Properties

Label 294.6.e.r.79.1
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,6,Mod(67,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.67"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,9,-16,54,72,0,-128,-81,-216,-216] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.r.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(4.50000 + 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(27.0000 - 46.7654i) q^{5} +36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(-108.000 - 187.061i) q^{10} +(-108.000 - 187.061i) q^{11} +(72.0000 - 124.708i) q^{12} +998.000 q^{13} +486.000 q^{15} +(-128.000 + 221.703i) q^{16} +(-651.000 - 1127.57i) q^{17} +(162.000 + 280.592i) q^{18} +(-442.000 + 765.566i) q^{19} -864.000 q^{20} -864.000 q^{22} +(1134.00 - 1964.15i) q^{23} +(-288.000 - 498.831i) q^{24} +(104.500 + 180.999i) q^{25} +(1996.00 - 3457.17i) q^{26} -729.000 q^{27} -1482.00 q^{29} +(972.000 - 1683.55i) q^{30} +(-4180.00 - 7239.97i) q^{31} +(512.000 + 886.810i) q^{32} +(972.000 - 1683.55i) q^{33} -5208.00 q^{34} +1296.00 q^{36} +(2357.00 - 4082.44i) q^{37} +(1768.00 + 3062.27i) q^{38} +(4491.00 + 7778.64i) q^{39} +(-1728.00 + 2992.98i) q^{40} -9786.00 q^{41} +19436.0 q^{43} +(-1728.00 + 2992.98i) q^{44} +(2187.00 + 3788.00i) q^{45} +(-4536.00 - 7856.58i) q^{46} +(-11100.0 + 19225.8i) q^{47} -2304.00 q^{48} +836.000 q^{50} +(5859.00 - 10148.1i) q^{51} +(-7984.00 - 13828.7i) q^{52} +(-13395.0 - 23200.8i) q^{53} +(-1458.00 + 2525.33i) q^{54} -11664.0 q^{55} -7956.00 q^{57} +(-2964.00 + 5133.80i) q^{58} +(-14046.0 - 24328.4i) q^{59} +(-3888.00 - 6734.21i) q^{60} +(19433.0 - 33658.9i) q^{61} -33440.0 q^{62} +4096.00 q^{64} +(26946.0 - 46671.8i) q^{65} +(-3888.00 - 6734.21i) q^{66} +(-11974.0 - 20739.6i) q^{67} +(-10416.0 + 18041.0i) q^{68} +20412.0 q^{69} -20628.0 q^{71} +(2592.00 - 4489.48i) q^{72} +(-145.000 - 251.147i) q^{73} +(-9428.00 - 16329.8i) q^{74} +(-940.500 + 1628.99i) q^{75} +14144.0 q^{76} +35928.0 q^{78} +(49772.0 - 86207.6i) q^{79} +(6912.00 + 11971.9i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(-19572.0 + 33899.7i) q^{82} +19308.0 q^{83} -70308.0 q^{85} +(38872.0 - 67328.3i) q^{86} +(-6669.00 - 11551.0i) q^{87} +(6912.00 + 11971.9i) q^{88} +(-18195.0 + 31514.7i) q^{89} +17496.0 q^{90} -36288.0 q^{92} +(37620.0 - 65159.8i) q^{93} +(44400.0 + 76903.1i) q^{94} +(23868.0 + 41340.6i) q^{95} +(-4608.00 + 7981.29i) q^{96} -79078.0 q^{97} +17496.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 9 q^{3} - 16 q^{4} + 54 q^{5} + 72 q^{6} - 128 q^{8} - 81 q^{9} - 216 q^{10} - 216 q^{11} + 144 q^{12} + 1996 q^{13} + 972 q^{15} - 256 q^{16} - 1302 q^{17} + 324 q^{18} - 884 q^{19} - 1728 q^{20}+ \cdots + 34992 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) 27.0000 46.7654i 0.482991 0.836564i −0.516819 0.856095i \(-0.672884\pi\)
0.999809 + 0.0195305i \(0.00621716\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) −108.000 187.061i −0.341526 0.591540i
\(11\) −108.000 187.061i −0.269118 0.466125i 0.699517 0.714616i \(-0.253399\pi\)
−0.968634 + 0.248491i \(0.920065\pi\)
\(12\) 72.0000 124.708i 0.144338 0.250000i
\(13\) 998.000 1.63784 0.818921 0.573906i \(-0.194572\pi\)
0.818921 + 0.573906i \(0.194572\pi\)
\(14\) 0 0
\(15\) 486.000 0.557710
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) −651.000 1127.57i −0.546335 0.946279i −0.998522 0.0543561i \(-0.982689\pi\)
0.452187 0.891923i \(-0.350644\pi\)
\(18\) 162.000 + 280.592i 0.117851 + 0.204124i
\(19\) −442.000 + 765.566i −0.280891 + 0.486518i −0.971605 0.236611i \(-0.923963\pi\)
0.690713 + 0.723129i \(0.257297\pi\)
\(20\) −864.000 −0.482991
\(21\) 0 0
\(22\) −864.000 −0.380590
\(23\) 1134.00 1964.15i 0.446986 0.774202i −0.551203 0.834371i \(-0.685831\pi\)
0.998188 + 0.0601698i \(0.0191642\pi\)
\(24\) −288.000 498.831i −0.102062 0.176777i
\(25\) 104.500 + 180.999i 0.0334400 + 0.0579198i
\(26\) 1996.00 3457.17i 0.579065 1.00297i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −1482.00 −0.327230 −0.163615 0.986524i \(-0.552315\pi\)
−0.163615 + 0.986524i \(0.552315\pi\)
\(30\) 972.000 1683.55i 0.197180 0.341526i
\(31\) −4180.00 7239.97i −0.781218 1.35311i −0.931233 0.364425i \(-0.881266\pi\)
0.150015 0.988684i \(-0.452068\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) 972.000 1683.55i 0.155375 0.269118i
\(34\) −5208.00 −0.772634
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 2357.00 4082.44i 0.283045 0.490248i −0.689088 0.724677i \(-0.741989\pi\)
0.972133 + 0.234429i \(0.0753221\pi\)
\(38\) 1768.00 + 3062.27i 0.198620 + 0.344020i
\(39\) 4491.00 + 7778.64i 0.472804 + 0.818921i
\(40\) −1728.00 + 2992.98i −0.170763 + 0.295770i
\(41\) −9786.00 −0.909171 −0.454585 0.890703i \(-0.650213\pi\)
−0.454585 + 0.890703i \(0.650213\pi\)
\(42\) 0 0
\(43\) 19436.0 1.60301 0.801504 0.597989i \(-0.204033\pi\)
0.801504 + 0.597989i \(0.204033\pi\)
\(44\) −1728.00 + 2992.98i −0.134559 + 0.233063i
\(45\) 2187.00 + 3788.00i 0.160997 + 0.278855i
\(46\) −4536.00 7856.58i −0.316066 0.547443i
\(47\) −11100.0 + 19225.8i −0.732957 + 1.26952i 0.222657 + 0.974897i \(0.428527\pi\)
−0.955614 + 0.294622i \(0.904806\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) 836.000 0.0472913
\(51\) 5859.00 10148.1i 0.315426 0.546335i
\(52\) −7984.00 13828.7i −0.409461 0.709207i
\(53\) −13395.0 23200.8i −0.655018 1.13452i −0.981889 0.189455i \(-0.939328\pi\)
0.326872 0.945069i \(-0.394006\pi\)
\(54\) −1458.00 + 2525.33i −0.0680414 + 0.117851i
\(55\) −11664.0 −0.519925
\(56\) 0 0
\(57\) −7956.00 −0.324345
\(58\) −2964.00 + 5133.80i −0.115693 + 0.200387i
\(59\) −14046.0 24328.4i −0.525318 0.909878i −0.999565 0.0294862i \(-0.990613\pi\)
0.474247 0.880392i \(-0.342720\pi\)
\(60\) −3888.00 6734.21i −0.139427 0.241495i
\(61\) 19433.0 33658.9i 0.668675 1.15818i −0.309600 0.950867i \(-0.600195\pi\)
0.978275 0.207312i \(-0.0664717\pi\)
\(62\) −33440.0 −1.10481
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 26946.0 46671.8i 0.791063 1.37016i
\(66\) −3888.00 6734.21i −0.109867 0.190295i
\(67\) −11974.0 20739.6i −0.325876 0.564434i 0.655813 0.754923i \(-0.272326\pi\)
−0.981689 + 0.190489i \(0.938992\pi\)
\(68\) −10416.0 + 18041.0i −0.273167 + 0.473140i
\(69\) 20412.0 0.516134
\(70\) 0 0
\(71\) −20628.0 −0.485636 −0.242818 0.970072i \(-0.578072\pi\)
−0.242818 + 0.970072i \(0.578072\pi\)
\(72\) 2592.00 4489.48i 0.0589256 0.102062i
\(73\) −145.000 251.147i −0.00318464 0.00551596i 0.864429 0.502755i \(-0.167680\pi\)
−0.867613 + 0.497239i \(0.834347\pi\)
\(74\) −9428.00 16329.8i −0.200143 0.346658i
\(75\) −940.500 + 1628.99i −0.0193066 + 0.0334400i
\(76\) 14144.0 0.280891
\(77\) 0 0
\(78\) 35928.0 0.668646
\(79\) 49772.0 86207.6i 0.897258 1.55410i 0.0662732 0.997802i \(-0.478889\pi\)
