Properties

Label 294.6.e.w.67.1
Level $294$
Weight $6$
Character 294.67
Analytic conductor $47.153$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{4705})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1177x^{2} + 1176x + 1382976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(-16.8983 - 29.2686i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.6.e.w.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(4.50000 - 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-29.7965 - 51.6091i) q^{5} -36.0000 q^{6} +64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(-119.186 + 206.436i) q^{10} +(308.169 - 533.764i) q^{11} +(72.0000 + 124.708i) q^{12} -418.372 q^{13} -536.337 q^{15} +(-128.000 - 221.703i) q^{16} +(896.948 - 1553.56i) q^{17} +(-162.000 + 280.592i) q^{18} +(639.965 + 1108.45i) q^{19} +953.488 q^{20} -2465.35 q^{22} +(-2390.84 - 4141.06i) q^{23} +(288.000 - 498.831i) q^{24} +(-213.163 + 369.209i) q^{25} +(836.744 + 1449.28i) q^{26} -729.000 q^{27} +1716.02 q^{29} +(1072.67 + 1857.93i) q^{30} +(321.361 - 556.613i) q^{31} +(-512.000 + 886.810i) q^{32} +(-2773.52 - 4803.87i) q^{33} -7175.58 q^{34} +1296.00 q^{36} +(1180.01 + 2043.84i) q^{37} +(2559.86 - 4433.81i) q^{38} +(-1882.67 + 3260.89i) q^{39} +(-1906.98 - 3302.98i) q^{40} -15639.9 q^{41} -1638.61 q^{43} +(4930.70 + 8540.22i) q^{44} +(-2413.52 + 4180.33i) q^{45} +(-9563.37 + 16564.2i) q^{46} +(10367.8 + 17957.5i) q^{47} -2304.00 q^{48} +1705.30 q^{50} +(-8072.53 - 13982.0i) q^{51} +(3346.98 - 5797.13i) q^{52} +(2673.97 - 4631.45i) q^{53} +(1458.00 + 2525.33i) q^{54} -36729.4 q^{55} +11519.4 q^{57} +(-3432.04 - 5944.48i) q^{58} +(8412.46 - 14570.8i) q^{59} +(4290.70 - 7431.70i) q^{60} +(-6763.59 - 11714.9i) q^{61} -2570.89 q^{62} +4096.00 q^{64} +(12466.0 + 21591.8i) q^{65} +(-11094.1 + 19215.5i) q^{66} +(23241.8 - 40255.9i) q^{67} +(14351.2 + 24856.9i) q^{68} -43035.2 q^{69} -3273.91 q^{71} +(-2592.00 - 4489.48i) q^{72} +(-38379.2 + 66474.7i) q^{73} +(4720.04 - 8175.36i) q^{74} +(1918.47 + 3322.88i) q^{75} -20478.9 q^{76} +15061.4 q^{78} +(8865.69 + 15355.8i) q^{79} +(-7627.90 + 13211.9i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(31279.7 + 54178.1i) q^{82} -78846.7 q^{83} -106904. q^{85} +(3277.22 + 5676.30i) q^{86} +(7722.10 - 13375.1i) q^{87} +(19722.8 - 34160.9i) q^{88} +(37080.2 + 64224.8i) q^{89} +19308.1 q^{90} +76507.0 q^{92} +(-2892.25 - 5009.52i) q^{93} +(41471.1 - 71830.0i) q^{94} +(38137.4 - 66056.0i) q^{95} +(4608.00 + 7981.29i) q^{96} -24360.2 q^{97} -49923.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 18 q^{3} - 32 q^{4} + 18 q^{5} - 144 q^{6} + 256 q^{8} - 162 q^{9} + 72 q^{10} - 2 q^{11} + 288 q^{12} - 576 q^{13} + 324 q^{15} - 512 q^{16} + 1530 q^{17} - 648 q^{18} + 1188 q^{19} - 576 q^{20}+ \cdots + 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) 4.50000 7.79423i 0.288675 0.500000i
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −29.7965 51.6091i −0.533016 0.923211i −0.999257 0.0385528i \(-0.987725\pi\)
0.466241 0.884658i \(-0.345608\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) −119.186 + 206.436i −0.376899 + 0.652809i
\(11\) 308.169 533.764i 0.767903 1.33005i −0.170795 0.985307i \(-0.554633\pi\)
0.938698 0.344741i \(-0.112033\pi\)
\(12\) 72.0000 + 124.708i 0.144338 + 0.250000i
\(13\) −418.372 −0.686601 −0.343300 0.939226i \(-0.611545\pi\)
−0.343300 + 0.939226i \(0.611545\pi\)
\(14\) 0 0
\(15\) −536.337 −0.615474
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) 896.948 1553.56i 0.752740 1.30378i −0.193751 0.981051i \(-0.562065\pi\)
0.946490 0.322732i \(-0.104601\pi\)
\(18\) −162.000 + 280.592i −0.117851 + 0.204124i
\(19\) 639.965 + 1108.45i 0.406698 + 0.704422i 0.994517 0.104570i \(-0.0333467\pi\)
−0.587819 + 0.808992i \(0.700013\pi\)
\(20\) 953.488 0.533016
\(21\) 0 0
\(22\) −2465.35 −1.08598
\(23\) −2390.84 4141.06i −0.942392 1.63227i −0.760892 0.648879i \(-0.775238\pi\)
−0.181500 0.983391i \(-0.558095\pi\)
\(24\) 288.000 498.831i 0.102062 0.176777i
\(25\) −213.163 + 369.209i −0.0682122 + 0.118147i
\(26\) 836.744 + 1449.28i 0.242750 + 0.420455i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 1716.02 0.378903 0.189451 0.981890i \(-0.439329\pi\)
0.189451 + 0.981890i \(0.439329\pi\)
\(30\) 1072.67 + 1857.93i 0.217603 + 0.376899i
\(31\) 321.361 556.613i 0.0600605 0.104028i −0.834432 0.551111i \(-0.814204\pi\)
0.894492 + 0.447083i \(0.147537\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) −2773.52 4803.87i −0.443349 0.767903i
\(34\) −7175.58 −1.06453
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 1180.01 + 2043.84i 0.141704 + 0.245438i 0.928138 0.372235i \(-0.121409\pi\)
−0.786434 + 0.617674i \(0.788075\pi\)
\(38\) 2559.86 4433.81i 0.287579 0.498102i
\(39\) −1882.67 + 3260.89i −0.198205 + 0.343300i
\(40\) −1906.98 3302.98i −0.188450 0.326404i
\(41\) −15639.9 −1.45303 −0.726513 0.687152i \(-0.758860\pi\)
−0.726513 + 0.687152i \(0.758860\pi\)
\(42\) 0 0
\(43\) −1638.61 −0.135146 −0.0675731 0.997714i \(-0.521526\pi\)
−0.0675731 + 0.997714i \(0.521526\pi\)
\(44\) 4930.70 + 8540.22i 0.383952 + 0.665024i
\(45\) −2413.52 + 4180.33i −0.177672 + 0.307737i
\(46\) −9563.37 + 16564.2i −0.666371 + 1.15419i
