −984471. −0.0860037
\(667\) −7.99202e6 + 1.38426e7i −0.695572 + 1.20477i
\(668\) −1.65804e6 2.87181e6i −0.143765 0.249008i
\(669\) −505346. 875286.i −0.0436540 0.0756109i
\(670\) 470994. 815786.i 0.0405349 0.0702084i
\(671\) −1.47471e6 −0.126444
\(672\) 0 0
\(673\) 1.42971e7 1.21678 0.608389 0.793639i \(-0.291816\pi\)
0.608389 + 0.793639i \(0.291816\pi\)
\(674\) 2.66676e6 4.61896e6i 0.226117 0.391647i
\(675\) −1.13167e6 1.96012e6i −0.0956008 0.165585i
\(676\) 2.91189e6 + 5.04355e6i 0.245080 + 0.424492i
\(677\) 4.56012e6 7.89836e6i 0.382389 0.662316i −0.609015 0.793159i \(-0.708435\pi\)
0.991403 + 0.130843i \(0.0417683\pi\)
\(678\) 4.73790e6 0.395832
\(679\) 0 0
\(680\) −9586.03 −0.000794999
\(681\) 803146. 1.39109e6i 0.0663631 0.114944i
\(682\) 64866.2 + 112352.i 0.00534020 + 0.00924950i
\(683\) 7.25762e6 + 1.25706e7i 0.595309 + 1.03111i 0.993503 + 0.113804i \(0.0363037\pi\)
−0.398194 + 0.917301i \(0.630363\pi\)
\(684\) 411724. 713127.i 0.0336485 0.0582810i
\(685\) 227530. 0.0185273
\(686\) 0 0
\(687\) 4.13778e6 0.334484
\(688\) −1.42083e6 + 2.46095e6i −0.114438 + 0.198212i
\(689\) 585468. + 1.01406e6i 0.0469846 + 0.0813796i
\(690\) 221046. + 382862.i 0.0176750 + 0.0306140i
\(691\) 1.04254e6 1.80573e6i 0.0830608 0.143866i −0.821502 0.570205i \(-0.806864\pi\)
0.904563 + 0.426339i \(0.140197\pi\)
\(692\) 2.05212e6 0.162906
\(693\) 0 0
\(694\) 5.73945e6 0.452347
\(695\) −503804. + 872613.i −0.0395639 + 0.0685267i
\(696\) −1.68782e6 2.92339e6i −0.132070 0.228751i
\(697\) −13629.4 23606.8i −0.00106266 0.00184058i
\(698\) −6.69422e6 + 1.15947e7i −0.520069 + 0.900787i
\(699\) −6.73801e6 −0.521601
\(700\) 0 0
\(701\) 9.96513e6 0.765928 0.382964 0.923763i \(-0.374903\pi\)
0.382964 + 0.923763i \(0.374903\pi\)
\(702\) −124626. + 215858.i −0.00954477 + 0.0165320i
\(703\) 965293. + 1.67194e6i 0.0736667 + 0.127594i
\(704\) 237959. + 412157.i 0.0180955 + 0.0313423i
\(705\) −150084. + 259953.i −0.0113726 + 0.0196980i
\(706\) 1.60167e7 1.20938
\(707\) 0 0
\(708\) 3.22210e6 0.241577
\(709\) −3.54518e6 + 6.14043e6i −0.264864 + 0.458757i −0.967528 0.252764i \(-0.918660\pi\)
0.702664 + 0.711522i \(0.251994\pi\)
\(710\) −542376. 939423.i −0.0403789 0.0699384i
\(711\) 1.36064e6 + 2.35669e6i 0.100941 + 0.174835i
\(712\) −2.95008e6 + 5.10969e6i −0.218089 + 0.377742i
\(713\) −761324. −0.0560849
\(714\) 0 0
\(715\) 44717.6 0.00327125
\(716\) 788796. 1.36623e6i 0.0575019 0.0995962i
\(717\) −3.66639e6 6.35037e6i −0.266342 0.461319i
\(718\) −1.19197e6 2.06456e6i −0.0862889 0.149457i
\(719\) 6.00833e6 1.04067e7i 0.433443 0.750745i −0.563724 0.825963i \(-0.690632\pi\)