0.830985 0.556295i \(-0.187778\pi\)
\(80\) 6912.00 + 11971.9i 0.120748 + 0.209141i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) −19572.0 + 33899.7i −0.321440 + 0.556751i
\(83\) 19308.0 0.307639 0.153820 0.988099i \(-0.450842\pi\)
0.153820 + 0.988099i \(0.450842\pi\)
\(84\) 0 0
\(85\) −70308.0 −1.05550
\(86\) 38872.0 67328.3i 0.566749 0.981638i
\(87\) −6669.00 11551.0i −0.0944632 0.163615i
\(88\) 6912.00 + 11971.9i 0.0951474 + 0.164800i
\(89\) −18195.0 + 31514.7i −0.243488 + 0.421733i −0.961705 0.274085i \(-0.911625\pi\)
0.718218 + 0.695819i \(0.244958\pi\)
\(90\) 17496.0 0.227684
\(91\) 0 0
\(92\) −36288.0 −0.446986
\(93\) 37620.0 65159.8i 0.451036 0.781218i
\(94\) 44400.0 + 76903.1i 0.518279 + 0.897685i
\(95\) 23868.0 + 41340.6i 0.271336 + 0.469967i
\(96\) −4608.00 + 7981.29i −0.0510310 + 0.0883883i
\(97\) −79078.0 −0.853348 −0.426674 0.904405i \(-0.640315\pi\)
−0.426674 + 0.904405i \(0.640315\pi\)
\(98\) 0 0
\(99\) 17496.0 0.179412
\(100\) 1672.00 2895.99i 0.0167200 0.0289599i
\(101\) −92313.0 159891.i −0.900450 1.55962i −0.826911 0.562332i \(-0.809904\pi\)
−0.0735382 0.997292i \(-0.523429\pi\)
\(102\) −23436.0 40592.3i −0.223040 0.386317i
\(103\) −32296.0 + 55938.3i −0.299955 + 0.519537i −0.976125 0.217208i \(-0.930305\pi\)
0.676171 + 0.736745i \(0.263638\pi\)
\(104\) −63872.0 −0.579065
\(105\) 0 0
\(106\) −107160. −0.926335
\(107\) −74796.0 + 129550.i −0.631566 + 1.09390i 0.355665 + 0.934613i \(0.384254\pi\)
−0.987232 + 0.159291i \(0.949079\pi\)
\(108\) 5832.00 + 10101.3i 0.0481125 + 0.0833333i
\(109\) 31913.0 + 55274.9i 0.257277 + 0.445617i 0.965512 0.260360i \(-0.0838413\pi\)
−0.708234 + 0.705977i \(0.750508\pi\)
\(110\) −23328.0 + 40405.3i −0.183821 + 0.318388i
\(111\) 42426.0 0.326832
\(112\) 0 0
\(113\) −71022.0 −0.523235 −0.261618 0.965172i \(-0.584256\pi\)
−0.261618 + 0.965172i \(0.584256\pi\)
\(114\) −15912.0 + 27560.4i −0.114673 + 0.198620i
\(115\) −61236.0 106064.i −0.431780 0.747864i
\(116\) 11856.0 + 20535.2i 0.0818075 + 0.141695i
\(117\) −40419.0 + 70007.8i −0.272974 + 0.472804i
\(118\) −112368. −0.742912
\(119\) 0 0
\(120\) −31104.0 −0.197180
\(121\) 57197.5 99069.0i 0.355151 0.615140i
\(122\) −77732.0 134636.i −0.472825 0.818957i
\(123\) −44037.0 76274.3i −0.262455 0.454585i
\(124\) −66880.0 + 115840.i −0.390609 + 0.676554i
\(125\) 180036. 1.03059
\(126\) 0 0
\(127\) 269624. 1.48337 0.741685 0.670749i \(-0.234027\pi\)
0.741685 + 0.670749i \(0.234027\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) 87462.0 + 151489.i 0.462749 + 0.801504i
\(130\) −107784. 186687.i −0.559366 0.968850i
\(131\) −40590.0 + 70303.9i −0.206653 + 0.357933i −0.950658 0.310241i \(-0.899590\pi\)
0.744005 + 0.668174i \(0.232924\pi\)
\(132\) −31104.0 −0.155375
\(133\) 0 0
\(134\) −95792.0 −0.460858
\(135\) −19683.0 + 34092.0i −0.0929516 + 0.160997i
\(136\) 41664.0 + 72164.2i 0.193158 + 0.334560i
\(137\) 130455. + 225955.i 0.593826 + 1.02854i 0.993711 + 0.111972i \(0.0357166\pi\)
−0.399885 + 0.916565i \(0.630950\pi\)
\(138\) 40824.0 70709.2i 0.182481 0.316066i
\(139\) −297964. −1.30806 −0.654029 0.756470i \(-0.726922\pi\)
−0.654029 + 0.756470i \(0.726922\pi\)
\(140\) 0 0
\(141\) −199800. −0.846346
\(142\) −41256.0 + 71457.5i −0.171698 + 0.297390i
\(143\) −107784. 186687.i −0.440772 0.763440i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) −40014.0 + 69306.3i −0.158049 + 0.273749i
\(146\) −1160.00 −0.00450377
\(147\) 0 0
\(148\) −75424.0 −0.283045
\(149\) 199485. 345518.i 0.736113 1.27499i −0.218120 0.975922i \(-0.569992\pi\)
0.954233 0.299063i \(-0.0966742\pi\)
\(150\) 3762.00 + 6515.98i 0.0136518 + 0.0236457i
\(151\) 112484. + 194828.i 0.401466 + 0.695359i 0.993903 0.110258i \(-0.0351676\pi\)
−0.592437 + 0.805616i \(0.701834\pi\)
\(152\) 28288.0 48996.3i 0.0993101 0.172010i
\(153\) 105462. 0.364223
\(154\) 0 0
\(155\) −451440. −1.50928
\(156\) 71856.0 124458.i 0.236402 0.409461i
\(157\) 116609. + 201973.i 0.377557 + 0.653949i 0.990706 0.136019i \(-0.0434308\pi\)
−0.613149 + 0.789967i \(0.710097\pi\)
\(158\) −199088. 344831.i −0.634457 1.09891i
\(159\) 120555. 208807.i 0.378175 0.655018i
\(160\) 55296.0 0.170763
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) −233110. + 403758.i −0.687214 + 1.19029i 0.285522 + 0.958372i \(0.407833\pi\)
−0.972736 + 0.231917i \(0.925500\pi\)
\(164\) 78288.0 + 135599.i 0.227293 + 0.393683i
\(165\) −52488.0 90911.9i −0.150089 0.259963i
\(166\) 38616.0 66884.9i 0.108767 0.188390i
\(167\) −100848. −0.279818 −0.139909 0.990164i \(-0.544681\pi\)
−0.139909 + 0.990164i \(0.544681\pi\)
\(168\) 0 0
\(169\) 624711. 1.68253
\(170\) −140616. + 243554.i −0.373175 + 0.646358i
\(171\) −35802.0 62010.9i −0.0936304 0.162173i
\(172\) −155488. 269313.i −0.400752 0.694123i
\(173\) 334419. 579231.i 0.849524 1.47142i −0.0321096 0.999484i \(-0.510223\pi\)
0.881634 0.471934i \(-0.156444\pi\)
\(174\) −53352.0 −0.133591
\(175\) 0 0
\(176\) 55296.0 0.134559
\(177\) 126414. 218955.i 0.303293 0.525318i
\(178\) 72780.0 + 126059.i 0.172172 + 0.298210i
\(179\) 307428. + 532481.i 0.717151 + 1.24214i 0.962124 + 0.272613i \(0.0878877\pi\)
−0.244972 + 0.969530i \(0.578779\pi\)
\(180\) 34992.0 60607.9i 0.0804984 0.139427i
\(181\) 540686. 1.22673 0.613365 0.789800i \(-0.289816\pi\)
0.613365 + 0.789800i \(0.289816\pi\)
\(182\) 0 0
\(183\) 349794. 0.772120
\(184\) −72576.0 + 125705.i −0.158033 + 0.273722i
\(185\) −127278. 220452.i −0.273416 0.473571i
\(186\) −150480. 260639.i −0.318931 0.552404i
\(187\) −140616. + 243554.i −0.294056 + 0.509321i
\(188\) 355200. 0.732957
\(189\) 0 0
\(190\) 190944. 0.383727
\(191\) 20958.0 36300.3i 0.0415687 0.0719991i −0.844493 0.535567i \(-0.820098\pi\)
0.886061 + 0.463568i \(0.153431\pi\)
\(192\) 18432.0 + 31925.2i 0.0360844 + 0.0625000i
\(193\) 266999. + 462456.i 0.515960 + 0.893670i 0.999828 + 0.0185286i \(0.00589817\pi\)
−0.483868 + 0.875141i \(0.660768\pi\)
\(194\) −158156. + 273934.i −0.301704 + 0.522567i
\(195\) 485028. 0.913441
\(196\) 0 0
\(197\) 824886. 1.51436 0.757179 0.653208i \(-0.226577\pi\)
0.757179 + 0.653208i \(0.226577\pi\)
\(198\) 34992.0 60607.9i 0.0634316 0.109867i
\(199\) 199772. + 346015.i 0.357604 + 0.619388i 0.987560 0.157243i \(-0.0502606\pi\)
−0.629956 + 0.776631i \(0.716927\pi\)
\(200\) −6688.00 11584.0i −0.0118228 0.0204777i
\(201\) 107766. 186656.i 0.188145 0.325876i
\(202\) −738504. −1.27343
\(203\) 0 0
\(204\) −187488. −0.315426
\(205\) −264222. + 457646.i −0.439121 + 0.760580i
\(206\) 129184. + 223753.i 0.212100 + 0.367368i
\(207\) 91854.0 + 159096.i 0.148995 + 0.258067i
\(208\) −127744. + 221259.i −0.204730 + 0.354603i
\(209\) 190944. 0.302371
\(210\) 0 0
\(211\) 868868. 1.34353 0.671765 0.740764i \(-0.265536\pi\)
0.671765 + 0.740764i \(0.265536\pi\)
