Properties

Label 294.6.e.m.79.1
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.m.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(43.0000 - 74.4782i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(2.00000 - 3.46410i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(43.0000 - 74.4782i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(-172.000 - 297.913i) q^{10} +(-17.0000 - 29.4449i) q^{11} +(-72.0000 + 124.708i) q^{12} +3.00000 q^{13} -774.000 q^{15} +(-128.000 + 221.703i) q^{16} +(-952.000 - 1648.91i) q^{17} +(162.000 + 280.592i) q^{18} +(-744.500 + 1289.51i) q^{19} -1376.00 q^{20} -136.000 q^{22} +(112.000 - 193.990i) q^{23} +(288.000 + 498.831i) q^{24} +(-2135.50 - 3698.79i) q^{25} +(6.00000 - 10.3923i) q^{26} +729.000 q^{27} -6508.00 q^{29} +(-1548.00 + 2681.21i) q^{30} +(865.500 + 1499.09i) q^{31} +(512.000 + 886.810i) q^{32} +(-153.000 + 265.004i) q^{33} -7616.00 q^{34} +1296.00 q^{36} +(3816.50 - 6610.37i) q^{37} +(2978.00 + 5158.05i) q^{38} +(-13.5000 - 23.3827i) q^{39} +(-2752.00 + 4766.60i) q^{40} -15414.0 q^{41} +18491.0 q^{43} +(-272.000 + 471.118i) q^{44} +(3483.00 + 6032.73i) q^{45} +(-448.000 - 775.959i) q^{46} +(9231.00 - 15988.6i) q^{47} +2304.00 q^{48} -17084.0 q^{50} +(-8568.00 + 14840.2i) q^{51} +(-24.0000 - 41.5692i) q^{52} +(9978.00 + 17282.4i) q^{53} +(1458.00 - 2525.33i) q^{54} -2924.00 q^{55} +13401.0 q^{57} +(-13016.0 + 22544.4i) q^{58} +(-15914.0 - 27563.9i) q^{59} +(6192.00 + 10724.9i) q^{60} +(-28827.0 + 49929.8i) q^{61} +6924.00 q^{62} +4096.00 q^{64} +(129.000 - 223.435i) q^{65} +(612.000 + 1060.02i) q^{66} +(30281.5 + 52449.1i) q^{67} +(-15232.0 + 26382.6i) q^{68} -2016.00 q^{69} -44834.0 q^{71} +(2592.00 - 4489.48i) q^{72} +(10410.5 + 18031.5i) q^{73} +(-15266.0 - 26441.5i) q^{74} +(-19219.5 + 33289.2i) q^{75} +23824.0 q^{76} -108.000 q^{78} +(15265.5 - 26440.6i) q^{79} +(11008.0 + 19066.4i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(-30828.0 + 53395.7i) q^{82} -110602. q^{83} -163744. q^{85} +(36982.0 - 64054.7i) q^{86} +(29286.0 + 50724.8i) q^{87} +(1088.00 + 1884.47i) q^{88} +(-29496.0 + 51088.6i) q^{89} +27864.0 q^{90} -3584.00 q^{92} +(7789.50 - 13491.8i) q^{93} +(-36924.0 - 63954.2i) q^{94} +(64027.0 + 110898. i) q^{95} +(4608.00 - 7981.29i) q^{96} +119846. q^{97} +2754.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} + 86 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} + 86 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9} - 344 q^{10} - 34 q^{11} - 144 q^{12} + 6 q^{13} - 1548 q^{15} - 256 q^{16} - 1904 q^{17} + 324 q^{18} - 1489 q^{19} - 2752 q^{20} - 272 q^{22} + 224 q^{23} + 576 q^{24} - 4271 q^{25} + 12 q^{26} + 1458 q^{27} - 13016 q^{29} - 3096 q^{30} + 1731 q^{31} + 1024 q^{32} - 306 q^{33} - 15232 