\(47\) 10367.8 + 17957.5i 0.684606 + 1.18577i 0.973561 + 0.228429i \(0.0733589\pi\)
−0.288955 + 0.957343i \(0.593308\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) 1705.30 0.0964666
\(51\) −8072.53 13982.0i −0.434594 0.752740i
\(52\) 3346.98 5797.13i 0.171650 0.297307i
\(53\) 2673.97 4631.45i 0.130757 0.226478i −0.793211 0.608946i \(-0.791592\pi\)
0.923969 + 0.382468i \(0.124926\pi\)
\(54\) 1458.00 + 2525.33i 0.0680414 + 0.117851i
\(55\) −36729.4 −1.63722
\(56\) 0 0
\(57\) 11519.4 0.469615
\(58\) −3432.04 5944.48i −0.133962 0.232030i
\(59\) 8412.46 14570.8i 0.314625 0.544946i −0.664733 0.747081i \(-0.731455\pi\)
0.979358 + 0.202135i \(0.0647880\pi\)
\(60\) 4290.70 7431.70i 0.153868 0.266508i
\(61\) −6763.59 11714.9i −0.232730 0.403100i 0.725880 0.687821i \(-0.241433\pi\)
−0.958611 + 0.284720i \(0.908099\pi\)
\(62\) −2570.89 −0.0849384
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 12466.0 + 21591.8i 0.365969 + 0.633877i
\(66\) −11094.1 + 19215.5i −0.313495 + 0.542990i
\(67\) 23241.8 40255.9i 0.632531 1.09558i −0.354501 0.935055i \(-0.615349\pi\)
0.987033 0.160520i \(-0.0513173\pi\)
\(68\) 14351.2 + 24856.9i 0.376370 + 0.651892i
\(69\) −43035.2 −1.08818
\(70\) 0 0
\(71\) −3273.91 −0.0770762 −0.0385381 0.999257i \(-0.512270\pi\)
−0.0385381 + 0.999257i \(0.512270\pi\)
\(72\) −2592.00 4489.48i −0.0589256 0.102062i
\(73\) −38379.2 + 66474.7i −0.842924 + 1.45999i 0.0444870 + 0.999010i \(0.485835\pi\)
−0.887412 + 0.460978i \(0.847499\pi\)
\(74\) 4720.04 8175.36i 0.100200 0.173551i
\(75\) 1918.47 + 3322.88i 0.0393823 + 0.0682122i
\(76\) −20478.9 −0.406698
\(77\) 0 0
\(78\) 15061.4 0.280304
\(79\) 8865.69 + 15355.8i 0.159825 + 0.276825i 0.934805 0.355160i \(-0.115574\pi\)
−0.774980 + 0.631985i \(0.782240\pi\)
\(80\) −7627.90 + 13211.9i −0.133254 + 0.230803i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 31279.7 + 54178.1i 0.513722 + 0.889793i
\(83\) −78846.7 −1.25629 −0.628143 0.778098i \(-0.716185\pi\)
−0.628143 + 0.778098i \(0.716185\pi\)
\(84\) 0 0
\(85\) −106904. −1.60489
\(86\) 3277.22 + 5676.30i 0.0477814 + 0.0827598i
\(87\) 7722.10 13375.1i 0.109380 0.189451i
\(88\) 19722.8 34160.9i 0.271495 0.470243i
\(89\) 37080.2 + 64224.8i 0.496212 + 0.859464i 0.999990 0.00436852i \(-0.00139055\pi\)
−0.503778 + 0.863833i \(0.668057\pi\)
\(90\) 19308.1 0.251266
\(91\) 0 0
\(92\) 76507.0 0.942392
\(93\) −2892.25 5009.52i −0.0346759 0.0600605i
\(94\) 41471.1 71830.0i 0.484089 0.838467i
\(95\) 38137.4 66056.0i 0.433553 0.750936i
\(96\) 4608.00 + 7981.29i 0.0510310 + 0.0883883i
\(97\) −24360.2 −0.262876 −0.131438 0.991324i \(-0.541959\pi\)
−0.131438 + 0.991324i \(0.541959\pi\)
\(98\) 0 0
\(99\) −49923.3 −0.511936
\(100\) −3410.61 5907.35i −0.0341061 0.0590735i
\(101\) −74389.9 + 128847.i −0.725622 + 1.25681i 0.233095 + 0.972454i \(0.425115\pi\)
−0.958717 + 0.284361i \(0.908219\pi\)
\(102\) −32290.1 + 55928.1i −0.307305 + 0.532267i
\(103\) 102758. + 177982.i 0.954383 + 1.65304i 0.735773 + 0.677228i \(0.236819\pi\)
0.218610 + 0.975812i \(0.429848\pi\)
\(104\) −26775.8 −0.242750
\(105\) 0 0
\(106\) −21391.7 −0.184919
\(107\) 52288.8 + 90566.9i 0.441519 + 0.764734i 0.997802 0.0662591i \(-0.0211064\pi\)
−0.556283 + 0.830993i \(0.687773\pi\)
\(108\) 5832.00 10101.3i 0.0481125 0.0833333i
\(109\) −106373. + 184243.i −0.857560 + 1.48534i 0.0166886 + 0.999861i \(0.494688\pi\)
−0.874249 + 0.485478i \(0.838646\pi\)
\(110\) 73458.7 + 127234.i 0.578844 + 1.00259i
\(111\) 21240.2 0.163626
\(112\) 0 0
\(113\) 224886. 1.65678 0.828391 0.560150i \(-0.189256\pi\)
0.828391 + 0.560150i \(0.189256\pi\)
\(114\) −23038.7 39904.3i −0.166034 0.287579i
\(115\) −142477. + 246778.i −1.00462 + 1.74005i
\(116\) −13728.2 + 23777.9i −0.0947257 + 0.164070i
\(117\) 16944.1 + 29348.0i 0.114433 + 0.198205i
\(118\) −67299.7 −0.444947
\(119\) 0 0
\(120\) −34325.6 −0.217603
\(121\) −109410. 189504.i −0.679351 1.17667i
\(122\) −27054.4 + 46859.5i −0.164565 + 0.285035i
\(123\) −70379.4 + 121901.i −0.419453 + 0.726513i
\(124\) 5141.78 + 8905.82i 0.0300302 + 0.0520139i
\(125\) −160822. −0.920599
\(126\) 0 0
\(127\) −44027.2 −0.242221 −0.121110 0.992639i \(-0.538646\pi\)
−0.121110 + 0.992639i \(0.538646\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) −7373.73 + 12771.7i −0.0390133 + 0.0675731i
\(130\) 49864.1 86367.1i 0.258779 0.448219i
\(131\) −195566. 338730.i −0.995668 1.72455i −0.578353 0.815787i \(-0.696304\pi\)
−0.417316 0.908762i \(-0.637029\pi\)
\(132\) 88752.5 0.443349
\(133\) 0 0
\(134\) −185934. −0.894534
\(135\) 21721.6 + 37623.0i 0.102579 + 0.177672i
\(136\) 57404.6 99427.8i 0.266134 0.460957i
\(137\) −35491.1 + 61472.4i −0.161554 + 0.279820i −0.935426 0.353522i \(-0.884984\pi\)
0.773872 + 0.633342i \(0.218317\pi\)
\(138\) 86070.3 + 149078.i 0.384730 + 0.666371i
\(139\) −102764. −0.451133 −0.225567 0.974228i \(-0.572423\pi\)
−0.225567 + 0.974228i \(0.572423\pi\)
\(140\) 0 0
\(141\) 186620. 0.790515
\(142\) 6547.81 + 11341.1i 0.0272506 + 0.0471994i
\(143\) −128929. + 223312.i −0.527243 + 0.913212i
\(144\) −10368.0 + 17957.9i −0.0416667 + 0.0721688i
\(145\) −51131.5 88562.3i −0.201961 0.349807i
\(146\) 307034. 1.19208
\(147\) 0 0
\(148\) −37760.4 −0.141704
\(149\) 113149. + 195979.i 0.417527 + 0.723177i 0.995690 0.0927438i \(-0.0295637\pi\)