\(212\) −214320. + 371213.i −0.327509 + 0.567262i
\(213\) −92826.0 160779.i −0.140191 0.242818i
\(214\) 299184. + 518202.i 0.446585 + 0.773508i
\(215\) 524772. 908932.i 0.774238 1.34102i
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) 255304. 0.363845
\(219\) 1305.00 2260.33i 0.00183865 0.00318464i
\(220\) 93312.0 + 161621.i 0.129981 + 0.225134i
\(221\) −649698. 1.12531e6i −0.894810 1.54986i
\(222\) 84852.0 146968.i 0.115553 0.200143i
\(223\) −626656. −0.843853 −0.421927 0.906630i \(-0.638646\pi\)
−0.421927 + 0.906630i \(0.638646\pi\)
\(224\) 0 0
\(225\) −16929.0 −0.0222933
\(226\) −142044. + 246027.i −0.184992 + 0.320415i
\(227\) 225198. + 390054.i 0.290068 + 0.502413i 0.973826 0.227297i \(-0.0729887\pi\)
−0.683758 + 0.729709i \(0.739655\pi\)
\(228\) 63648.0 + 110242.i 0.0810863 + 0.140446i
\(229\) 532265. 921910.i 0.670717 1.16172i −0.306984 0.951715i \(-0.599320\pi\)
0.977701 0.210001i \(-0.0673467\pi\)
\(230\) −489888. −0.610629
\(231\) 0 0
\(232\) 94848.0 0.115693
\(233\) −718089. + 1.24377e6i −0.866540 + 1.50089i −0.00102954 + 0.999999i \(0.500328\pi\)
−0.865510 + 0.500891i \(0.833006\pi\)
\(234\) 161676. + 280031.i 0.193022 + 0.334323i
\(235\) 599400. + 1.03819e6i 0.708023 + 1.22633i
\(236\) −224736. + 389254.i −0.262659 + 0.454939i
\(237\) 895896. 1.03606
\(238\) 0 0
\(239\) −997860. −1.12999 −0.564995 0.825094i \(-0.691122\pi\)
−0.564995 + 0.825094i \(0.691122\pi\)
\(240\) −62208.0 + 107747.i −0.0697137 + 0.120748i
\(241\) 113987. + 197431.i 0.126419 + 0.218964i 0.922287 0.386506i \(-0.126318\pi\)
−0.795868 + 0.605471i \(0.792985\pi\)
\(242\) −228790. 396276.i −0.251130 0.434970i
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) −621856. −0.668675
\(245\) 0 0
\(246\) −352296. −0.371168
\(247\) −441116. + 764035.i −0.460056 + 0.796840i
\(248\) 267520. + 463358.i 0.276202 + 0.478396i
\(249\) 86886.0 + 150491.i 0.0888079 + 0.153820i
\(250\) 360072. 623663.i 0.364367 0.631103i
\(251\) 1.51657e6 1.51942 0.759712 0.650260i \(-0.225340\pi\)
0.759712 + 0.650260i \(0.225340\pi\)
\(252\) 0 0
\(253\) −489888. −0.481167
\(254\) 539248. 934005.i 0.524450 0.908374i
\(255\) −316386. 547997.i −0.304696 0.527749i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −227943. + 394809.i −0.215275 + 0.372867i −0.953358 0.301843i \(-0.902398\pi\)
0.738083 + 0.674710i \(0.235731\pi\)
\(258\) 699696. 0.654425
\(259\) 0 0
\(260\) −862272. −0.791063
\(261\) 60021.0 103959.i 0.0545383 0.0944632i
\(262\) 162360. + 281216.i 0.146125 + 0.253097i
\(263\) 376326. + 651816.i 0.335486 + 0.581079i 0.983578 0.180483i \(-0.0577660\pi\)
−0.648092 + 0.761562i \(0.724433\pi\)
\(264\) −62208.0 + 107747.i −0.0549334 + 0.0951474i
\(265\) −1.44666e6 −1.26547
\(266\) 0 0
\(267\) −327510. −0.281155
\(268\) −191584. + 331833.i −0.162938 + 0.282217i
\(269\) −71841.0 124432.i −0.0605329 0.104846i 0.834171 0.551506i \(-0.185947\pi\)
−0.894704 + 0.446660i \(0.852613\pi\)
\(270\) 78732.0 + 136368.i 0.0657267 + 0.113842i
\(271\) −378748. + 656011.i −0.313276 + 0.542610i −0.979070 0.203526i \(-0.934760\pi\)
0.665794 + 0.746136i \(0.268093\pi\)
\(272\) 333312. 0.273167
\(273\) 0 0
\(274\) 1.04364e6 0.839797
\(275\) 22572.0 39095.9i 0.0179986 0.0311745i
\(276\) −163296. 282837.i −0.129034 0.223493i
\(277\) 581069. + 1.00644e6i 0.455018 + 0.788114i 0.998689 0.0511843i \(-0.0162996\pi\)
−0.543672 + 0.839298i \(0.682966\pi\)
\(278\) −595928. + 1.03218e6i −0.462468 + 0.801018i
\(279\) 677160. 0.520812
\(280\) 0 0
\(281\) −414366. −0.313053 −0.156527 0.987674i \(-0.550030\pi\)
−0.156527 + 0.987674i \(0.550030\pi\)
\(282\) −399600. + 692128.i −0.299228 + 0.518279i
\(283\) −60214.0 104294.i −0.0446922 0.0774091i 0.842814 0.538205i \(-0.180897\pi\)
−0.887506 + 0.460796i \(0.847564\pi\)
\(284\) 165024. + 285830.i 0.121409 + 0.210287i
\(285\) −214812. + 372065.i −0.156656 + 0.271336i
\(286\) −862272. −0.623346
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) −137674. + 238457.i −0.0969629 + 0.167945i
\(290\) 160056. + 277225.i 0.111758 + 0.193570i
\(291\) −355851. 616352.i −0.246340 0.426674i
\(292\) −2320.00 + 4018.36i −0.00159232 + 0.00275798i
\(293\) 2.20159e6 1.49819 0.749094 0.662463i \(-0.230489\pi\)
0.749094 + 0.662463i \(0.230489\pi\)
\(294\) 0 0
\(295\) −1.51697e6 −1.01490
\(296\) −150848. + 261276.i −0.100071 + 0.173329i
\(297\) 78732.0 + 136368.i 0.0517917 + 0.0897059i
\(298\) −797940. 1.38207e6i −0.520511 0.901551i
\(299\) 1.13173e6 1.96022e6i 0.732092 1.26802i
\(300\) 30096.0 0.0193066
\(301\) 0 0
\(302\) 899872. 0.567758
\(303\) 830817. 1.43902e6i 0.519875 0.900450i
\(304\) −113152. 195985.i −0.0702228 0.121629i
\(305\) −1.04938e6 1.81758e6i −0.645928 1.11878i
\(306\) 210924. 365331.i 0.128772 0.223040i
\(307\) 110900. 0.0671561 0.0335781 0.999436i \(-0.489310\pi\)
0.0335781 + 0.999436i \(0.489310\pi\)
\(308\) 0 0
\(309\) −581328. −0.346358
\(310\) −902880. + 1.56383e6i −0.533612 + 0.924244i
\(311\) 455304. + 788610.i 0.266932 + 0.462340i 0.968068 0.250688i \(-0.0806568\pi\)
−0.701136 + 0.713028i \(0.747323\pi\)
\(312\) −287424. 497833.i −0.167162 0.289532i
\(313\) −1.56124e6 + 2.70414e6i −0.900758 + 1.56016i −0.0742450 + 0.997240i \(0.523655\pi\)
−0.826513 + 0.562918i \(0.809679\pi\)
\(314\) 932872. 0.533947
\(315\) 0 0
\(316\) −1.59270e6 −0.897258
\(317\) 1.38344e6 2.39619e6i 0.773237 1.33929i −0.162543 0.986701i \(-0.551970\pi\)
0.935780 0.352584i \(-0.114697\pi\)
\(318\) −482220. 835230.i −0.267410 0.463167i
\(319\) 160056. + 277225.i 0.0880634 + 0.152530i
\(320\) 110592. 191551.i 0.0603738 0.104571i
\(321\) −1.34633e6 −0.729270
\(322\) 0 0
\(323\) 1.15097e6 0.613842
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 104291. + 180637.i 0.0547695 + 0.0948635i
\(326\) 932440. + 1.61503e6i 0.485934 + 0.841662i
\(327\) −287217. + 497474.i −0.148539 + 0.257277i
\(328\) 626304. 0.321440
\(329\) 0 0
\(330\) −419904. −0.212259
\(331\) −1.61129e6 + 2.79083e6i −0.808356 + 1.40011i 0.105646 + 0.994404i \(0.466309\pi\)
−0.914002 + 0.405710i \(0.867024\pi\)
\(332\) −154464. 267539.i −0.0769099 0.133212i
\(333\) 190917. + 330678.i 0.0943483 + 0.163416i
\(334\) −201696. + 349348.i −0.0989307 + 0.171353i
\(335\) −1.29319e6 −0.629580
\(336\) 0 0
\(337\) 1.63306e6 0.783298 0.391649 0.920115i \(-0.371905\pi\)
0.391649 + 0.920115i \(0.371905\pi\)
\(338\) 1.24942e6 2.16406e6i 0.594864 1.03033i
\(339\) −319599. 553562.i −0.151045 0.261618i
\(340\) 562464. + 974216.i 0.263875 + 0.457044i
\(341\) −902880. + 1.56383e6i −0.420479 + 0.728291i
\(342\) −286416. −0.132413
\(343\) 0 0
\(344\) −1.24390e6 −0.566749
\(345\) 551124. 954575.i 0.249288 0.431780i
\(346\) −1.33768e6 2.31692e6i −0.600704 1.04045i
\(347\) −518208. 897563.i −0.231036 0.400167i 0.727077 0.686556i \(-0.240878\pi\)