q^{34} + 2592 q^{36} + 7633 q^{37} + 5956 q^{38} - 27 q^{39} - 5504 q^{40} - 30828 q^{41} + 36982 q^{43} - 544 q^{44} + 6966 q^{45} - 896 q^{46} + 18462 q^{47} + 4608 q^{48} - 34168 q^{50} - 17136 q^{51} - 48 q^{52} + 19956 q^{53} + 2916 q^{54} - 5848 q^{55} + 26802 q^{57} - 26032 q^{58} - 31828 q^{59} + 12384 q^{60} - 57654 q^{61} + 13848 q^{62} + 8192 q^{64} + 258 q^{65} + 1224 q^{66} + 60563 q^{67} - 30464 q^{68} - 4032 q^{69} - 89668 q^{71} + 5184 q^{72} + 20821 q^{73} - 30532 q^{74} - 38439 q^{75} + 47648 q^{76} - 216 q^{78} + 30531 q^{79} + 22016 q^{80} - 6561 q^{81} - 61656 q^{82} - 221204 q^{83} - 327488 q^{85} + 73964 q^{86} + 58572 q^{87} + 2176 q^{88} - 58992 q^{89} + 55728 q^{90} - 7168 q^{92} + 15579 q^{93} - 73848 q^{94} + 128054 q^{95} + 9216 q^{96} + 239692 q^{97} + 5508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) 43.0000 74.4782i 0.769207 1.33231i −0.168786 0.985653i \(-0.553985\pi\)
0.937993 0.346654i \(-0.112682\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) −172.000 297.913i −0.543912 0.942083i
\(11\) −17.0000 29.4449i −0.0423611 0.0733716i 0.844067 0.536237i \(-0.180155\pi\)
−0.886429 + 0.462865i \(0.846821\pi\)
\(12\) −72.0000 + 124.708i −0.144338 + 0.250000i
\(13\) 3.00000 0.00492337 0.00246169 0.999997i \(-0.499216\pi\)
0.00246169 + 0.999997i \(0.499216\pi\)
\(14\) 0 0
\(15\) −774.000 −0.888204
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) −952.000 1648.91i −0.798941 1.38381i −0.920306 0.391198i \(-0.872061\pi\)
0.121366 0.992608i \(-0.461273\pi\)
\(18\) 162.000 + 280.592i 0.117851 + 0.204124i
\(19\) −744.500 + 1289.51i −0.473130 + 0.819486i −0.999527 0.0307534i \(-0.990209\pi\)
0.526397 + 0.850239i \(0.323543\pi\)
\(20\) −1376.00 −0.769207
\(21\) 0 0
\(22\) −136.000 −0.0599076
\(23\) 112.000 193.990i 0.0441467 0.0764644i −0.843108 0.537745i \(-0.819276\pi\)
0.887254 + 0.461280i \(0.152610\pi\)
\(24\) 288.000 + 498.831i 0.102062 + 0.176777i
\(25\) −2135.50 3698.79i −0.683360 1.18361i
\(26\) 6.00000 10.3923i 0.00174068 0.00301494i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −6508.00 −1.43699 −0.718493 0.695534i \(-0.755168\pi\)
−0.718493 + 0.695534i \(0.755168\pi\)
\(30\) −1548.00 + 2681.21i −0.314028 + 0.543912i
\(31\) 865.500 + 1499.09i 0.161757 + 0.280171i 0.935499 0.353330i \(-0.114951\pi\)
−0.773742 + 0.633501i \(0.781617\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) −153.000 + 265.004i −0.0244572 + 0.0423611i
\(34\) −7616.00 −1.12987
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 3816.50 6610.37i 0.458312 0.793819i −0.540560 0.841305i \(-0.681788\pi\)
0.998872 + 0.0474862i \(0.0151210\pi\)
\(38\) 2978.00 + 5158.05i 0.334554 + 0.579464i
\(39\) −13.5000 23.3827i −0.00142126 0.00246169i
\(40\) −2752.00 + 4766.60i −0.271956 + 0.471041i