−0.578163 + 0.815921i \(0.696230\pi\)
\(150\) 7673.87 13291.5i 0.0278475 0.0482333i
\(151\) 274112. 474776.i 0.978330 1.69452i 0.309854 0.950784i \(-0.399720\pi\)
0.668476 0.743733i \(-0.266947\pi\)
\(152\) 40957.8 + 70940.9i 0.143790 + 0.249051i
\(153\) −145305. −0.501826
\(154\) 0 0
\(155\) −38301.7 −0.128053
\(156\) −30122.8 52174.2i −0.0991023 0.171650i
\(157\) 120572. 208837.i 0.390389 0.676173i −0.602112 0.798412i \(-0.705674\pi\)
0.992501 + 0.122238i \(0.0390072\pi\)
\(158\) 35462.7 61423.3i 0.113013 0.195745i
\(159\) −24065.7 41683.0i −0.0754928 0.130757i
\(160\) 61023.2 0.188450
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) −315451. 546377.i −0.929957 1.61073i −0.783388 0.621533i \(-0.786510\pi\)
−0.146569 0.989200i \(-0.546823\pi\)
\(164\) 125119. 216712.i 0.363257 0.629179i
\(165\) −165282. + 286277.i −0.472624 + 0.818610i
\(166\) 157693. + 273133.i 0.444164 + 0.769314i
\(167\) −239113. −0.663456 −0.331728 0.943375i \(-0.607632\pi\)
−0.331728 + 0.943375i \(0.607632\pi\)
\(168\) 0 0
\(169\) −196258. −0.528579
\(170\) 213807. + 370325.i 0.567414 + 0.982790i
\(171\) 51837.2 89784.6i 0.135566 0.234807i
\(172\) 13108.9 22705.2i 0.0337865 0.0585200i
\(173\) −151470. 262353.i −0.384778 0.666455i 0.606961 0.794732i \(-0.292389\pi\)
−0.991738 + 0.128277i \(0.959055\pi\)
\(174\) −61776.8 −0.154686
\(175\) 0 0
\(176\) −157782. −0.383952
\(177\) −75712.1 131137.i −0.181649 0.314625i
\(178\) 148321. 256899.i 0.350875 0.607733i
\(179\) 52994.8 91789.7i 0.123623 0.214122i −0.797571 0.603226i \(-0.793882\pi\)
0.921194 + 0.389104i \(0.127215\pi\)
\(180\) −38616.3 66885.3i −0.0888360 0.153868i
\(181\) 473727. 1.07481 0.537405 0.843324i \(-0.319405\pi\)
0.537405 + 0.843324i \(0.319405\pi\)
\(182\) 0 0
\(183\) −121745. −0.268734
\(184\) −153014. 265028.i −0.333186 0.577095i
\(185\) 70320.4 121799.i 0.151061 0.261645i
\(186\) −11569.0 + 20038.1i −0.0245196 + 0.0424692i
\(187\) −552822. 957516.i −1.15606 2.00236i
\(188\) −331768. −0.684606
\(189\) 0 0
\(190\) −305099. −0.613137
\(191\) 293907. + 509061.i 0.582943 + 1.00969i 0.995128 + 0.0985869i \(0.0314322\pi\)
−0.412185 + 0.911100i \(0.635234\pi\)
\(192\) 18432.0 31925.2i 0.0360844 0.0625000i
\(193\) 183430. 317711.i 0.354469 0.613958i −0.632558 0.774513i \(-0.717995\pi\)
0.987027 + 0.160555i \(0.0513283\pi\)
\(194\) 48720.4 + 84386.1i 0.0929407 + 0.160978i
\(195\) 224388. 0.422585
\(196\) 0 0
\(197\) 727471. 1.33552 0.667760 0.744377i \(-0.267253\pi\)
0.667760 + 0.744377i \(0.267253\pi\)
\(198\) 99846.6 + 172939.i 0.180997 + 0.313495i
\(199\) −117406. + 203353.i −0.210163 + 0.364013i −0.951765 0.306826i \(-0.900733\pi\)
0.741602 + 0.670840i \(0.234066\pi\)
\(200\) −13642.4 + 23629.4i −0.0241166 + 0.0417712i
\(201\) −209176. 362303.i −0.365192 0.632531i
\(202\) 595119. 1.02619
\(203\) 0 0
\(204\) 258321. 0.434594
\(205\) 466013. + 807159.i 0.774486 + 1.34145i
\(206\) 411032. 711929.i 0.674851 1.16888i
\(207\) −193658. + 335426.i −0.314131 + 0.544090i
\(208\) 53551.6 + 92754.1i 0.0858251 + 0.148653i
\(209\) 788868. 1.24922
\(210\) 0 0
\(211\) −308050. −0.476337 −0.238169 0.971224i \(-0.576547\pi\)
−0.238169 + 0.971224i \(0.576547\pi\)
\(212\) 42783.5 + 74103.1i 0.0653787 + 0.113239i
\(213\) −14732.6 + 25517.6i −0.0222500 + 0.0385381i
\(214\) 209155. 362268.i 0.312201 0.540748i
\(215\) 48824.8 + 84567.0i 0.0720351 + 0.124768i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) 850983. 1.21277
\(219\) 345413. + 598272.i 0.486663 + 0.842924i
\(220\) 293835. 508937.i 0.409305 0.708937i
\(221\) −375258. + 649965.i −0.516831 + 0.895178i
\(222\) −42480.4 73578.2i −0.0578504 0.100200i
\(223\) −510190. −0.687021 −0.343510 0.939149i \(-0.611616\pi\)
−0.343510 + 0.939149i \(0.611616\pi\)
\(224\) 0 0
\(225\) 34532.4 0.0454748
\(226\) −449771. 779027.i −0.585761 1.01457i
\(227\) 519016. 898962.i 0.668523 1.15791i −0.309795 0.950803i \(-0.600260\pi\)
0.978317 0.207112i \(-0.0664063\pi\)
\(228\) −92155.0 + 159617.i −0.117404 + 0.203349i
\(229\) −519245. 899359.i −0.654310 1.13330i −0.982066 0.188536i \(-0.939626\pi\)
0.327756 0.944762i \(-0.393708\pi\)
\(230\) 1.13982e6 1.42075
\(231\) 0 0
\(232\) 109825. 0.133962
\(233\) −658726. 1.14095e6i −0.794905 1.37682i −0.922899 0.385041i \(-0.874187\pi\)
0.127994 0.991775i \(-0.459146\pi\)
\(234\) 67776.3 117392.i 0.0809167 0.140152i
\(235\) 617846. 1.07014e6i 0.729812 1.26407i
\(236\) 134599. + 233133.i 0.157312 + 0.272473i
\(237\) 159582. 0.184550
\(238\) 0 0
\(239\) 800669. 0.906689 0.453345 0.891335i \(-0.350231\pi\)
0.453345 + 0.891335i \(0.350231\pi\)
\(240\) 68651.1 + 118907.i 0.0769342 + 0.133254i
\(241\) 201154. 348408.i 0.223093 0.386408i −0.732653 0.680602i \(-0.761718\pi\)
0.955745 + 0.294195i \(0.0950514\pi\)
\(242\) −437641. + 758016.i −0.480374 + 0.832032i
\(243\) 29524.5 + 51137.9i 0.0320750 + 0.0555556i
\(244\) 216435. 0.232730
\(245\) 0 0
\(246\) 563035. 0.593196
\(247\) −267743. 463745.i −0.279239 0.483657i
\(248\) 20567.1 35623.3i 0.0212346 0.0367794i
\(249\) −354810. + 614549.i −0.362658 + 0.628143i
\(250\) 321644. + 557104.i 0.325481 + 0.563750i
\(251\) 1.29078e6 1.29320 0.646601 0.762828i \(-0.276190\pi\)
0.646601 + 0.762828i \(0.276190\pi\)