−0.958113 + 0.286389i \(0.907545\pi\)
\(348\) −106704. + 184817.i −0.0472316 + 0.0818075i
\(349\) −4.22999e6 −1.85898 −0.929491 0.368844i \(-0.879754\pi\)
−0.929491 + 0.368844i \(0.879754\pi\)
\(350\) 0 0
\(351\) −727542. −0.315203
\(352\) 110592. 191551.i 0.0475737 0.0824001i
\(353\) −119403. 206812.i −0.0510010 0.0883363i 0.839398 0.543517i \(-0.182908\pi\)
−0.890399 + 0.455181i \(0.849574\pi\)
\(354\) −505656. 875822.i −0.214460 0.371456i
\(355\) −556956. + 964676.i −0.234558 + 0.406266i
\(356\) 582240. 0.243488
\(357\) 0 0
\(358\) 2.45942e6 1.01421
\(359\) 1.33214e6 2.30733e6i 0.545523 0.944874i −0.453051 0.891485i \(-0.649664\pi\)
0.998574 0.0533889i \(-0.0170023\pi\)
\(360\) −139968. 242432.i −0.0569210 0.0985901i
\(361\) 847322. + 1.46760e6i 0.342200 + 0.592708i
\(362\) 1.08137e6 1.87299e6i 0.433714 0.751215i
\(363\) 1.02956e6 0.410094
\(364\) 0 0
\(365\) −15660.0 −0.00615261
\(366\) 699588. 1.21172e6i 0.272986 0.472825i
\(367\) 855416. + 1.48162e6i 0.331522 + 0.574213i 0.982810 0.184617i \(-0.0591046\pi\)
−0.651289 + 0.758830i \(0.725771\pi\)
\(368\) 290304. + 502821.i 0.111746 + 0.193550i
\(369\) 396333. 686469.i 0.151528 0.262455i
\(370\) −1.01822e6 −0.386669
\(371\) 0 0
\(372\) −1.20384e6 −0.451036
\(373\) 1.98324e6 3.43508e6i 0.738081 1.27839i −0.215277 0.976553i \(-0.569065\pi\)
0.953358 0.301841i \(-0.0976013\pi\)
\(374\) 562464. + 974216.i 0.207929 + 0.360144i
\(375\) 810162. + 1.40324e6i 0.297505 + 0.515293i
\(376\) 710400. 1.23045e6i 0.259139 0.448842i
\(377\) −1.47904e6 −0.535951
\(378\) 0 0
\(379\) 828668. 0.296335 0.148167 0.988962i \(-0.452663\pi\)
0.148167 + 0.988962i \(0.452663\pi\)
\(380\) 381888. 661449.i 0.135668 0.234984i
\(381\) 1.21331e6 + 2.10151e6i 0.428212 + 0.741685i
\(382\) −83832.0 145201.i −0.0293935 0.0509110i
\(383\) 1.27843e6 2.21431e6i 0.445329 0.771332i −0.552746 0.833350i \(-0.686420\pi\)
0.998075 + 0.0620176i \(0.0197535\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 2.13599e6 0.729678
\(387\) −787158. + 1.36340e6i −0.267168 + 0.462749i
\(388\) 632624. + 1.09574e6i 0.213337 + 0.369511i
\(389\) −1.45893e6 2.52694e6i −0.488832 0.846682i 0.511086 0.859530i \(-0.329244\pi\)
−0.999917 + 0.0128481i \(0.995910\pi\)
\(390\) 970056. 1.68019e6i 0.322950 0.559366i
\(391\) −2.95294e6 −0.976815
\(392\) 0 0
\(393\) −730620. −0.238622
\(394\) 1.64977e6 2.85749e6i 0.535406 0.927351i
\(395\) −2.68769e6 4.65521e6i −0.866735 1.50123i
\(396\) −139968. 242432.i −0.0448529 0.0776875i
\(397\) −1.25357e6 + 2.17126e6i −0.399185 + 0.691408i −0.993626 0.112731i \(-0.964040\pi\)
0.594441 + 0.804139i \(0.297373\pi\)
\(398\) 1.59818e6 0.505728
\(399\) 0 0
\(400\) −53504.0 −0.0167200
\(401\) −495333. + 857942.i −0.153828 + 0.266438i −0.932632 0.360830i \(-0.882494\pi\)
0.778803 + 0.627268i \(0.215827\pi\)
\(402\) −431064. 746625.i −0.133038 0.230429i
\(403\) −4.17164e6 7.22549e6i −1.27951 2.21618i
\(404\) −1.47701e6 + 2.55825e6i −0.450225 + 0.779812i
\(405\) −354294. −0.107331
\(406\) 0 0
\(407\) −1.01822e6 −0.304689
\(408\) −374976. + 649477.i −0.111520 + 0.193158i
\(409\) −2.25912e6 3.91291e6i −0.667777 1.15662i −0.978524 0.206131i \(-0.933913\pi\)
0.310748 0.950492i \(-0.399421\pi\)
\(410\) 1.05689e6 + 1.83058e6i 0.310506 + 0.537811i
\(411\) −1.17409e6 + 2.03359e6i −0.342846 + 0.593826i
\(412\) 1.03347e6 0.299955
\(413\) 0 0
\(414\) 734832. 0.210711
\(415\) 521316. 902946.i 0.148587 0.257360i
\(416\) 510976. + 885036.i 0.144766 + 0.250742i
\(417\) −1.34084e6 2.32240e6i −0.377604 0.654029i
\(418\) 381888. 661449.i 0.106904 0.185164i
\(419\) 605220. 0.168414 0.0842070 0.996448i \(-0.473164\pi\)
0.0842070 + 0.996448i \(0.473164\pi\)
\(420\) 0 0
\(421\) 4.49893e6 1.23710 0.618549 0.785746i \(-0.287721\pi\)
0.618549 + 0.785746i \(0.287721\pi\)
\(422\) 1.73774e6 3.00985e6i 0.475010 0.822741i
\(423\) −899100. 1.55729e6i −0.244319 0.423173i
\(424\) 857280. + 1.48485e6i 0.231584 + 0.401115i
\(425\) 136059. 235661.i 0.0365389 0.0632872i
\(426\) −742608. −0.198260
\(427\) 0 0
\(428\) 2.39347e6 0.631566
\(429\) 970056. 1.68019e6i 0.254480 0.440772i
\(430\) −2.09909e6 3.63573e6i −0.547469 0.948244i
\(431\) −2.68797e6 4.65570e6i −0.696998 1.20724i −0.969503 0.245081i \(-0.921186\pi\)
0.272505 0.962154i \(-0.412148\pi\)
\(432\) 93312.0 161621.i 0.0240563 0.0416667i
\(433\) −1.98561e6 −0.508950 −0.254475 0.967079i \(-0.581903\pi\)
−0.254475 + 0.967079i \(0.581903\pi\)
\(434\) 0 0
\(435\) −720252. −0.182499
\(436\) 510608. 884399.i 0.128639 0.222809i
\(437\) 1.00246e6 + 1.73630e6i 0.251109 + 0.434933i
\(438\) −5220.00 9041.31i −0.00130013 0.00225188i
\(439\) −1.69364e6 + 2.93346e6i −0.419429 + 0.726473i −0.995882 0.0906576i \(-0.971103\pi\)
0.576453 + 0.817130i \(0.304436\pi\)
\(440\) 746496. 0.183821
\(441\) 0 0
\(442\) −5.19758e6 −1.26545
\(443\) −1.07047e6 + 1.85411e6i −0.259159 + 0.448876i −0.966017 0.258479i \(-0.916779\pi\)
0.706858 + 0.707355i \(0.250112\pi\)
\(444\) −339408. 587872.i −0.0817080 0.141522i
\(445\) 982530. + 1.70179e6i 0.235205 + 0.407386i
\(446\) −1.25331e6 + 2.17080e6i −0.298347 + 0.516753i
\(447\) 3.59073e6 0.849990
\(448\) 0 0
\(449\) −6.97808e6 −1.63350 −0.816752 0.576990i \(-0.804227\pi\)
−0.816752 + 0.576990i \(0.804227\pi\)
\(450\) −33858.0 + 58643.8i −0.00788188 + 0.0136518i
\(451\) 1.05689e6 + 1.83058e6i 0.244674 + 0.423788i
\(452\) 568176. + 984110.i 0.130809 + 0.226567i
\(453\) −1.01236e6 + 1.75345e6i −0.231786 + 0.401466i
\(454\) 1.80158e6 0.410218
\(455\) 0 0
\(456\) 509184. 0.114673
\(457\) 2.59000e6 4.48600e6i 0.580107 1.00478i −0.415359 0.909658i \(-0.636344\pi\)
0.995466 0.0951178i \(-0.0303228\pi\)
\(458\) −2.12906e6 3.68764e6i −0.474268 0.821457i
\(459\) 474579. + 821995.i 0.105142 + 0.182112i
\(460\) −979776. + 1.69702e6i −0.215890 + 0.373932i
\(461\) −7.83001e6 −1.71597 −0.857985 0.513674i \(-0.828284\pi\)
−0.857985 + 0.513674i \(0.828284\pi\)
\(462\) 0 0
\(463\) 165320. 0.0358404 0.0179202 0.999839i \(-0.494296\pi\)
0.0179202 + 0.999839i \(0.494296\pi\)
\(464\) 189696. 328563.i 0.0409038 0.0708474i
\(465\) −2.03148e6 3.51863e6i −0.435693 0.754642i
\(466\) 2.87236e6 + 4.97507e6i 0.612736 + 1.06129i
\(467\) 896646. 1.55304e6i 0.190252 0.329526i −0.755082 0.655631i \(-0.772403\pi\)
0.945334 + 0.326105i \(0.105736\pi\)
\(468\) 1.29341e6 0.272974
\(469\) 0 0
\(470\) 4.79520e6 1.00130
\(471\) −1.04948e6 + 1.81775e6i −0.217983 + 0.377557i
\(472\) 898944. + 1.55702e6i 0.185728 + 0.321691i
\(473\) −2.09909e6 3.63573e6i −0.431398 0.747203i
\(474\) 1.79179e6 3.10347e6i 0.366304 0.634457i
\(475\) −184756. −0.0375720
\(476\) 0 0
\(477\) 2.16999e6 0.436678
\(478\) −1.99572e6 + 3.45669e6i −0.399512 + 0.691975i
\(479\) 3.29828e6 + 5.71280e6i 0.656824 + 1.13765i 0.981433 + 0.191805i \(0.0614341\pi\)