\(41\) −15414.0 −1.43204 −0.716021 0.698079i \(-0.754039\pi\)
−0.716021 + 0.698079i \(0.754039\pi\)
\(42\) 0 0
\(43\) 18491.0 1.52507 0.762534 0.646948i \(-0.223955\pi\)
0.762534 + 0.646948i \(0.223955\pi\)
\(44\) −272.000 + 471.118i −0.0211805 + 0.0366858i
\(45\) 3483.00 + 6032.73i 0.256402 + 0.444102i
\(46\) −448.000 775.959i −0.0312164 0.0540685i
\(47\) 9231.00 15988.6i 0.609543 1.05576i −0.381773 0.924256i \(-0.624686\pi\)
0.991316 0.131503i \(-0.0419802\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) −17084.0 −0.966417
\(51\) −8568.00 + 14840.2i −0.461269 + 0.798941i
\(52\) −24.0000 41.5692i −0.00123084 0.00213188i
\(53\) 9978.00 + 17282.4i 0.487926 + 0.845112i 0.999904 0.0138864i \(-0.00442031\pi\)
−0.511978 + 0.858999i \(0.671087\pi\)
\(54\) 1458.00 2525.33i 0.0680414 0.117851i
\(55\) −2924.00 −0.130338
\(56\) 0 0
\(57\) 13401.0 0.546324
\(58\) −13016.0 + 22544.4i −0.508051 + 0.879971i
\(59\) −15914.0 27563.9i −0.595181 1.03088i −0.993521 0.113646i \(-0.963747\pi\)
0.398340 0.917238i \(-0.369586\pi\)
\(60\) 6192.00 + 10724.9i 0.222051 + 0.384604i
\(61\) −28827.0 + 49929.8i −0.991916 + 1.71805i −0.386062 + 0.922473i \(0.626165\pi\)
−0.605854 + 0.795576i \(0.707168\pi\)
\(62\) 6924.00 0.228759
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 129.000 223.435i 0.00378710 0.00655944i
\(66\) 612.000 + 1060.02i 0.0172938 + 0.0299538i
\(67\) 30281.5 + 52449.1i 0.824120 + 1.42742i 0.902590 + 0.430501i \(0.141663\pi\)
−0.0784702 + 0.996916i \(0.525004\pi\)
\(68\) −15232.0 + 26382.6i −0.399470 + 0.691903i
\(69\) −2016.00 −0.0509762
\(70\) 0 0
\(71\) −44834.0 −1.05551 −0.527754 0.849397i \(-0.676966\pi\)
−0.527754 + 0.849397i \(0.676966\pi\)
\(72\) 2592.00 4489.48i 0.0589256 0.102062i
\(73\) 10410.5 + 18031.5i 0.228646 + 0.396027i 0.957407 0.288741i \(-0.0932367\pi\)
−0.728761 + 0.684768i \(0.759903\pi\)
\(74\) −15266.0 26441.5i −0.324075 0.561315i
\(75\) −19219.5 + 33289.2i −0.394538 + 0.683360i
\(76\) 23824.0 0.473130
\(77\) 0 0
\(78\) −108.000 −0.00200996
\(79\) 15265.5 26440.6i 0.275197 0.476655i −0.694988 0.719021i \(-0.744590\pi\)
0.970185 + 0.242367i \(0.0779237\pi\)
\(80\) 11008.0 + 19066.4i 0.192302 + 0.333077i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) −30828.0 + 53395.7i −0.506303 + 0.876943i
\(83\) −110602. −1.76225 −0.881125 0.472883i \(-0.843213\pi\)
−0.881125 + 0.472883i \(0.843213\pi\)
\(84\) 0 0
\(85\) −163744. −2.45820
\(86\) 36982.0 64054.7i 0.539193 0.933910i
\(87\) 29286.0 + 50724.8i 0.414822 + 0.718493i
\(88\) 1088.00 + 1884.47i 0.0149769 + 0.0259408i
\(89\) −29496.0 + 51088.6i −0.394719 + 0.683673i −0.993065 0.117564i \(-0.962491\pi\)
0.598346 + 0.801238i \(0.295825\pi\)
\(90\) 27864.0 0.362608
\(91\) 0 0
\(92\) −3584.00 −0.0441467