\(252\) 0 0
\(253\) −2.94713e6 −2.89466
\(254\) 88054.4 + 152515.i 0.0856380 + 0.148329i
\(255\) −481066. + 833231.i −0.463292 + 0.802444i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −882173. 1.52797e6i −0.833146 1.44305i −0.895531 0.444999i \(-0.853204\pi\)
0.0623853 0.998052i \(-0.480129\pi\)
\(258\) 58989.9 0.0551732
\(259\) 0 0
\(260\) −398913. −0.365969
\(261\) −69498.9 120376.i −0.0631505 0.109380i
\(262\) −782263. + 1.35492e6i −0.704044 + 1.21944i
\(263\) −213873. + 370438.i −0.190663 + 0.330237i −0.945470 0.325709i \(-0.894397\pi\)
0.754807 + 0.655947i \(0.227730\pi\)
\(264\) −177505. 307448.i −0.156748 0.271495i
\(265\) −318699. −0.278783
\(266\) 0 0
\(267\) 667444. 0.572976
\(268\) 371868. + 644094.i 0.316266 + 0.547788i
\(269\) −633453. + 1.09717e6i −0.533744 + 0.924473i 0.465479 + 0.885059i \(0.345882\pi\)
−0.999223 + 0.0394134i \(0.987451\pi\)
\(270\) 86886.6 150492.i 0.0725343 0.125633i
\(271\) −156017. 270229.i −0.129047 0.223516i 0.794260 0.607577i \(-0.207859\pi\)
−0.923308 + 0.384061i \(0.874525\pi\)
\(272\) −459237. −0.376370
\(273\) 0 0
\(274\) 283929. 0.228472
\(275\) 131380. + 227557.i 0.104761 + 0.181451i
\(276\) 344281. 596313.i 0.272045 0.471196i
\(277\) 839298. 1.45371e6i 0.657229 1.13835i −0.324101 0.946022i \(-0.605062\pi\)
0.981330 0.192331i \(-0.0616048\pi\)
\(278\) 205528. + 355986.i 0.159500 + 0.276262i
\(279\) −52060.5 −0.0400403
\(280\) 0 0
\(281\) −765001. −0.577958 −0.288979 0.957335i \(-0.593316\pi\)
−0.288979 + 0.957335i \(0.593316\pi\)
\(282\) −373240. 646470.i −0.279489 0.484089i
\(283\) −42915.8 + 74332.4i −0.0318531 + 0.0551711i −0.881512 0.472161i \(-0.843474\pi\)
0.849659 + 0.527332i \(0.176808\pi\)
\(284\) 26191.3 45364.6i 0.0192691 0.0333750i
\(285\) −343237. 594504.i −0.250312 0.433553i
\(286\) 1.03143e6 0.745634
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) −899101. 1.55729e6i −0.633234 1.09679i
\(290\) −204526. + 354249.i −0.142808 + 0.247351i
\(291\) −109621. + 189869.i −0.0758858 + 0.131438i
\(292\) −614067. 1.06360e6i −0.421462 0.729994i
\(293\) 97784.7 0.0665429 0.0332715 0.999446i \(-0.489407\pi\)
0.0332715 + 0.999446i \(0.489407\pi\)
\(294\) 0 0
\(295\) −1.00265e6 −0.670800
\(296\) 75520.7 + 130806.i 0.0500999 + 0.0867756i
\(297\) −224655. + 389114.i −0.147783 + 0.255968i
\(298\) 452595. 783918.i 0.295236 0.511363i
\(299\) 1.00026e6 + 1.73250e6i 0.647047 + 1.12072i
\(300\) −61390.9 −0.0393823
\(301\) 0 0
\(302\) −2.19289e6 −1.38357
\(303\) 669509. + 1.15962e6i 0.418938 + 0.725622i
\(304\) 163831. 283764.i 0.101675 0.176105i
\(305\) −403063. + 698125.i −0.248098 + 0.429718i
\(306\) 290611. + 503353.i 0.177422 + 0.307305i
\(307\) 1.75546e6 1.06303 0.531514 0.847050i \(-0.321623\pi\)
0.531514 + 0.847050i \(0.321623\pi\)
\(308\) 0 0
\(309\) 1.84965e6 1.10203
\(310\) 76603.5 + 132681.i 0.0452735 + 0.0784160i
\(311\) −901978. + 1.56227e6i −0.528804 + 0.915916i 0.470631 + 0.882330i \(0.344026\pi\)
−0.999436 + 0.0335861i \(0.989307\pi\)
\(312\) −120491. + 208697.i −0.0700759 + 0.121375i
\(313\) 1.23215e6 + 2.13414e6i 0.710888 + 1.23129i 0.964524 + 0.263994i \(0.0850400\pi\)
−0.253636 + 0.967300i \(0.581627\pi\)
\(314\) −964576. −0.552093
\(315\) 0 0
\(316\) −283702. −0.159825
\(317\) −826430. 1.43142e6i −0.461911 0.800053i 0.537145 0.843490i \(-0.319503\pi\)
−0.999056 + 0.0434366i \(0.986169\pi\)
\(318\) −96262.8 + 166732.i −0.0533815 + 0.0924595i
\(319\) 528824. 915950.i 0.290961 0.503959i
\(320\) −122046. 211391.i −0.0666270 0.115401i
\(321\) 941199. 0.509822
\(322\) 0 0
\(323\) 2.29606e6 1.22455
\(324\) −52488.0 90911.9i −0.0277778 0.0481125i
\(325\) 89181.4 154467.i 0.0468345 0.0811198i
\(326\) −1.26180e6 + 2.18551e6i −0.657579 + 1.13896i
\(327\) 957356. + 1.65819e6i 0.495113 + 0.857560i
\(328\) −1.00095e6 −0.513722
\(329\) 0 0
\(330\) 1.32226e6 0.668392
\(331\) 834072. + 1.44465e6i 0.418440 + 0.724760i 0.995783 0.0917423i \(-0.0292436\pi\)
−0.577343 + 0.816502i \(0.695910\pi\)
\(332\) 630774. 1.09253e6i 0.314071 0.543987i
\(333\) 95580.9 165551.i 0.0472346 0.0818128i
\(334\) 478226. + 828312.i 0.234567 + 0.406282i
\(335\) −2.77009e6 −1.34860
\(336\) 0 0
\(337\) −524769. −0.251706 −0.125853 0.992049i \(-0.540167\pi\)
−0.125853 + 0.992049i \(0.540167\pi\)
\(338\) 392516. + 679857.i 0.186881 + 0.323688i
\(339\) 1.01199e6 1.75281e6i 0.478272 0.828391i
\(340\) 855229. 1.48130e6i 0.401222 0.694937i
\(341\) −198067. 343061.i −0.0922413 0.159767i
\(342\) −414697. −0.191719
\(343\) 0 0
\(344\) −104871. −0.0477814
\(345\) 1.28230e6 + 2.22100e6i 0.580017 + 1.00462i
\(346\) −605878. + 1.04941e6i −0.272079 + 0.471255i
\(347\) −963184. + 1.66828e6i −0.429423 + 0.743783i −0.996822 0.0796604i \(-0.974616\pi\)
0.567399 + 0.823443i \(0.307950\pi\)
\(348\) 123554. + 214001.i 0.0546899 + 0.0947257i
\(349\) −340342. −0.149573 −0.0747864 0.997200i \(-0.523827\pi\)
−0.0747864 + 0.997200i \(0.523827\pi\)
\(350\) 0 0
\(351\) 304993. 0.132136
\(352\) 315565. + 546574.i 0.135747 + 0.235121i
\(353\) −37395.6 + 64771.1i −0.0159729 + 0.0276659i −0.873901 0.486103i \(-0.838418\pi\)
0.857928 + 0.513769i \(0.171751\pi\)
\(354\) −302849. + 524549.i −0.128445 + 0.222473i
\(355\) 97551.0 + 168963.i 0.0410829 + 0.0711576i