0.997167 + 0.0752181i \(0.0239653\pi\)
\(720\) −93364.4 −0.00671197
\(721\) 0 0
\(722\) 8.28958e6 0.591820
\(723\) 4.71435e6 8.16549e6i 0.335410 0.580947i
\(724\) 4.79380e6 + 8.30310e6i 0.339886 + 0.588700i
\(725\) 9.09760e6 + 1.57575e7i 0.642809 + 1.11338i
\(726\) 2.65591e6 4.60017e6i 0.187013 0.323916i
\(727\) −1.32577e7 −0.930318 −0.465159 0.885227i \(-0.654003\pi\)
−0.465159 + 0.885227i \(0.654003\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 693014. 1.20034e6i 0.0481321 0.0833673i
\(731\) 184631. + 319790.i 0.0127794 + 0.0221346i
\(732\) 913830. + 1.58280e6i 0.0630359 + 0.109181i
\(733\) −454651. + 787479.i −0.0312549 + 0.0541351i −0.881230 0.472688i \(-0.843284\pi\)
0.849975 + 0.526823i \(0.176617\pi\)
\(734\) −1.32156e7 −0.905413
\(735\) 0 0
\(736\) −2.79289e6 −0.190046
\(737\) −3.03859e6 + 5.26299e6i −0.206064 + 0.356914i
\(738\) −132745. 229921.i −0.00897176 0.0155396i
\(739\) 143426. + 248421.i 0.00966086 + 0.0167331i 0.870815 0.491610i \(-0.163591\pi\)
−0.861155 + 0.508343i \(0.830258\pi\)
\(740\) 109447. 189568.i 0.00734725 0.0127258i
\(741\) 488792. 0.0327024
\(742\) 0 0
\(743\) −1.35906e6 −0.0903163 −0.0451582 0.998980i \(-0.514379\pi\)
−0.0451582 + 0.998980i \(0.514379\pi\)
\(744\) 80391.3 139242.i 0.00532447 0.00922226i
\(745\) 584250. + 1.01195e6i 0.0385663 + 0.0667988i
\(746\) −5.66126e6 9.80559e6i −0.372448 0.645100i
\(747\) 2.45329e6 4.24921e6i 0.160859 0.278617i
\(748\) 61843.6 0.00404148
\(749\) 0 0
\(750\) 1.00978e6 0.0655503
\(751\) −7.72018e6 + 1.33718e7i −0.499491 + 0.865144i −1.00000 0.000587430i \(-0.999813\pi\)
0.500509 + 0.865732i \(0.333146\pi\)
\(752\) −948147. 1.64224e6i −0.0611408 0.105899i
\(753\) 4.92305e6 + 8.52697e6i 0.316407 + 0.548034i
\(754\) 1.00188e6 1.73530e6i 0.0641779 0.111159i
\(755\) 499298. 0.0318781
\(756\) 0 0
\(757\) 1.70683e7 1.08256 0.541279 0.840843i \(-0.317940\pi\)
0.541279 + 0.840843i \(0.317940\pi\)
\(758\) 4.90050e6 8.48792e6i 0.309790 0.536572i
\(759\) −1.42606e6 2.47001e6i −0.0898532 0.155630i
\(760\) 91545.6 + 158562.i 0.00574915 + 0.00995782i
\(761\) 1.54173e6 2.67035e6i 0.0965041 0.167150i −0.813731 0.581241i \(-0.802567\pi\)
0.910235 + 0.414091i \(0.135901\pi\)
\(762\) 519742. 0.0324265
\(763\) 0 0
\(764\) 1.32675e7 0.822346
\(765\) −6066.16 + 10506.9i −0.000374766 + 0.000649114i
\(766\) 6.76810e6 + 1.17227e7i 0.416768 + 0.721864i
\(767\) 956307. + 1.65637e6i 0.0586960 + 0.101665i
\(768\) 294912. 510803.i 0.0180422 0.0312500i
\(769\) −3.00821e7 −1.83439 −0.917195 0.398439i \(-0.869552\pi\)
−0.917195 + 0.398439i