\(93\) 7789.50 13491.8i 0.0933904 0.161757i
\(94\) −36924.0 63954.2i −0.431012 0.746534i
\(95\) 64027.0 + 110898.i 0.727871 + 1.26071i
\(96\) 4608.00 7981.29i 0.0510310 0.0883883i
\(97\) 119846. 1.29328 0.646642 0.762793i \(-0.276173\pi\)
0.646642 + 0.762793i \(0.276173\pi\)
\(98\) 0 0
\(99\) 2754.00 0.0282407
\(100\) −34168.0 + 59180.7i −0.341680 + 0.591807i
\(101\) 50005.0 + 86611.2i 0.487764 + 0.844833i 0.999901 0.0140714i \(-0.00447922\pi\)
−0.512137 + 0.858904i \(0.671146\pi\)
\(102\) 34272.0 + 59360.8i 0.326166 + 0.564937i
\(103\) 60845.5 105387.i 0.565113 0.978805i −0.431926 0.901909i \(-0.642166\pi\)
0.997039 0.0768956i \(-0.0245008\pi\)
\(104\) −192.000 −0.00174068
\(105\) 0 0
\(106\) 79824.0 0.690031
\(107\) 24324.0 42130.4i 0.205388 0.355743i −0.744868 0.667212i \(-0.767488\pi\)
0.950256 + 0.311469i \(0.100821\pi\)
\(108\) −5832.00 10101.3i −0.0481125 0.0833333i
\(109\) 76037.5 + 131701.i 0.613002 + 1.06175i 0.990732 + 0.135834i \(0.0433714\pi\)
−0.377730 + 0.925916i \(0.623295\pi\)
\(110\) −5848.00 + 10129.0i −0.0460814 + 0.0798153i
\(111\) −68697.0 −0.529213
\(112\) 0 0
\(113\) −60886.0 −0.448561 −0.224280 0.974525i \(-0.572003\pi\)
−0.224280 + 0.974525i \(0.572003\pi\)
\(114\) 26802.0 46422.4i 0.193155 0.334554i
\(115\) −9632.00 16683.1i −0.0679160 0.117634i
\(116\) 52064.0 + 90177.5i 0.359247 + 0.622233i
\(117\) −121.500 + 210.444i −0.000820562 + 0.00142126i
\(118\) −127312. −0.841714
\(119\) 0 0
\(120\) 49536.0 0.314028
\(121\) 79947.5 138473.i 0.496411 0.859809i
\(122\) 115308. + 199719.i 0.701390 + 1.21484i
\(123\) 69363.0 + 120140.i 0.413395 + 0.716021i
\(124\) 13848.0 23985.4i 0.0808785 0.140086i
\(125\) −98556.0 −0.564167
\(126\) 0 0
\(127\) −151965. −0.836054 −0.418027 0.908435i \(-0.637278\pi\)
−0.418027 + 0.908435i \(0.637278\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) −83209.5 144123.i −0.440249 0.762534i
\(130\) −516.000 893.738i −0.00267788 0.00463823i
\(131\) 117751. 203951.i 0.599496 1.03836i −0.393399 0.919368i \(-0.628701\pi\)
0.992895 0.118990i \(-0.0379657\pi\)
\(132\) 4896.00 0.0244572
\(133\) 0 0
\(134\) 242252. 1.16548
\(135\) 31347.0 54294.6i 0.148034 0.256402i
\(136\) 60928.0 + 105530.i 0.282468 + 0.489249i
\(137\) −162754. 281898.i −0.740850 1.28319i −0.952109 0.305760i \(-0.901090\pi\)
0.211259 0.977430i \(-0.432244\pi\)
\(138\) −4032.00 + 6983.63i −0.0180228 + 0.0312164i
\(139\) −3211.00 −0.0140962 −0.00704812 0.999975i \(-0.502244\pi\)
−0.00704812 + 0.999975i \(0.502244\pi\)
\(140\) 0 0
\(141\) −166158. −0.703839
\(142\) −89668.0 + 155310.i −0.373179 + 0.646364i
\(143\) −51.0000 88.3346i −0.000208560 0.000361236i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) −279844. + 484704.i −1.10534 + 1.91451i
\(146\) 83284.0 0.323355
\(147\) 0 0
\(148\) −122128. −0.458312