\(356\) −1.18657e6 −0.496212
\(357\) 0 0
\(358\) −423958. −0.174830
\(359\) −1.20877e6 2.09365e6i −0.495002 0.857368i 0.504982 0.863130i \(-0.331499\pi\)
−0.999983 + 0.00576184i \(0.998166\pi\)
\(360\) −154465. + 267541.i −0.0628165 + 0.108801i
\(361\) 418939. 725624.i 0.169193 0.293051i
\(362\) −947454. 1.64104e6i −0.380003 0.658184i
\(363\) −1.96938e6 −0.784447
\(364\) 0 0
\(365\) 4.57426e6 1.79717
\(366\) 243489. + 421736.i 0.0950117 + 0.164565i
\(367\) 80931.9 140178.i 0.0313657 0.0543269i −0.849916 0.526917i \(-0.823348\pi\)
0.881282 + 0.472591i \(0.156681\pi\)
\(368\) −612056. + 1.06011e6i −0.235598 + 0.408068i
\(369\) 633415. + 1.09711e6i 0.242171 + 0.419453i
\(370\) −562563. −0.213632
\(371\) 0 0
\(372\) 92552.0 0.0346759
\(373\) −38501.2 66686.1i −0.0143286 0.0248178i 0.858772 0.512358i \(-0.171228\pi\)
−0.873101 + 0.487540i \(0.837894\pi\)
\(374\) −2.21129e6 + 3.83006e6i −0.817460 + 1.41588i
\(375\) −723699. + 1.25348e6i −0.265754 + 0.460300i
\(376\) 663537. + 1.14928e6i 0.242045 + 0.419234i
\(377\) −717936. −0.260155
\(378\) 0 0
\(379\) −774165. −0.276844 −0.138422 0.990373i \(-0.544203\pi\)
−0.138422 + 0.990373i \(0.544203\pi\)
\(380\) 610199. + 1.05690e6i 0.216777 + 0.375468i
\(381\) −198122. + 343158.i −0.0699232 + 0.121110i
\(382\) 1.17563e6 2.03625e6i 0.412203 0.713956i
\(383\) 1.81664e6 + 3.14651e6i 0.632807 + 1.09605i 0.986975 + 0.160873i \(0.0514309\pi\)
−0.354168 + 0.935182i \(0.615236\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −1.46744e6 −0.501295
\(387\) 66363.6 + 114945.i 0.0225244 + 0.0390133i
\(388\) 194881. 337545.i 0.0657190 0.113829i
\(389\) 1.25954e6 2.18158e6i 0.422024 0.730967i −0.574113 0.818776i \(-0.694653\pi\)
0.996137 + 0.0878087i \(0.0279864\pi\)
\(390\) −448777. 777304.i −0.149406 0.258779i
\(391\) −8.57784e6 −2.83750
\(392\) 0 0
\(393\) −3.52019e6 −1.14970
\(394\) −1.45494e6 2.52003e6i −0.472178 0.817836i
\(395\) 528333. 915099.i 0.170379 0.295104i
\(396\) 399386. 691758.i 0.127984 0.221675i
\(397\) 2.79639e6 + 4.84349e6i 0.890474 + 1.54235i 0.839308 + 0.543656i \(0.182961\pi\)
0.0511664 + 0.998690i \(0.483706\pi\)
\(398\) 939246. 0.297216
\(399\) 0 0
\(400\) 109139. 0.0341061
\(401\) 95530.9 + 165464.i 0.0296676 + 0.0513859i 0.880478 0.474087i \(-0.157222\pi\)
−0.850810 + 0.525473i \(0.823888\pi\)
\(402\) −836703. + 1.44921e6i −0.258230 + 0.447267i
\(403\) −134448. + 232871.i −0.0412376 + 0.0714256i
\(404\) −1.19024e6 2.06155e6i −0.362811 0.628407i
\(405\) 390990. 0.118448
\(406\) 0 0
\(407\) 1.45457e6 0.435260
\(408\) −516642. 894850.i −0.153652 0.266134i
\(409\) 2.22902e6 3.86078e6i 0.658880 1.14121i −0.322026 0.946731i \(-0.604364\pi\)
0.980906 0.194483i \(-0.0623030\pi\)
\(410\) 1.86405e6 3.22864e6i 0.547645 0.948548i
\(411\) 319420. + 553251.i 0.0932733 + 0.161554i
\(412\) −3.28826e6 −0.954383
\(413\) 0 0
\(414\) 1.54927e6 0.444248
\(415\) 2.34936e6 + 4.06920e6i 0.669620 + 1.15982i
\(416\) 214206. 371016.i 0.0606875 0.105114i
\(417\) −462439. + 800968.i −0.130231 + 0.225567i
\(418\) −1.57774e6 2.73272e6i −0.441666 0.764988i
\(419\) −4.76120e6 −1.32489 −0.662447 0.749109i \(-0.730482\pi\)
−0.662447 + 0.749109i \(0.730482\pi\)
\(420\) 0 0
\(421\) −1.38498e6 −0.380835 −0.190418 0.981703i \(-0.560984\pi\)
−0.190418 + 0.981703i \(0.560984\pi\)
\(422\) 616099. + 1.06711e6i 0.168411 + 0.291696i
\(423\) 839789. 1.45456e6i 0.228202 0.395257i
\(424\) 171134. 296413.i 0.0462297 0.0800722i
\(425\) 382392. + 662322.i 0.102692 + 0.177868i
\(426\) 117861. 0.0314662
\(427\) 0 0
\(428\) −1.67324e6 −0.441519
\(429\) 1.16036e6 + 2.00981e6i 0.304404 + 0.527243i
\(430\) 195299. 338268.i 0.0509365 0.0882246i
\(431\) −2.27946e6 + 3.94813e6i −0.591069 + 1.02376i 0.403020 + 0.915191i \(0.367960\pi\)
−0.994089 + 0.108570i \(0.965373\pi\)
\(432\) 93312.0 + 161621.i 0.0240563 + 0.0416667i
\(433\) 6.00870e6 1.54014 0.770071 0.637958i \(-0.220221\pi\)
0.770071 + 0.637958i \(0.220221\pi\)
\(434\) 0 0
\(435\) −920366. −0.233205
\(436\) −1.70197e6 2.94789e6i −0.428780 0.742669i
\(437\) 3.06011e6 5.30027e6i 0.766538 1.32768i
\(438\) 1.38165e6 2.39309e6i 0.344122 0.596038i
\(439\) 280252. + 485410.i 0.0694044 + 0.120212i 0.898639 0.438688i \(-0.144557\pi\)
−0.829235 + 0.558900i \(0.811223\pi\)
\(440\) −2.35068e6 −0.578844
\(441\) 0 0
\(442\) 3.00206e6 0.730910
\(443\) −1.67037e6 2.89317e6i −0.404393 0.700429i 0.589858 0.807507i \(-0.299184\pi\)
−0.994251 + 0.107078i \(0.965850\pi\)
\(444\) −169922. + 294313.i −0.0409064 + 0.0708519i
\(445\) 2.20972e6 3.82735e6i 0.528978 0.916217i
\(446\) 1.02038e6 + 1.76735e6i 0.242898 + 0.420713i
\(447\) 2.03668e6 0.482118
\(448\) 0 0
\(449\) −6.47842e6 −1.51654 −0.758269 0.651942i \(-0.773955\pi\)
−0.758269 + 0.651942i \(0.773955\pi\)
\(450\) −69064.8 119624.i −0.0160778 0.0278475i
\(451\) −4.81972e6 + 8.34799e6i −1.11578 + 1.93259i
\(452\) −1.79908e6 + 3.11611e6i −0.414196 + 0.717408i
\(453\) −2.46701e6 4.27298e6i −0.564839 0.978330i
\(454\) −4.15213e6 −0.945434
\(455\) 0 0
\(456\) 737240. 0.166034
\(457\) −2.15569e6 3.73376e6i −0.482831 0.836289i 0.516974 0.856001i \(-0.327058\pi\)
−0.999806 + 0.0197123i \(0.993725\pi\)
\(458\) −2.07698e6 + 3.59744e6i −0.462667 + 0.801363i
\(459\) −653875. + 1.13254e6i −0.144865 + 0.250913i