−0.324609 + 0.945848i \(0.605233\pi\)
\(480\) 248832. + 430990.i 0.0492950 + 0.0853815i
\(481\) 2.35229e6 4.07428e6i 0.463583 0.802949i
\(482\) 911896. 0.178784
\(483\) 0 0
\(484\) −1.83032e6 −0.355151
\(485\) −2.13511e6 + 3.69811e6i −0.412159 + 0.713881i
\(486\) −118098. 204552.i −0.0226805 0.0392837i
\(487\) 2.98696e6 + 5.17357e6i 0.570700 + 0.988481i 0.996494 + 0.0836609i \(0.0266613\pi\)
−0.425795 + 0.904820i \(0.640005\pi\)
\(488\) −1.24371e6 + 2.15417e6i −0.236412 + 0.409478i
\(489\) −4.19598e6 −0.793526
\(490\) 0 0
\(491\) 381264. 0.0713710 0.0356855 0.999363i \(-0.488639\pi\)
0.0356855 + 0.999363i \(0.488639\pi\)
\(492\) −704592. + 1.22039e6i −0.131228 + 0.227293i
\(493\) 964782. + 1.67105e6i 0.178777 + 0.309651i
\(494\) 1.76446e6 + 3.05614e6i 0.325309 + 0.563451i
\(495\) 472392. 818207.i 0.0866542 0.150089i
\(496\) 2.14016e6 0.390609
\(497\) 0 0
\(498\) 695088. 0.125593
\(499\) −771754. + 1.33672e6i −0.138748 + 0.240319i −0.927023 0.375004i \(-0.877641\pi\)
0.788275 + 0.615323i \(0.210975\pi\)
\(500\) −1.44029e6 2.49465e6i −0.257647 0.446257i
\(501\) −453816. 786032.i −0.0807766 0.139909i
\(502\) 3.03314e6 5.25356e6i 0.537197 0.930453i
\(503\) −4.02300e6 −0.708974 −0.354487 0.935061i \(-0.615344\pi\)
−0.354487 + 0.935061i \(0.615344\pi\)
\(504\) 0 0
\(505\) −9.96980e6 −1.73964
\(506\) −979776. + 1.69702e6i −0.170118 + 0.294653i
\(507\) 2.81120e6 + 4.86914e6i 0.485704 + 0.841264i
\(508\) −2.15699e6 3.73602e6i −0.370842 0.642318i
\(509\) 973575. 1.68628e6i 0.166562 0.288493i −0.770647 0.637262i \(-0.780067\pi\)
0.937209 + 0.348769i \(0.113400\pi\)
\(510\) −2.53109e6 −0.430905
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 322218. 558098.i 0.0540576 0.0936304i
\(514\) 911772. + 1.57924e6i 0.152222 + 0.263657i
\(515\) 1.74398e6 + 3.02067e6i 0.289751 + 0.501863i
\(516\) 1.39939e6 2.42382e6i 0.231374 0.400752i
\(517\) 4.79520e6 0.789006
\(518\) 0 0
\(519\) 6.01954e6 0.980946
\(520\) −1.72454e6 + 2.98700e6i −0.279683 + 0.484425i
\(521\) −3.69285e6 6.39620e6i −0.596028 1.03235i −0.993401 0.114694i \(-0.963411\pi\)
0.397372 0.917657i \(-0.369922\pi\)
\(522\) −240084. 415838.i −0.0385644 0.0667956i
\(523\) 164870. 285563.i 0.0263565 0.0456508i −0.852546 0.522652i \(-0.824943\pi\)
0.878903 + 0.477001i \(0.158276\pi\)
\(524\) 1.29888e6 0.206653
\(525\) 0 0
\(526\) 3.01061e6 0.474449
\(527\) −5.44236e6 + 9.42644e6i −0.853612 + 1.47850i
\(528\) 248832. + 430990.i 0.0388438 + 0.0672794i
\(529\) 646260. + 1.11935e6i 0.100408 + 0.173912i
\(530\) −2.89332e6 + 5.01138e6i −0.447411 + 0.774939i
\(531\) 2.27545e6 0.350212
\(532\) 0 0
\(533\) −9.76643e6 −1.48908
\(534\) −655020. + 1.13453e6i −0.0994034 + 0.172172i
\(535\) 4.03898e6 + 6.99573e6i 0.610081 + 1.05669i
\(536\) 766336. + 1.32733e6i 0.115215 + 0.199557i
\(537\) −2.76685e6 + 4.79233e6i −0.414048 + 0.717151i
\(538\) −574728. −0.0856065
\(539\) 0 0
\(540\) 629856. 0.0929516
\(541\) −43543.0 + 75418.7i −0.00639625 + 0.0110786i −0.869206 0.494450i \(-0.835369\pi\)
0.862810 + 0.505529i \(0.168703\pi\)
\(542\) 1.51499e6 + 2.62404e6i 0.221520 + 0.383683i
\(543\) 2.43309e6 + 4.21423e6i 0.354126 + 0.613365i
\(544\) 666624. 1.15463e6i 0.0965792 0.167280i
\(545\) 3.44660e6 0.497050
\(546\) 0 0
\(547\) 6.91531e6 0.988196 0.494098 0.869406i \(-0.335498\pi\)
0.494098 + 0.869406i \(0.335498\pi\)
\(548\) 2.08728e6 3.61528e6i 0.296913 0.514269i
\(549\) 1.57407e6 + 2.72637e6i 0.222892 + 0.386060i
\(550\) −90288.0 156383.i −0.0127269 0.0220437i
\(551\) 655044. 1.13457e6i 0.0919161 0.159203i
\(552\) −1.30637e6 −0.182481
\(553\) 0 0
\(554\) 4.64855e6 0.643492
\(555\) 1.14550e6 1.98407e6i 0.157857 0.273416i
\(556\) 2.38371e6 + 4.12871e6i 0.327014 + 0.566405i
\(557\) 761289. + 1.31859e6i 0.103971 + 0.180083i 0.913317 0.407249i \(-0.133512\pi\)
−0.809346 + 0.587332i \(0.800178\pi\)
\(558\) 1.35432e6 2.34575e6i 0.184135 0.318931i
\(559\) 1.93971e7 2.62548
\(560\) 0 0
\(561\) −2.53109e6 −0.339547
\(562\) −828732. + 1.43541e6i −0.110681 + 0.191705i
\(563\) 3.93231e6 + 6.81096e6i 0.522850 + 0.905602i 0.999646 + 0.0265885i \(0.00846439\pi\)
−0.476797 + 0.879013i \(0.658202\pi\)
\(564\) 1.59840e6 + 2.76851e6i 0.211586 + 0.366478i
\(565\) −1.91759e6 + 3.32137e6i −0.252718 + 0.437720i
\(566\) −481712. −0.0632043
\(567\) 0 0
\(568\) 1.32019e6 0.171698
\(569\) 731607. 1.26718e6i 0.0947321 0.164081i −0.814765 0.579792i \(-0.803134\pi\)
0.909497 + 0.415711i \(0.136467\pi\)
\(570\) 859248. + 1.48826e6i 0.110772 + 0.191863i
\(571\) −4.59927e6 7.96618e6i −0.590336 1.02249i −0.994187 0.107667i \(-0.965662\pi\)
0.403851 0.914825i \(-0.367671\pi\)
\(572\) −1.72454e6 + 2.98700e6i −0.220386 + 0.381720i
\(573\) 377244. 0.0479994
\(574\) 0 0
\(575\) 474012. 0.0597888
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) −1.64470e6 2.84870e6i −0.205658 0.356211i 0.744684 0.667417i \(-0.232600\pi\)
−0.950342 + 0.311207i \(0.899267\pi\)
\(578\) 550694. + 953830.i 0.0685631 + 0.118755i
\(579\) −2.40299e6 + 4.16210e6i −0.297890 + 0.515960i
\(580\) 1.28045e6 0.158049
\(581\) 0 0
\(582\) −2.84681e6 −0.348378
\(583\) −2.89332e6 + 5.01138e6i −0.352554 + 0.610641i
\(584\) 9280.00 + 16073.4i 0.00112594 + 0.00195019i
\(585\) 2.18263e6 + 3.78042e6i 0.263688 + 0.456720i
\(586\) 4.40317e6 7.62652e6i 0.529690 0.917450i
\(587\) 5.12929e6 0.614416 0.307208 0.951642i \(-0.400605\pi\)
0.307208 + 0.951642i \(0.400605\pi\)
\(588\) 0 0
\(589\) 7.39024e6 0.877749
\(590\) −3.03394e6 + 5.25493e6i −0.358820 + 0.621494i
\(591\) 3.71199e6 + 6.42935e6i 0.437157 + 0.757179i
\(592\) 603392. + 1.04511e6i 0.0707612 + 0.122562i
\(593\) 1.37716e6 2.38532e6i 0.160823 0.278554i −0.774341 0.632769i \(-0.781918\pi\)
0.935164 + 0.354214i \(0.115252\pi\)
\(594\) 629856. 0.0732445
\(595\) 0 0
\(596\) −6.38352e6 −0.736113
\(597\) −1.79795e6 + 3.11414e6i −0.206463 + 0.357604i
\(598\) −4.52693e6 7.84087e6i −0.517667 0.896626i
\(599\) 4.94308e6 + 8.56167e6i 0.562899 + 0.974970i 0.997242 + 0.0742224i \(0.0236475\pi\)
−0.434342 + 0.900748i \(0.643019\pi\)
\(600\) 60192.0 104256.i 0.00682591 0.0118228i
\(601\) 1.37039e7 1.54760 0.773798 0.633433i \(-0.218355\pi\)
0.773798 + 0.633433i \(0.218355\pi\)
\(602\) 0 0
\(603\) 1.93979e6 0.217251
\(604\) 1.79974e6 3.11725e6i 0.200733 0.347679i
\(605\) −3.08866e6 5.34972e6i −0.343070 0.594214i
\(606\) −3.32327e6 5.75607e6i −0.367607 0.636714i
\(607\) 3.92655e6 6.80099e6i 0.432553 0.749204i −0.564539 0.825406i \(-0.690946\pi\)
0.997092 + 0.0762020i \(0.0242794\pi\)
\(608\) −905216. −0.0993101
\(609\) 0 0
\(610\) −8.39506e6 −0.913480
\(611\) −1.10778e7 + 1.91873e7i −1.20047 + 2.07927i
\(612\) −843696. 1.46132e6i −0.0910558 0.157713i
\(613\) −7.34884e6 1.27286e7i −0.789892 1.36813i −0.926033 0.377444i \(-0.876803\pi\)
0.136140 0.990690i \(-0.456530\pi\)