\(149\) 75942.0 131535.i 0.280231 0.485375i −0.691210 0.722654i \(-0.742922\pi\)
0.971442 + 0.237279i \(0.0762556\pi\)
\(150\) 76878.0 + 133157.i 0.278981 + 0.483208i
\(151\) −38324.0 66379.1i −0.136782 0.236913i 0.789495 0.613757i \(-0.210343\pi\)
−0.926277 + 0.376844i \(0.877009\pi\)
\(152\) 47648.0 82528.8i 0.167277 0.289732i
\(153\) 154224. 0.532627
\(154\) 0 0
\(155\) 148866. 0.497698
\(156\) −216.000 + 374.123i −0.000710628 + 0.00123084i
\(157\) −194855. 337499.i −0.630903 1.09276i −0.987368 0.158447i \(-0.949351\pi\)
0.356465 0.934309i \(-0.383982\pi\)
\(158\) −61062.0 105762.i −0.194593 0.337046i
\(159\) 89802.0 155542.i 0.281704 0.487926i
\(160\) 88064.0 0.271956
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 56186.0 97317.0i 0.165638 0.286893i −0.771244 0.636540i \(-0.780365\pi\)
0.936882 + 0.349647i \(0.113698\pi\)
\(164\) 123312. + 213583.i 0.358010 + 0.620092i
\(165\) 13158.0 + 22790.3i 0.0376253 + 0.0651689i
\(166\) −221204. + 383137.i −0.623050 + 1.07915i
\(167\) −52550.0 −0.145808 −0.0729040 0.997339i \(-0.523227\pi\)
−0.0729040 + 0.997339i \(0.523227\pi\)
\(168\) 0 0
\(169\) −371284. −0.999976
\(170\) −327488. + 567226.i −0.869107 + 1.50534i
\(171\) −60304.5 104450.i −0.157710 0.273162i
\(172\) −147928. 256219.i −0.381267 0.660374i
\(173\) −67628.0 + 117135.i −0.171795 + 0.297558i −0.939048 0.343787i \(-0.888290\pi\)
0.767252 + 0.641345i \(0.221623\pi\)
\(174\) 234288. 0.586647
\(175\) 0 0
\(176\) 8704.00 0.0211805
\(177\) −143226. + 248075.i −0.343628 + 0.595181i
\(178\) 117984. + 204354.i 0.279109 + 0.483430i
\(179\) −125319. 217059.i −0.292337 0.506343i 0.682025 0.731329i \(-0.261100\pi\)
−0.974362 + 0.224986i \(0.927766\pi\)
\(180\) 55728.0 96523.7i 0.128201 0.222051i
\(181\) −199233. −0.452027 −0.226014 0.974124i \(-0.572569\pi\)
−0.226014 + 0.974124i \(0.572569\pi\)
\(182\) 0 0
\(183\) 518886. 1.14537
\(184\) −7168.00 + 12415.3i −0.0156082 + 0.0270342i
\(185\) −328219. 568492.i −0.705074 1.22122i
\(186\) −31158.0 53967.2i −0.0660370 0.114379i
\(187\) −32368.0 + 56063.0i −0.0676880 + 0.117239i
\(188\) −295392. −0.609543
\(189\) 0 0
\(190\) 512216. 1.02936
\(191\) 119385. 206781.i 0.236792 0.410135i −0.723000 0.690848i \(-0.757237\pi\)
0.959792 + 0.280713i \(0.0905708\pi\)
\(192\) −18432.0 31925.2i −0.0360844 0.0625000i
\(193\) −42845.5 74210.6i −0.0827965 0.143408i 0.821654 0.569987i \(-0.193052\pi\)
−0.904450 + 0.426579i \(0.859718\pi\)
\(194\) 239692. 415159.i 0.457245 0.791972i
\(195\) −2322.00 −0.00437296
\(196\) 0 0
\(197\) −71408.0 −0.131094 −0.0655468 0.997849i \(-0.520879\pi\)
−0.0655468 + 0.997849i \(0.520879\pi\)
\(198\) 5508.00 9540.14i 0.00998461 0.0172938i
\(199\) −355676. 616049.i −0.636681 1.10276i −0.986156 0.165818i \(-0.946973\pi\)