\(460\) −2.27964e6 3.94845e6i −0.502310 0.870026i
\(461\) 320951. 0.0703374 0.0351687 0.999381i \(-0.488803\pi\)
0.0351687 + 0.999381i \(0.488803\pi\)
\(462\) 0 0
\(463\) −3.14239e6 −0.681251 −0.340626 0.940199i \(-0.610639\pi\)
−0.340626 + 0.940199i \(0.610639\pi\)
\(464\) −219651. 380446.i −0.0473629 0.0820349i
\(465\) −172358. + 298532.i −0.0369657 + 0.0640264i
\(466\) −2.63491e6 + 4.56379e6i −0.562083 + 0.973556i
\(467\) 2.07293e6 + 3.59043e6i 0.439839 + 0.761823i 0.997677 0.0681271i \(-0.0217023\pi\)
−0.557838 + 0.829950i \(0.688369\pi\)
\(468\) −542210. −0.114433
\(469\) 0 0
\(470\) −4.94277e6 −1.03211
\(471\) −1.08515e6 1.87953e6i −0.225391 0.390389i
\(472\) 538397. 932532.i 0.111237 0.192668i
\(473\) −504967. + 874629.i −0.103779 + 0.179751i
\(474\) −319165. 552809.i −0.0652483 0.113013i
\(475\) −545667. −0.110967
\(476\) 0 0
\(477\) −433183. −0.0871716
\(478\) −1.60134e6 2.77360e6i −0.320563 0.555232i
\(479\) −128839. + 223155.i −0.0256571 + 0.0444394i −0.878569 0.477616i \(-0.841501\pi\)
0.852912 + 0.522055i \(0.174834\pi\)
\(480\) 274605. 475629.i 0.0544007 0.0942248i
\(481\) −493684. 855085.i −0.0972940 0.168518i
\(482\) −1.60923e6 −0.315501
\(483\) 0 0
\(484\) 3.50113e6 0.679351
\(485\) 725848. + 1.25721e6i 0.140117 + 0.242690i
\(486\) 118098. 204552.i 0.0226805 0.0392837i
\(487\) −860165. + 1.48985e6i −0.164346 + 0.284656i −0.936423 0.350873i \(-0.885885\pi\)
0.772077 + 0.635529i \(0.219218\pi\)
\(488\) −432870. 749752.i −0.0822825 0.142518i
\(489\) −5.67812e6 −1.07382
\(490\) 0 0
\(491\) 6.49101e6 1.21509 0.607546 0.794285i \(-0.292154\pi\)
0.607546 + 0.794285i \(0.292154\pi\)
\(492\) −1.12607e6 1.95041e6i −0.209726 0.363257i
\(493\) 1.53918e6 2.66594e6i 0.285215 0.494007i
\(494\) −1.07097e6 + 1.85498e6i −0.197452 + 0.341997i
\(495\) 1.48754e6 + 2.57649e6i 0.272870 + 0.472624i
\(496\) −164537. −0.0300302
\(497\) 0 0
\(498\) 2.83848e6 0.512876
\(499\) −189816. 328770.i −0.0341256 0.0591073i 0.848458 0.529262i \(-0.177531\pi\)
−0.882584 + 0.470155i \(0.844198\pi\)
\(500\) 1.28658e6 2.22842e6i 0.230150 0.398631i
\(501\) −1.07601e6 + 1.86370e6i −0.191523 + 0.331728i
\(502\) −2.58155e6 4.47138e6i −0.457216 0.791922i
\(503\) 8.60340e6 1.51618 0.758089 0.652151i \(-0.226133\pi\)
0.758089 + 0.652151i \(0.226133\pi\)
\(504\) 0 0
\(505\) 8.86624e6 1.54707
\(506\) 5.89426e6 + 1.02092e7i 1.02342 + 1.77261i
\(507\) −883160. + 1.52968e6i −0.152588 + 0.264290i
\(508\) 352218. 610059.i 0.0605552 0.104885i
\(509\) 517714. + 896707.i 0.0885718 + 0.153411i 0.906908 0.421330i \(-0.138436\pi\)
−0.818336 + 0.574740i \(0.805103\pi\)
\(510\) 3.84853e6 0.655193
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −466534. 808061.i −0.0782691 0.135566i
\(514\) −3.52869e6 + 6.11188e6i −0.589123 + 1.02039i
\(515\) 6.12366e6 1.06065e7i 1.01740 1.76219i
\(516\) −117980. 204347.i −0.0195067 0.0337865i
\(517\) 1.27801e7 2.10284
\(518\) 0 0
\(519\) −2.72645e6 −0.444303
\(520\) 797825. + 1.38187e6i 0.129390 + 0.224109i
\(521\) 3.21187e6 5.56312e6i 0.518398 0.897891i −0.481374 0.876515i \(-0.659862\pi\)
0.999772 0.0213759i \(-0.00680468\pi\)
\(522\) −277996. + 481502.i −0.0446541 + 0.0773432i
\(523\) 4.03192e6 + 6.98349e6i 0.644551 + 1.11640i 0.984405 + 0.175917i \(0.0562891\pi\)
−0.339854 + 0.940478i \(0.610378\pi\)
\(524\) 6.25811e6 0.995668
\(525\) 0 0
\(526\) 1.71098e6 0.269638
\(527\) −576488. 998506.i −0.0904198 0.156612i
\(528\) −710020. + 1.22979e6i −0.110837 + 0.191976i
\(529\) −8.21408e6 + 1.42272e7i −1.27620 + 2.21045i
\(530\) 637399. + 1.10401e6i 0.0985647 + 0.170719i
\(531\) −1.36282e6 −0.209750
\(532\) 0 0
\(533\) 6.54329e6 0.997649
\(534\) −1.33489e6 2.31209e6i −0.202578 0.350875i
\(535\) 3.11605e6 5.39716e6i 0.470674 0.815231i
\(536\) 1.48747e6 2.57638e6i 0.223633 0.387345i
\(537\) −476953. 826107.i −0.0713740 0.123623i
\(538\) 5.06762e6 0.754829
\(539\) 0 0
\(540\) −695093. −0.102579
\(541\) 4.31107e6 + 7.46699e6i 0.633274 + 1.09686i 0.986878 + 0.161467i \(0.0516226\pi\)
−0.353604 + 0.935395i \(0.615044\pi\)
\(542\) −624068. + 1.08092e6i −0.0912502 + 0.158050i
\(543\) 2.13177e6 3.69234e6i 0.310271 0.537405i
\(544\) 918474. + 1.59084e6i 0.133067 + 0.230478i
\(545\) 1.26782e7 1.82837
\(546\) 0 0
\(547\) −3.51266e6 −0.501958 −0.250979 0.967993i \(-0.580753\pi\)
−0.250979 + 0.967993i \(0.580753\pi\)
\(548\) −567857. 983558.i −0.0807770 0.139910i
\(549\) −547851. + 948905.i −0.0775767 + 0.134367i
\(550\) 525521. 910229.i 0.0740770 0.128305i
\(551\) 1.09819e6 + 1.90213e6i 0.154099 + 0.266907i
\(552\) −2.75425e6 −0.384730
\(553\) 0 0
\(554\) −6.71438e6 −0.929462
\(555\) −632884. 1.09619e6i −0.0872150 0.151061i
\(556\) 822114. 1.42394e6i 0.112783 0.195347i
\(557\) 6.10915e6 1.05814e7i 0.834340 1.44512i −0.0602274 0.998185i \(-0.519183\pi\)
0.894567 0.446934i \(-0.147484\pi\)
\(558\) 104121. + 180343.i 0.0141564 + 0.0245196i
\(559\) 685548. 0.0927915
\(560\) 0 0
\(561\) −9.95080e6 −1.33491
\(562\) 1.53000e6 + 2.65004e6i 0.204339 + 0.353925i
\(563\) 743804. 1.28831e6i 0.0988980 0.171296i −0.812331 0.583197i \(-0.801802\pi\)
0.911229 + 0.411901i \(0.135135\pi\)
\(564\) −1.49296e6 + 2.58588e6i −0.197629 + 0.342303i
\(565\) −6.70080e6 1.16061e7i −0.883092 1.52956i