\(614\) 221800. 384169.i 0.0237433 0.0411246i
\(615\) −4.75600e6 −0.507053
\(616\) 0 0
\(617\) 6.28370e6 0.664511 0.332256 0.943189i \(-0.392190\pi\)
0.332256 + 0.943189i \(0.392190\pi\)
\(618\) −1.16266e6 + 2.01378e6i −0.122456 + 0.212100i
\(619\) 1.13346e6 + 1.96321e6i 0.118900 + 0.205940i 0.919332 0.393483i \(-0.128730\pi\)
−0.800432 + 0.599423i \(0.795397\pi\)
\(620\) 3.61152e6 + 6.25534e6i 0.377321 + 0.653539i
\(621\) −826686. + 1.43186e6i −0.0860224 + 0.148995i
\(622\) 3.64243e6 0.377499
\(623\) 0 0
\(624\) −2.29939e6 −0.236402
\(625\) 4.53441e6 7.85383e6i 0.464324 0.804232i
\(626\) 6.24495e6 + 1.08166e7i 0.636932 + 1.10320i
\(627\) 859248. + 1.48826e6i 0.0872870 + 0.151186i
\(628\) 1.86574e6 3.23156e6i 0.188779 0.326974i
\(629\) −6.13763e6 −0.618549
\(630\) 0 0
\(631\) −1.17477e7 −1.17457 −0.587285 0.809380i \(-0.699803\pi\)
−0.587285 + 0.809380i \(0.699803\pi\)
\(632\) −3.18541e6 + 5.51729e6i −0.317229 + 0.549456i
\(633\) 3.90991e6 + 6.77216e6i 0.387844 + 0.671765i
\(634\) −5.53376e6 9.58476e6i −0.546761 0.947018i
\(635\) 7.27985e6 1.26091e7i 0.716453 1.24093i
\(636\) −3.85776e6 −0.378175
\(637\) 0 0
\(638\) 1.28045e6 0.124540
\(639\) 835434. 1.44701e6i 0.0809394 0.140191i
\(640\) −442368. 766204.i −0.0426907 0.0739425i
\(641\) −2.96616e6 5.13753e6i −0.285134 0.493867i 0.687508 0.726177i \(-0.258705\pi\)
−0.972642 + 0.232311i \(0.925371\pi\)
\(642\) −2.69266e6 + 4.66382e6i −0.257836 + 0.446585i
\(643\) −6.94443e6 −0.662383 −0.331191 0.943564i \(-0.607451\pi\)
−0.331191 + 0.943564i \(0.607451\pi\)
\(644\) 0 0
\(645\) 9.44590e6 0.894013
\(646\) 2.30194e6 3.98707e6i 0.217026 0.375900i
\(647\) 2.48525e6 + 4.30458e6i 0.233404 + 0.404268i 0.958808 0.284056i \(-0.0916801\pi\)
−0.725403 + 0.688324i \(0.758347\pi\)
\(648\) 209952. + 363648.i 0.0196419 + 0.0340207i
\(649\) −3.03394e6 + 5.25493e6i −0.282745 + 0.489728i
\(650\) 834328. 0.0774557
\(651\) 0 0
\(652\) 7.45952e6 0.687214
\(653\) 9.16773e6 1.58790e7i 0.841354 1.45727i −0.0473954 0.998876i \(-0.515092\pi\)
0.888750 0.458392i \(-0.151575\pi\)
\(654\) 1.14887e6 + 1.98990e6i 0.105033 + 0.181922i
\(655\) 2.19186e6 + 3.79641e6i 0.199623 + 0.345756i
\(656\) 1.25261e6 2.16958e6i 0.113646 0.196841i
\(657\) 23490.0 0.00212310
\(658\) 0 0
\(659\) 9.01402e6 0.808546 0.404273 0.914638i \(-0.367525\pi\)
0.404273 + 0.914638i \(0.367525\pi\)
\(660\) −839808. + 1.45459e6i −0.0750447 + 0.129981i
\(661\) −349699. 605696.i −0.0311308 0.0539202i 0.850040 0.526718i \(-0.176578\pi\)
−0.881171 + 0.472798i \(0.843244\pi\)
\(662\) 6.44514e6 + 1.11633e7i 0.571594 + 0.990030i
\(663\) 5.84728e6 1.01278e7i 0.516619 0.894810i
\(664\) −1.23571e6 −0.108767
\(665\) 0 0
\(666\) 1.52734e6 0.133429
\(667\) −1.68059e6 + 2.91086e6i −0.146267 + 0.253342i
\(668\) 806784. + 1.39739e6i 0.0699546 + 0.121165i
\(669\) −2.81995e6 4.88430e6i −0.243600 0.421927i
\(670\) −2.58638e6 + 4.47975e6i −0.222590 + 0.385537i
\(671\) −8.39506e6 −0.719809
\(672\) 0 0
\(673\) −5.80603e6 −0.494130 −0.247065 0.968999i \(-0.579466\pi\)
−0.247065 + 0.968999i \(0.579466\pi\)
\(674\) 3.26612e6 5.65708e6i 0.276938 0.479670i
\(675\) −76180.5 131948.i −0.00643553 0.0111467i
\(676\) −4.99769e6 8.65625e6i −0.420632 0.728556i
\(677\) −492537. + 853099.i −0.0413016 + 0.0715365i −0.885937 0.463805i \(-0.846484\pi\)
0.844636 + 0.535342i \(0.179817\pi\)
\(678\) −2.55679e6 −0.213610
\(679\) 0 0
\(680\) 4.49971e6 0.373175
\(681\) −2.02678e6 + 3.51049e6i −0.167471 + 0.290068i
\(682\) 3.61152e6 + 6.25534e6i 0.297323 + 0.514979i
\(683\) 9.41042e6 + 1.62993e7i 0.771894 + 1.33696i 0.936524 + 0.350604i \(0.114024\pi\)
−0.164630 + 0.986355i \(0.552643\pi\)
\(684\) −572832. + 992174.i −0.0468152 + 0.0810863i
\(685\) 1.40891e7 1.14725
\(686\) 0 0
\(687\) 9.58077e6 0.774477
\(688\) −2.48781e6 + 4.30901e6i −0.200376 + 0.347061i
\(689\) −1.33682e7 2.31544e7i −1.07282 1.85817i
\(690\) −2.20450e6 3.81830e6i −0.176273 0.305314i
\(691\) 9.66924e6 1.67476e7i 0.770366 1.33431i −0.166996 0.985958i \(-0.553407\pi\)
0.937362 0.348356i \(-0.113260\pi\)
\(692\) −1.07014e7 −0.849524
\(693\) 0 0
\(694\) −4.14566e6 −0.326735
\(695\) −8.04503e6 + 1.39344e7i −0.631780 + 1.09427i
\(696\) 426816. + 739267.i 0.0333978 + 0.0578467i
\(697\) 6.37069e6 + 1.10344e7i 0.496712 + 0.860330i
\(698\) −8.45997e6 + 1.46531e7i −0.657250 + 1.13839i
\(699\) −1.29256e7 −1.00059
\(700\) 0 0
\(701\) −1.41489e6 −0.108750 −0.0543748 0.998521i \(-0.517317\pi\)
−0.0543748 + 0.998521i \(0.517317\pi\)
\(702\) −1.45508e6 + 2.52028e6i −0.111441 + 0.193022i
\(703\) 2.08359e6 + 3.60888e6i 0.159010 + 0.275413i
\(704\) −442368. 766204.i −0.0336397 0.0582657i
\(705\) −5.39460e6 + 9.34372e6i −0.408777 + 0.708023i
\(706\) −955224. −0.0721263
\(707\) 0 0
\(708\) −4.04525e6 −0.303293
\(709\) 377453. 653768.i 0.0281999 0.0488436i −0.851581 0.524223i \(-0.824356\pi\)
0.879781 + 0.475379i \(0.157689\pi\)
\(710\) 2.22782e6 + 3.85870e6i 0.165857 + 0.287274i
\(711\) 4.03153e6 + 6.98282e6i 0.299086 + 0.518032i
\(712\) 1.16448e6 2.01694e6i 0.0860859 0.149105i
\(713\) −1.89605e7 −1.39677
\(714\) 0 0
\(715\) −1.16407e7 −0.851555
\(716\) 4.91885e6 8.51969e6i 0.358576 0.621071i
\(717\) −4.49037e6 7.77755e6i −0.326200 0.564995i
\(718\) −5.32855e6 9.22932e6i −0.385743 0.668127i
\(719\) −544272. + 942707.i −0.0392639 + 0.0680071i −0.884990 0.465611i \(-0.845835\pi\)
0.845726 + 0.533618i \(0.179168\pi\)
\(720\) −1.11974e6 −0.0804984
\(721\) 0 0
\(722\) 6.77857e6 0.483944
\(723\) −1.02588e6 + 1.77688e6i −0.0729881 + 0.126419i
\(724\) −4.32549e6 7.49196e6i −0.306682 0.531189i
\(725\) −154869. 268241.i −0.0109426 0.0189531i
\(726\) 2.05911e6 3.56648e6i 0.144990 0.251130i
\(727\) −755392. −0.0530074 −0.0265037 0.999649i \(-0.508437\pi\)
−0.0265037 + 0.999649i \(0.508437\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −31320.0 + 54247.8i −0.00217528 + 0.00376769i
\(731\) −1.26528e7 2.19154e7i −0.875779 1.51689i
\(732\) −2.79835e6 4.84689e6i −0.193030 0.334338i
\(733\) −781843. + 1.35419e6i −0.0537477 + 0.0930937i −0.891647 0.452730i \(-0.850450\pi\)
0.837900 + 0.545824i \(0.183783\pi\)
\(734\) 6.84333e6 0.468843
\(735\) 0 0
\(736\) 2.32243e6 0.158033
\(737\) −2.58638e6 + 4.47975e6i −0.175398 + 0.303798i
\(738\) −1.58533e6 2.74588e6i −0.107147 0.185584i
\(739\) 5.27719e6 + 9.14037e6i 0.355461 + 0.615677i 0.987197 0.159507i \(-0.0509906\pi\)
−0.631736 + 0.775184i \(0.717657\pi\)
\(740\) −2.03645e6 + 3.52723e6i −0.136708 + 0.236785i
\(741\) −7.94009e6 −0.531227
\(742\) 0 0
\(743\) 1.73678e7 1.15418 0.577088 0.816682i \(-0.304189\pi\)
0.577088 + 0.816682i \(0.304189\pi\)
\(744\) −2.40768e6 + 4.17022e6i −0.159465 + 0.276202i
\(745\) −1.07722e7 1.86580e7i −0.711072 1.23161i
\(746\) −7.93298e6 1.37403e7i −0.521902 0.903961i