0.349475 0.936946i \(-0.386360\pi\)
\(200\) 136672. + 236723.i 0.241604 + 0.418471i
\(201\) 272534. 472042.i 0.475806 0.824120i
\(202\) 400040. 0.689803
\(203\) 0 0
\(204\) 274176. 0.461269
\(205\) −662802. + 1.14801e6i −1.10154 + 1.90792i
\(206\) −243382. 421550.i −0.399595 0.692119i
\(207\) 9072.00 + 15713.2i 0.0147156 + 0.0254881i
\(208\) −384.000 + 665.108i −0.000615422 + 0.00106594i
\(209\) 50626.0 0.0801693
\(210\) 0 0
\(211\) −260260. −0.402440 −0.201220 0.979546i \(-0.564491\pi\)
−0.201220 + 0.979546i \(0.564491\pi\)
\(212\) 159648. 276518.i 0.243963 0.422556i
\(213\) 201753. + 349446.i 0.304699 + 0.527754i
\(214\) −97296.0 168522.i −0.145231 0.251548i
\(215\) 795113. 1.37718e6i 1.17309 2.03186i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) 608300. 0.866915
\(219\) 93694.5 162284.i 0.132009 0.228646i
\(220\) 23392.0 + 40516.1i 0.0325845 + 0.0564380i
\(221\) −2856.00 4946.74i −0.00393349 0.00681300i
\(222\) −137394. + 237973.i −0.187105 + 0.324075i
\(223\) −105656. −0.142276 −0.0711381 0.997466i \(-0.522663\pi\)
−0.0711381 + 0.997466i \(0.522663\pi\)
\(224\) 0 0
\(225\) 345951. 0.455573
\(226\) −121772. + 210915.i −0.158590 + 0.274686i
\(227\) 327375. + 567030.i 0.421678 + 0.730368i 0.996104 0.0881890i \(-0.0281080\pi\)
−0.574426 + 0.818557i \(0.694775\pi\)
\(228\) −107208. 185690.i −0.136581 0.236565i
\(229\) 278856. 482994.i 0.351392 0.608629i −0.635101 0.772429i \(-0.719042\pi\)
0.986494 + 0.163800i \(0.0523751\pi\)
\(230\) −77056.0 −0.0960477
\(231\) 0 0
\(232\) 416512. 0.508051
\(233\) 623797. 1.08045e6i 0.752755 1.30381i −0.193728 0.981055i \(-0.562058\pi\)
0.946483 0.322754i \(-0.104609\pi\)
\(234\) 486.000 + 841.777i 0.000580225 + 0.00100498i
\(235\) −793866. 1.37502e6i −0.937729 1.62420i
\(236\) −254624. + 441022.i −0.297591 + 0.515442i
\(237\) −274779. −0.317770
\(238\) 0 0
\(239\) −496926. −0.562726 −0.281363 0.959601i \(-0.590786\pi\)
−0.281363 + 0.959601i \(0.590786\pi\)
\(240\) 99072.0 171598.i 0.111026 0.192302i
\(241\) −138809. 240424.i −0.153948 0.266646i 0.778727 0.627363i \(-0.215866\pi\)
−0.932676 + 0.360716i \(0.882532\pi\)
\(242\) −319790. 553893.i −0.351016 0.607977i
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) 922464. 0.991916
\(245\) 0 0
\(246\) 554904. 0.584629
\(247\) −2233.50 + 3868.54i −0.00232940 + 0.00403463i
\(248\) −55392.0 95941.8i −0.0571897 0.0990555i
\(249\) 497709. + 862057.i 0.508718 + 0.881125i
\(250\) −197112. + 341408.i −0.199463 + 0.345481i
\(251\) 308328. 0.308908 0.154454 0.988000i \(-0.450638\pi\)
0.154454 + 0.988000i \(0.450638\pi\)
\(252\) 0 0
\(253\) −7616.00 −0.00748041
\(254\) −303930. + 526422.i −0.295590 + 0.511976i
\(255\) 736848. + 1.27626e6i 0.709623 + 1.22910i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) 204381. 353998.i 0.193022 0.334325i −0.753228 0.657759i \(-0.771504\pi\)