\(566\) 343327. 0.0450471
\(567\) 0 0
\(568\) −209530. −0.0272506
\(569\) −2.91751e6 5.05327e6i −0.377773 0.654322i 0.612965 0.790110i \(-0.289977\pi\)
−0.990738 + 0.135788i \(0.956643\pi\)
\(570\) −1.37295e6 + 2.37802e6i −0.176997 + 0.306568i
\(571\) −4.91614e6 + 8.51500e6i −0.631006 + 1.09294i 0.356340 + 0.934356i \(0.384024\pi\)
−0.987346 + 0.158579i \(0.949309\pi\)
\(572\) −2.06287e6 3.57299e6i −0.263621 0.456606i
\(573\) 5.29032e6 0.673125
\(574\) 0 0
\(575\) 2.03856e6 0.257130
\(576\) −165888. 287326.i −0.0208333 0.0360844i
\(577\) 162003. 280597.i 0.0202574 0.0350868i −0.855719 0.517441i \(-0.826885\pi\)
0.875976 + 0.482354i \(0.160218\pi\)
\(578\) −3.59640e6 + 6.22916e6i −0.447764 + 0.775550i
\(579\) −1.65087e6 2.85940e6i −0.204653 0.354469i
\(580\) 1.63621e6 0.201961
\(581\) 0 0
\(582\) 876966. 0.107319
\(583\) −1.64806e6 2.85453e6i −0.200818 0.347827i
\(584\) −2.45627e6 + 4.25438e6i −0.298019 + 0.516184i
\(585\) 1.00975e6 1.74893e6i 0.121990 0.211292i
\(586\) −195569. 338736.i −0.0235265 0.0407491i
\(587\) −4.27646e6 −0.512258 −0.256129 0.966643i \(-0.582447\pi\)
−0.256129 + 0.966643i \(0.582447\pi\)
\(588\) 0 0
\(589\) 822639. 0.0977060
\(590\) 2.00530e6 + 3.47327e6i 0.237164 + 0.410780i
\(591\) 3.27362e6 5.67008e6i 0.385531 0.667760i
\(592\) 302083. 523223.i 0.0354260 0.0613596i
\(593\) −7.94651e6 1.37638e7i −0.927982 1.60731i −0.786694 0.617344i \(-0.788209\pi\)
−0.141289 0.989968i \(-0.545125\pi\)
\(594\) 1.79724e6 0.208997
\(595\) 0 0
\(596\) −3.62076e6 −0.417527
\(597\) 1.05665e6 + 1.83018e6i 0.121338 + 0.210163i
\(598\) 4.00105e6 6.93002e6i 0.457531 0.792467i
\(599\) 8.75306e6 1.51608e7i 0.996766 1.72645i 0.428787 0.903406i \(-0.358941\pi\)
0.567979 0.823043i \(-0.307726\pi\)
\(600\) 122782. + 212664.i 0.0139237 + 0.0241166i
\(601\) 5.98914e6 0.676361 0.338180 0.941081i \(-0.390189\pi\)
0.338180 + 0.941081i \(0.390189\pi\)
\(602\) 0 0
\(603\) −3.76516e6 −0.421687
\(604\) 4.38579e6 + 7.59641e6i 0.489165 + 0.847259i
\(605\) −6.52008e6 + 1.12931e7i −0.724210 + 1.25437i
\(606\) 2.67804e6 4.63850e6i 0.296234 0.513093i
\(607\) −1.63750e6 2.83624e6i −0.180389 0.312443i 0.761624 0.648019i \(-0.224402\pi\)
−0.942013 + 0.335576i \(0.891069\pi\)
\(608\) −1.31065e6 −0.143790
\(609\) 0 0
\(610\) 3.22450e6 0.350863
\(611\) −4.33758e6 7.51291e6i −0.470051 0.814152i
\(612\) 1.16244e6 2.01341e6i 0.125457 0.217297i
\(613\) 3.81057e6 6.60010e6i 0.409580 0.709414i −0.585262 0.810844i \(-0.699009\pi\)
0.994843 + 0.101430i \(0.0323418\pi\)
\(614\) −3.51092e6 6.08109e6i −0.375837 0.650969i
\(615\) 8.38824e6 0.894300
\(616\) 0 0
\(617\) 1.28554e7 1.35948 0.679741 0.733453i \(-0.262092\pi\)
0.679741 + 0.733453i \(0.262092\pi\)
\(618\) −3.69929e6 6.40736e6i −0.389625 0.674851i
\(619\) −4.26175e6 + 7.38157e6i −0.447055 + 0.774323i −0.998193 0.0600919i \(-0.980861\pi\)
0.551138 + 0.834414i \(0.314194\pi\)
\(620\) 306414. 530724.i 0.0320132 0.0554485i
\(621\) 1.74292e6 + 3.01883e6i 0.181363 + 0.314131i
\(622\) 7.21582e6 0.747842
\(623\) 0 0
\(624\) 963929. 0.0991023
\(625\) 5.45807e6 + 9.45365e6i 0.558906 + 0.968054i
\(626\) 4.92858e6 8.53655e6i 0.502674 0.870656i
\(627\) 3.54991e6 6.14862e6i 0.360619 0.624610i
\(628\) 1.92915e6 + 3.34139e6i 0.195194 + 0.338087i
\(629\) 4.23363e6 0.426664
\(630\) 0 0
\(631\) −1.37373e7 −1.37350 −0.686750 0.726894i \(-0.740963\pi\)
−0.686750 + 0.726894i \(0.740963\pi\)
\(632\) 567404. + 982772.i 0.0565067 + 0.0978724i
\(633\) −1.38622e6 + 2.40101e6i −0.137507 + 0.238169i
\(634\) −3.30572e6 + 5.72568e6i −0.326620 + 0.565723i
\(635\) 1.31186e6 + 2.27220e6i 0.129108 + 0.223621i
\(636\) 770102. 0.0754928
\(637\) 0 0
\(638\) −4.23059e6 −0.411481
\(639\) 132593. + 229658.i 0.0128460 + 0.0222500i
\(640\) −488186. + 845563.i −0.0471124 + 0.0816011i
\(641\) 2.52233e6 4.36881e6i 0.242470 0.419970i −0.718948 0.695064i \(-0.755376\pi\)
0.961417 + 0.275095i \(0.0887092\pi\)
\(642\) −1.88240e6 3.26041e6i −0.180249 0.312201i
\(643\) −9.94759e6 −0.948835 −0.474417 0.880300i \(-0.657341\pi\)
−0.474417 + 0.880300i \(0.657341\pi\)
\(644\) 0 0
\(645\) 878846. 0.0831790
\(646\) −4.59212e6 7.95379e6i −0.432944 0.749881i
\(647\) 631379. 1.09358e6i 0.0592966 0.102705i −0.834853 0.550473i \(-0.814448\pi\)
0.894150 + 0.447768i \(0.147781\pi\)
\(648\) −209952. + 363648.i −0.0196419 + 0.0340207i
\(649\) −5.18491e6 8.98053e6i −0.483203 0.836932i
\(650\) −713451. −0.0662340
\(651\) 0 0
\(652\) 1.00944e7 0.929957
\(653\) 6.40736e6 + 1.10979e7i 0.588026 + 1.01849i 0.994491 + 0.104824i \(0.0334279\pi\)
−0.406465 + 0.913666i \(0.633239\pi\)
\(654\) 3.82942e6 6.63276e6i 0.350098 0.606387i
\(655\) −1.16544e7 + 2.01859e7i −1.06141 + 1.83842i
\(656\) 2.00190e6 + 3.46740e6i 0.181628 + 0.314589i
\(657\) 6.21743e6 0.561950
\(658\) 0 0
\(659\) −3.81355e6 −0.342071 −0.171035 0.985265i \(-0.554711\pi\)
−0.171035 + 0.985265i \(0.554711\pi\)
\(660\) −2.64451e6 4.58043e6i −0.236312 0.409305i
\(661\) 8.31221e6 1.43972e7i 0.739968 1.28166i −0.212541 0.977152i \(-0.568174\pi\)
0.952509 0.304510i \(-0.0984928\pi\)
\(662\) 3.33629e6 5.77862e6i 0.295882 0.512483i
\(663\) 3.37732e6 + 5.84969e6i 0.298393 + 0.516831i
\(664\) −5.04619e6 −0.444164
\(665\) 0 0
\(666\) −764647. −0.0667999