\(747\) −781974. + 1.35442e6i −0.0512732 + 0.0888079i
\(748\) 4.49971e6 0.294056
\(749\) 0 0
\(750\) 6.48130e6 0.420735
\(751\) 1.40091e7 2.42644e7i 0.906378 1.56989i 0.0873221 0.996180i \(-0.472169\pi\)
0.819056 0.573713i \(-0.194498\pi\)
\(752\) −2.84160e6 4.92180e6i −0.183239 0.317380i
\(753\) 6.82457e6 + 1.18205e7i 0.438620 + 0.759712i
\(754\) −2.95807e6 + 5.12353e6i −0.189487 + 0.328202i
\(755\) 1.21483e7 0.775617
\(756\) 0 0
\(757\) −1.01979e7 −0.646801 −0.323401 0.946262i \(-0.604826\pi\)
−0.323401 + 0.946262i \(0.604826\pi\)
\(758\) 1.65734e6 2.87059e6i 0.104770 0.181467i
\(759\) −2.20450e6 3.81830e6i −0.138901 0.240583i
\(760\) −1.52755e6 2.64580e6i −0.0959317 0.166159i
\(761\) −1.28768e6 + 2.23032e6i −0.0806018 + 0.139606i −0.903509 0.428570i \(-0.859018\pi\)
0.822907 + 0.568176i \(0.192351\pi\)
\(762\) 9.70646e6 0.605583
\(763\) 0 0
\(764\) −670656. −0.0415687
\(765\) 2.84747e6 4.93197e6i 0.175916 0.304696i
\(766\) −5.11373e6 8.85724e6i −0.314895 0.545414i
\(767\) −1.40179e7 2.42797e7i −0.860389 1.49024i
\(768\) 294912. 510803.i 0.0180422 0.0312500i
\(769\) 971234. 0.0592254 0.0296127 0.999561i \(-0.490573\pi\)
0.0296127 + 0.999561i \(0.490573\pi\)
\(770\) 0 0
\(771\) −4.10297e6 −0.248578
\(772\) 4.27198e6 7.39929e6i 0.257980 0.446835i
\(773\) 8.64606e6 + 1.49754e7i 0.520439 + 0.901426i 0.999718 + 0.0237637i \(0.00756494\pi\)
−0.479279 + 0.877663i \(0.659102\pi\)
\(774\) 3.14863e6 + 5.45359e6i 0.188916 + 0.327213i
\(775\) 873620. 1.51315e6i 0.0522478 0.0904959i
\(776\) 5.06099e6 0.301704
\(777\) 0 0
\(778\) −1.16714e7 −0.691313
\(779\) 4.32541e6 7.49183e6i 0.255378 0.442328i
\(780\) −3.88022e6 6.72075e6i −0.228360 0.395531i
\(781\) 2.22782e6 + 3.85870e6i 0.130693 + 0.226367i
\(782\) −5.90587e6 + 1.02293e7i −0.345356 + 0.598174i
\(783\) 1.08038e6 0.0629755
\(784\) 0 0
\(785\) 1.25938e7 0.729427
\(786\) −1.46124e6 + 2.53094e6i −0.0843656 + 0.146125i
\(787\) 8.27573e6 + 1.43340e7i 0.476288 + 0.824955i 0.999631 0.0271674i \(-0.00864870\pi\)
−0.523343 + 0.852122i \(0.675315\pi\)
\(788\) −6.59909e6 1.14300e7i −0.378589 0.655736i
\(789\) −3.38693e6 + 5.86634e6i −0.193693 + 0.335486i
\(790\) −2.15015e7 −1.22575
\(791\) 0 0
\(792\) −1.11974e6 −0.0634316
\(793\) 1.93941e7 3.35916e7i 1.09518 1.89692i
\(794\) 5.01430e6 + 8.68502e6i 0.282266 + 0.488900i
\(795\) −6.50997e6 1.12756e7i −0.365310 0.632735i
\(796\) 3.19635e6 5.53624e6i 0.178802 0.309694i
\(797\) 2.91057e6 0.162305 0.0811526 0.996702i \(-0.474140\pi\)
0.0811526 + 0.996702i \(0.474140\pi\)
\(798\) 0 0
\(799\) 2.89044e7 1.60176
\(800\) −107008. + 185343.i −0.00591141 + 0.0102389i
\(801\) −1.47380e6 2.55269e6i −0.0811626 0.140578i
\(802\) 1.98133e6 + 3.43177e6i 0.108773 + 0.188400i
\(803\) −31320.0 + 54247.8i −0.00171409 + 0.00296889i
\(804\) −3.44851e6 −0.188145
\(805\) 0 0
\(806\) −3.33731e7 −1.80950
\(807\) 646569. 1.11989e6i 0.0349487 0.0605329i
\(808\) 5.90803e6 + 1.02330e7i 0.318357 + 0.551411i
\(809\) 5.81261e6 + 1.00677e7i 0.312248 + 0.540830i 0.978849 0.204585i \(-0.0655846\pi\)
−0.666601 + 0.745415i \(0.732251\pi\)
\(810\) −708588. + 1.22731e6i −0.0379473 + 0.0657267i
\(811\) 3.09020e7 1.64981 0.824906 0.565270i \(-0.191228\pi\)
0.824906 + 0.565270i \(0.191228\pi\)
\(812\) 0 0
\(813\) −6.81746e6 −0.361740
\(814\) −2.03645e6 + 3.52723e6i −0.107724 + 0.186583i
\(815\) 1.25879e7 + 2.18030e7i 0.663836 + 1.14980i
\(816\) 1.49990e6 + 2.59791e6i 0.0788566 + 0.136584i
\(817\) −8.59071e6 + 1.48795e7i −0.450271 + 0.779892i
\(818\) −1.80730e7 −0.944379
\(819\) 0 0
\(820\) 8.45510e6 0.439121
\(821\) 1.11435e7 1.93011e7i 0.576984 0.999366i −0.418839 0.908061i \(-0.637563\pi\)
0.995823 0.0913056i \(-0.0291040\pi\)
\(822\) 4.69638e6 + 8.13437e6i 0.242429 + 0.419898i
\(823\) 8.24475e6 + 1.42803e7i 0.424305 + 0.734918i 0.996355 0.0853009i \(-0.0271852\pi\)
−0.572050 + 0.820218i \(0.693852\pi\)
\(824\) 2.06694e6 3.58005e6i 0.106050 0.183684i
\(825\) 406296. 0.0207830
\(826\) 0 0
\(827\) −2.37457e7 −1.20732 −0.603658 0.797244i \(-0.706291\pi\)
−0.603658 + 0.797244i \(0.706291\pi\)
\(828\) 1.46966e6 2.54553e6i 0.0744976 0.129034i
\(829\) −1.30433e7 2.25916e7i −0.659173 1.14172i −0.980830 0.194865i \(-0.937573\pi\)
0.321657 0.946856i \(-0.395760\pi\)
\(830\) −2.08526e6 3.61178e6i −0.105067 0.181981i
\(831\) −5.22962e6 + 9.05797e6i −0.262705 + 0.455018i
\(832\) 4.08781e6 0.204730
\(833\) 0 0
\(834\) −1.07267e7 −0.534012
\(835\) −2.72290e6 + 4.71619e6i −0.135150 + 0.234086i
\(836\) −1.52755e6 2.64580e6i −0.0755928 0.130931i
\(837\) 3.04722e6 + 5.27794e6i 0.150345 + 0.260406i
\(838\) 1.21044e6 2.09654e6i 0.0595433 0.103132i
\(839\) 1.00872e7 0.494729 0.247365 0.968922i \(-0.420435\pi\)
0.247365 + 0.968922i \(0.420435\pi\)
\(840\) 0 0
\(841\) −1.83148e7 −0.892920
\(842\) 8.99787e6 1.55848e7i 0.437380 0.757565i
\(843\) −1.86465e6 3.22966e6i −0.0903707 0.156527i
\(844\) −6.95094e6 1.20394e7i −0.335883 0.581766i
\(845\) 1.68672e7 2.92148e7i 0.812646 1.40754i
\(846\) −7.19280e6 −0.345519
\(847\) 0 0
\(848\) 6.85824e6 0.327509
\(849\) 541926. 938643.i 0.0258030 0.0446922i
\(850\) −544236. 942644.i −0.0258369 0.0447508i
\(851\) −5.34568e6 9.25898e6i −0.253034 0.438268i
\(852\) −1.48522e6 + 2.57247e6i −0.0700956 + 0.121409i
\(853\) −2.43630e7 −1.14646 −0.573229 0.819395i \(-0.694309\pi\)
−0.573229 + 0.819395i \(0.694309\pi\)
\(854\) 0 0
\(855\) −3.86662e6 −0.180890
\(856\) 4.78694e6 8.29123e6i 0.223292 0.386754i
\(857\) −1.22806e6 2.12706e6i −0.0571172 0.0989300i 0.836053 0.548649i \(-0.184858\pi\)
−0.893170 + 0.449719i \(0.851524\pi\)
\(858\) −3.88022e6 6.72075e6i −0.179945 0.311673i
\(859\) −4.31491e6 + 7.47364e6i −0.199521 + 0.345581i −0.948373 0.317156i \(-0.897272\pi\)
0.748852 + 0.662737i \(0.230605\pi\)
\(860\) −1.67927e7 −0.774238
\(861\) 0 0
\(862\) −2.15038e7 −0.985703
\(863\) −5.25997e6 + 9.11053e6i −0.240412 + 0.416406i −0.960832 0.277133i \(-0.910616\pi\)
0.720420 + 0.693538i \(0.243949\pi\)
\(864\) −373248. 646484.i −0.0170103 0.0294628i
\(865\) −1.80586e7 3.12785e7i −0.820624 1.42136i
\(866\) −3.97123e6 + 6.87837e6i −0.179941 + 0.311667i
\(867\) −2.47812e6 −0.111963
\(868\) 0 0
\(869\) −2.15015e7 −0.965872
\(870\) −1.44050e6 + 2.49503e6i −0.0645233 + 0.111758i
\(871\) −1.19501e7 2.06981e7i −0.533733 0.924453i
\(872\) −2.04243e6 3.53760e6i −0.0909612 0.157549i
\(873\) 3.20266e6 5.54717e6i 0.142225 0.246340i
\(874\) 8.01965e6 0.355121
\(875\) 0 0
\(876\) −41760.0 −0.00183865
\(877\) 5.72699e6 9.91944e6i 0.251436 0.435500i −0.712485 0.701687i \(-0.752430\pi\)
0.963921 + 0.266187i \(0.0857638\pi\)
\(878\) 6.77454e6 + 1.17339e7i 0.296581 + 0.513694i
\(879\) 9.90714e6 + 1.71597e7i 0.432490 + 0.749094i
\(880\) 1.49299e6 2.58594e6i 0.0649906 0.112567i
\(881\) −1.18134e7 −0.512786 −0.256393 0.966573i \(-0.582534\pi\)
−0.256393 + 0.966573i \(0.582534\pi\)
\(882\) 0 0
\(883\) 4.63221e6 0.199934 0.0999670 0.994991i \(-0.468126\pi\)
0.0999670 + 0.994991i \(0.468126\pi\)
\(884\) −1.03952e7 + 1.80050e7i −0.447405 + 0.774928i
\(885\) −6.82636e6 1.18236e7i −0.292975 0.507448i
\(886\) 4.28189e6 + 7.41645e6i 0.183253 + 0.317403i
\(887\) −2.23864e7 + 3.87744e7i −0.955377 + 1.65476i −0.221875 + 0.975075i \(0.571218\pi\)
−0.733502 + 0.679687i \(0.762116\pi\)
\(888\) −2.71526e6 −0.115553
\(889\) 0 0
\(890\) 7.86024e6 0.332630
\(891\) −708588. + 1.22731e6i −0.0299020 + 0.0517917i
\(892\) 5.01325e6 + 8.68320e6i 0.210963 + 0.365399i
\(893\) −9.81240e6 1.69956e7i −0.411762 0.713193i
\(894\) 7.18146e6 1.24387e7i 0.300517 0.520511i
\(895\) 3.32022e7 1.38551
\(896\) 0 0
\(897\) 2.03712e7 0.845347
\(898\) −1.39562e7 + 2.41728e7i −0.577531 + 1.00031i
\(899\) 6.19476e6 + 1.07296e7i 0.255638 + 0.442778i
\(900\) 135432. + 234575.i 0.00557333 + 0.00965330i
\(901\) −1.74403e7 + 3.02075e7i −0.715718 + 1.23966i
\(902\) 8.45510e6 0.346021
\(903\) 0 0
\(904\) 4.54541e6 0.184992
\(905\) 1.45985e7 2.52854e7i 0.592499 1.02624i
\(906\) 4.04942e6 + 7.01381e6i 0.163898 + 0.283879i
\(907\) 1.04178e7 + 1.80442e7i 0.420493 + 0.728315i 0.995988 0.0894902i \(-0.0285238\pi\)
−0.575495 + 0.817806i \(0.695190\pi\)
\(908\) 3.60317e6 6.24087e6i 0.145034 0.251206i
\(909\) 1.49547e7 0.600300
\(910\) 0 0
\(911\) 5.27869e6 0.210732 0.105366 0.994434i \(-0.466399\pi\)
0.105366 + 0.994434i \(0.466399\pi\)
\(912\) 1.01837e6 1.76387e6i 0.0405432 0.0702228i
\(913\) −2.08526e6 3.61178e6i −0.0827912 0.143399i
\(914\) −1.03600e7 1.79440e7i −0.410198 0.710484i
\(915\) 9.44444e6 1.63582e7i 0.372927 0.645928i
\(916\) −1.70325e7 −0.670717
\(917\) 0 0
\(918\) 3.79663e6 0.148693
\(919\) −1.25643e7 + 2.17620e7i −0.490738 + 0.849984i −0.999943 0.0106615i \(-0.996606\pi\)
0.509205 + 0.860645i \(0.329940\pi\)
\(920\) 3.91910e6 + 6.78809e6i 0.152657 + 0.264410i
\(921\) 499050. + 864380.i 0.0193863 + 0.0335781i
\(922\) −1.56600e7 + 2.71239e7i −0.606687 + 1.05081i
\(923\) −2.05867e7 −0.795396
\(924\) 0 0
\(925\) 985226. 0.0378601
\(926\) 330640. 572685.i 0.0126715 0.0219477i
\(927\) −2.61598e6 4.53100e6i −0.0999849 0.173179i
\(928\) −758784. 1.31425e6i −0.0289233 0.0500967i
\(929\) −6.90210e6 + 1.19548e7i −0.262387 + 0.454467i −0.966876 0.255248i \(-0.917843\pi\)
0.704489 + 0.709715i \(0.251176\pi\)
\(930\) −1.62518e7 −0.616162
\(931\) 0 0
\(932\) 2.29788e7 0.866540
\(933\) −4.09774e6 + 7.09749e6i −0.154113 + 0.266932i
\(934\) −3.58658e6 6.21215e6i −0.134528 0.233010i
\(935\) 7.59326e6 + 1.31519e7i 0.284053 + 0.491994i
\(936\) 2.58682e6 4.48050e6i 0.0965108 0.167162i
\(937\) −4.73307e7 −1.76114 −0.880570 0.473915i \(-0.842840\pi\)
−0.880570 + 0.473915i \(0.842840\pi\)
\(938\) 0 0
\(939\) −2.81023e7 −1.04011
\(940\) 9.59040e6 1.66111e7i 0.354011 0.613166i
\(941\) 1.62785e7 + 2.81952e7i 0.599295 + 1.03801i 0.992925 + 0.118741i \(0.0378858\pi\)
−0.393630 + 0.919269i \(0.628781\pi\)
\(942\) 4.19792e6 + 7.27102e6i 0.154137 + 0.266973i
\(943\) −1.10973e7 + 1.92211e7i −0.406386 + 0.703882i
\(944\) 7.19155e6 0.262659
\(945\) 0 0
\(946\) −1.67927e7 −0.610088
\(947\) 2.63558e6 4.56497e6i 0.0954997 0.165410i −0.814317 0.580420i \(-0.802888\pi\)
0.909817 + 0.415010i \(0.136222\pi\)
\(948\) −7.16717e6 1.24139e7i −0.259016 0.448629i
\(949\) −144710. 250645.i −0.00521595 0.00903428i
\(950\) −369512. + 640014.i −0.0132837 + 0.0230081i
\(951\) 2.49019e7 0.892857
\(952\) 0 0
\(953\) 8.20579e6 0.292677 0.146338 0.989235i \(-0.453251\pi\)
0.146338 + 0.989235i \(0.453251\pi\)
\(954\) 4.33998e6 7.51707e6i 0.154389 0.267410i
\(955\) −1.13173e6 1.96022e6i −0.0401546 0.0695498i
\(956\) 7.98288e6 + 1.38268e7i 0.282498 + 0.489300i
\(957\) −1.44050e6 + 2.49503e6i −0.0508434 + 0.0880634i
\(958\) 2.63863e7 0.928890
\(959\) 0 0
\(960\) 1.99066e6 0.0697137
\(961\) −2.06302e7 + 3.57326e7i −0.720602 + 1.24812i
\(962\) −9.40914e6 1.62971e7i −0.327803 0.567771i
\(963\) −6.05848e6 1.04936e7i −0.210522 0.364635i
\(964\) 1.82379e6 3.15890e6i 0.0632096 0.109482i
\(965\) 2.88359e7 0.996816
\(966\) 0 0
\(967\) −1.18118e7 −0.406210 −0.203105 0.979157i \(-0.565103\pi\)
−0.203105 + 0.979157i \(0.565103\pi\)
\(968\) −3.66064e6 + 6.34041e6i −0.125565 + 0.217485i
\(969\) 5.17936e6 + 8.97091e6i 0.177201 + 0.306921i
\(970\) 8.54042e6 + 1.47924e7i 0.291441 + 0.504790i
\(971\) 1.83851e7 3.18439e7i 0.625774 1.08387i −0.362617 0.931938i \(-0.618117\pi\)
0.988391 0.151934i \(-0.0485502\pi\)
\(972\) −944784. −0.0320750
\(973\) 0 0
\(974\) 2.38957e7 0.807091
\(975\) −938619. + 1.62574e6i −0.0316212 + 0.0547695i
\(976\) 4.97485e6 + 8.61669e6i 0.167169 + 0.289545i
\(977\) 9.25913e6 + 1.60373e7i 0.310337 + 0.537520i 0.978435 0.206553i \(-0.0662247\pi\)
−0.668098 + 0.744073i \(0.732891\pi\)
\(978\) −8.39196e6 + 1.45353e7i −0.280554 + 0.485934i
\(979\) 7.86024e6 0.262107
\(980\) 0 0
\(981\) −5.16991e6 −0.171518
\(982\) 762528. 1.32074e6i 0.0252335 0.0437057i
\(983\) −1.36085e7 2.35706e7i −0.449185 0.778012i 0.549148 0.835725i \(-0.314952\pi\)
−0.998333 + 0.0577135i \(0.981619\pi\)
\(984\) 2.81837e6 + 4.88156e6i 0.0927919 + 0.160720i
\(985\) 2.22719e7 3.85761e7i 0.731420 1.26686i
\(986\) 7.71826e6 0.252829
\(987\) 0 0
\(988\) 1.41157e7 0.460056
\(989\) 2.20404e7 3.81751e7i 0.716521 1.24105i
\(990\) −1.88957e6 3.27283e6i −0.0612738 0.106129i
\(991\) −8.16990e6 1.41507e7i −0.264261 0.457713i 0.703109 0.711082i \(-0.251795\pi\)
−0.967370 + 0.253369i \(0.918461\pi\)
\(992\) 4.28032e6 7.41373e6i 0.138101 0.239198i
\(993\) −2.90031e7 −0.933409
\(994\) 0 0
\(995\) 2.15754e7 0.690877
\(996\) 1.39018e6 2.40786e6i 0.0444039 0.0769099i
\(997\) 1.51031e7 + 2.61594e7i 0.481203 + 0.833468i 0.999767 0.0215704i \(-0.00686660\pi\)
−0.518564 + 0.855039i \(0.673533\pi\)
\(998\) 3.08702e6 + 5.34687e6i 0.0981098 + 0.169931i
\(999\) −1.71825e6 + 2.97610e6i −0.0544720 + 0.0943483i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.e.r.79.1 2
7.2 even 3 42.6.a.a.1.1 1
7.3 odd 6 294.6.e.h.67.1 2
7.4 even 3 inner 294.6.e.r.67.1 2
7.5 odd 6 294.6.a.h.1.1 1
7.6 odd 2 294.6.e.h.79.1 2
21.2 odd 6 126.6.a.k.1.1 1
21.5 even 6 882.6.a.o.1.1 1
28.23 odd 6 336.6.a.j.1.1 1
35.2 odd 12 1050.6.g.o.799.1 2
35.9 even 6 1050.6.a.n.1.1 1
35.23 odd 12 1050.6.g.o.799.2 2
84.23 even 6 1008.6.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.a.1.1 1 7.2 even 3
126.6.a.k.1.1 1 21.2 odd 6
294.6.a.h.1.1 1 7.5 odd 6
294.6.e.h.67.1 2 7.3 odd 6
294.6.e.h.79.1 2 7.6 odd 2
294.6.e.r.67.1 2 7.4 even 3 inner
294.6.e.r.79.1 2 1.1 even 1 trivial
336.6.a.j.1.1 1 28.23 odd 6
882.6.a.o.1.1 1 21.5 even 6
1008.6.a.x.1.1 1 84.23 even 6
1050.6.a.n.1.1 1 35.9 even 6
1050.6.g.o.799.1 2 35.2 odd 12
1050.6.g.o.799.2 2 35.23 odd 12