\(667\) −4.10274e6 7.10615e6i −0.357075 0.618472i
\(668\) 1.91290e6 3.31325e6i 0.165864 0.287285i
\(669\) −2.29586e6 + 3.97654e6i −0.198326 + 0.343510i
\(670\) 5.54018e6 + 9.59588e6i 0.476801 + 0.825843i
\(671\) −8.33730e6 −0.714857
\(672\) 0 0
\(673\) 1.76139e7 1.49905 0.749527 0.661974i \(-0.230281\pi\)
0.749527 + 0.661974i \(0.230281\pi\)
\(674\) 1.04954e6 + 1.81785e6i 0.0889916 + 0.154138i
\(675\) 155396. 269153.i 0.0131274 0.0227374i
\(676\) 1.57006e6 2.71943e6i 0.132145 0.228882i
\(677\) −8.92151e6 1.54525e7i −0.748112 1.29577i −0.948727 0.316098i \(-0.897627\pi\)
0.200615 0.979670i \(-0.435706\pi\)
\(678\) −8.09588e6 −0.676379
\(679\) 0 0
\(680\) −6.84183e6 −0.567414
\(681\) −4.67114e6 8.09066e6i −0.385972 0.668523i
\(682\) −792267. + 1.37225e6i −0.0652244 + 0.112972i
\(683\) −7.07658e6 + 1.22570e7i −0.580459 + 1.00538i 0.414966 + 0.909837i \(0.363794\pi\)
−0.995425 + 0.0955475i \(0.969540\pi\)
\(684\) 829395. + 1.43655e6i 0.0677830 + 0.117404i
\(685\) 4.23004e6 0.344444
\(686\) 0 0
\(687\) −9.34641e6 −0.755532
\(688\) 209742. + 363283.i 0.0168933 + 0.0292600i
\(689\) −1.11871e6 + 1.93767e6i −0.0897781 + 0.155500i
\(690\) 5.12919e6 8.88402e6i 0.410134 0.710373i
\(691\) 1.11267e6 + 1.92721e6i 0.0886487 + 0.153544i 0.906940 0.421259i \(-0.138412\pi\)
−0.818291 + 0.574803i \(0.805078\pi\)
\(692\) 4.84703e6 0.384778
\(693\) 0 0
\(694\) 7.70547e6 0.607296
\(695\) 3.06201e6 + 5.30357e6i 0.240461 + 0.416491i
\(696\) 494214. 856004.i 0.0386716 0.0669812i
\(697\) −1.40281e7 + 2.42975e7i −1.09375 + 1.89443i
\(698\) 680685. + 1.17898e6i 0.0528819 + 0.0915942i
\(699\) −1.18571e7 −0.917877
\(700\) 0 0
\(701\) −4.49378e6 −0.345396 −0.172698 0.984975i \(-0.555248\pi\)
−0.172698 + 0.984975i \(0.555248\pi\)
\(702\) −609986. 1.05653e6i −0.0467173 0.0809167i
\(703\) −1.51033e6 + 2.61597e6i −0.115261 + 0.199639i
\(704\) 1.26226e6 2.18630e6i 0.0959879 0.166256i
\(705\) −5.56062e6 9.63127e6i −0.421357 0.729812i
\(706\) 299165. 0.0225891
\(707\) 0 0
\(708\) 2.42279e6 0.181649
\(709\) 7.71160e6 + 1.33569e7i 0.576141 + 0.997906i 0.995917 + 0.0902780i \(0.0287756\pi\)
−0.419775 + 0.907628i \(0.637891\pi\)
\(710\) 390204. 675853.i 0.0290500 0.0503160i
\(711\) 718120. 1.24382e6i 0.0532750 0.0922750i
\(712\) 2.37313e6 + 4.11039e6i 0.175437 + 0.303867i
\(713\) −3.07329e6 −0.226402
\(714\) 0 0
\(715\) 1.53665e7 1.12412
\(716\) 847917. + 1.46863e6i 0.0618117 + 0.107061i
\(717\) 3.60301e6 6.24060e6i 0.261739 0.453345i
\(718\) −4.83507e6 + 8.37459e6i −0.350019 + 0.606251i
\(719\) −5.36378e6 9.29034e6i −0.386945 0.670208i 0.605092 0.796155i \(-0.293136\pi\)
−0.992037 + 0.125947i \(0.959803\pi\)
\(720\) 1.23572e6 0.0888360
\(721\) 0 0
\(722\) −3.35151e6 −0.239275
\(723\) −1.81038e6 3.13567e6i −0.128803 0.223093i
\(724\) −3.78982e6 + 6.56415e6i −0.268703 + 0.465406i
\(725\) −365792. + 633571.i −0.0258458 + 0.0447662i
\(726\) 3.93877e6 + 6.82214e6i 0.277344 + 0.480374i
\(727\) −2.05652e7 −1.44310 −0.721551 0.692362i \(-0.756570\pi\)
−0.721551 + 0.692362i \(0.756570\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −9.14853e6 1.58457e7i −0.635395 1.10054i
\(731\) −1.46975e6 + 2.54567e6i −0.101730 + 0.176201i
\(732\) 973957. 1.68694e6i 0.0671834 0.116365i
\(733\) 1.64661e6 + 2.85201e6i 0.113196 + 0.196061i 0.917057 0.398756i \(-0.130558\pi\)
−0.803861 + 0.594817i \(0.797225\pi\)
\(734\) −647455. −0.0443578
\(735\) 0 0
\(736\) 4.89645e6 0.333186
\(737\) −1.43248e7 2.48112e7i −0.971445 1.68259i
\(738\) 2.53366e6 4.38843e6i 0.171241 0.296598i
\(739\) 3.85884e6 6.68370e6i 0.259923 0.450200i −0.706298 0.707915i \(-0.749636\pi\)
0.966221 + 0.257714i \(0.0829694\pi\)
\(740\) 1.12513e6 + 1.94878e6i 0.0755304 + 0.130823i
\(741\) −4.81938e6 −0.322438
\(742\) 0 0
\(743\) −8.33553e6 −0.553938 −0.276969 0.960879i \(-0.589330\pi\)
−0.276969 + 0.960879i \(0.589330\pi\)
\(744\) −185104. 320609.i −0.0122598 0.0212346i
\(745\) 6.74287e6 1.16790e7i 0.445097 0.770930i
\(746\) −154005. + 266744.i −0.0101318 + 0.0175488i
\(747\) 3.19329e6 + 5.53094e6i 0.209381 + 0.362658i
\(748\) 1.76903e7 1.15606
\(749\) 0 0
\(750\) 5.78960e6 0.375833
\(751\) 9.03469e6 + 1.56485e7i 0.584539 + 1.01245i 0.994933 + 0.100543i \(0.0320580\pi\)
−0.410394 + 0.911908i \(0.634609\pi\)
\(752\) 2.65415e6 4.59712e6i 0.171151 0.296443i
\(753\) 5.80849e6 1.00606e7i 0.373316 0.646601i
\(754\) 1.43587e6 + 2.48700e6i 0.0919787 + 0.159312i
\(755\) −3.26703e7 −2.08586
\(756\) 0 0
\(757\) −8.13311e6 −0.515842 −0.257921 0.966166i \(-0.583037\pi\)
−0.257921 + 0.966166i \(0.583037\pi\)
\(758\) 1.54833e6 + 2.68179e6i 0.0978792 + 0.169532i
\(759\) −1.32621e7 + 2.29706e7i −0.835617 + 1.44733i
\(760\) 2.44080e6 4.22758e6i 0.153284 0.265496i
\(761\) 1.00845e6 + 1.74669e6i 0.0631239 + 0.109334i 0.895860 0.444336i \(-0.146560\pi\)
−0.832736 + 0.553670i \(0.813227\pi\)
\(762\) 1.58498e6 0.0988863
\(763\) 0 0
\(764\) −9.40501e6 −0.582943
\(765\) 4.32960e6 + 7.49908e6i 0.267481 + 0.463292i
\(766\) 7.26655e6 1.25860e7i 0.447462 0.775028i
\(767\) −3.51954e6 + 6.09602e6i −0.216022 + 0.374160i
\(768\) 294912. + 510803.i 0.0180422 + 0.0312500i
\(769\) −1.18971e7 −0.725478 −0.362739 0.931891i \(-0.618158\pi\)
−0.362739 + 0.931891i \(0.618158\pi\)
\(770\) 0 0
\(771\) −1.58791e7 −0.962034