0.946250 + 0.323435i \(0.104838\pi\)
\(258\) −665676. −0.622606
\(259\) 0 0
\(260\) −4128.00 −0.00378710
\(261\) 263574. 456524.i 0.239498 0.414822i
\(262\) −471004. 815803.i −0.423908 0.734230i
\(263\) −544062. 942343.i −0.485019 0.840078i 0.514833 0.857291i \(-0.327854\pi\)
−0.999852 + 0.0172127i \(0.994521\pi\)
\(264\) 9792.00 16960.2i 0.00864692 0.0149769i
\(265\) 1.71622e6 1.50126
\(266\) 0 0
\(267\) 530928. 0.455782
\(268\) 484504. 839186.i 0.412060 0.713709i
\(269\) −334145. 578756.i −0.281549 0.487657i 0.690217 0.723602i \(-0.257515\pi\)
−0.971766 + 0.235945i \(0.924182\pi\)
\(270\) −125388. 217178.i −0.104676 0.181304i
\(271\) −415332. + 719376.i −0.343536 + 0.595022i −0.985087 0.172059i \(-0.944958\pi\)
0.641551 + 0.767081i \(0.278291\pi\)
\(272\) 487424. 0.399470
\(273\) 0 0
\(274\) −1.30203e6 −1.04772
\(275\) −72607.0 + 125759.i −0.0578958 + 0.100278i
\(276\) 16128.0 + 27934.5i 0.0127441 + 0.0220734i
\(277\) −462537. 801137.i −0.362198 0.627346i 0.626124 0.779724i \(-0.284640\pi\)
−0.988322 + 0.152377i \(0.951307\pi\)
\(278\) −6422.00 + 11123.2i −0.00498377 + 0.00863215i
\(279\) −140211. −0.107838
\(280\) 0 0
\(281\) 1.33635e6 1.00961 0.504805 0.863233i \(-0.331564\pi\)
0.504805 + 0.863233i \(0.331564\pi\)
\(282\) −332316. + 575588.i −0.248845 + 0.431012i
\(283\) −496478. 859926.i −0.368497 0.638256i 0.620833 0.783942i \(-0.286794\pi\)
−0.989331 + 0.145686i \(0.953461\pi\)
\(284\) 358672. + 621238.i 0.263877 + 0.457048i
\(285\) 576243. 998082.i 0.420236 0.727871i
\(286\) −408.000 −0.000294948
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) −1.10268e6 + 1.90990e6i −0.776613 + 1.34513i
\(290\) 1.11938e6 + 1.93882e6i 0.781594 + 1.35376i
\(291\) −539307. 934107.i −0.373339 0.646642i
\(292\) 166568. 288504.i 0.114323 0.198014i
\(293\) −563544. −0.383494 −0.191747 0.981444i \(-0.561415\pi\)
−0.191747 + 0.981444i \(0.561415\pi\)
\(294\) 0 0
\(295\) −2.73721e6 −1.83127
\(296\) −244256. + 423064.i −0.162038 + 0.280657i
\(297\) −12393.0 21465.3i −0.00815240 0.0141204i
\(298\) −303768. 526142.i −0.198153 0.343212i
\(299\) 336.000 581.969i 0.000217351 0.000376463i
\(300\) 615024. 0.394538
\(301\) 0 0
\(302\) −306592. −0.193439
\(303\) 450045. 779501.i 0.281611 0.487764i
\(304\) −190592. 330115.i −0.118283 0.204871i
\(305\) 2.47912e6 + 4.29397e6i 1.52598 + 2.64307i
\(306\) 308448. 534248.i 0.188312 0.326166i
\(307\) −2.82703e6 −1.71193 −0.855963 0.517037i \(-0.827035\pi\)
−0.855963 + 0.517037i \(0.827035\pi\)
\(308\) 0 0
\(309\) −1.09522e6 −0.652536
\(310\) 297732. 515687.i 0.175963 0.304777i
\(311\) −563657. 976283.i −0.330456 0.572367i 0.652145 0.758094i \(-0.273869\pi\)
−0.982601 + 0.185727i \(0.940536\pi\)
\(312\) 864.000 + 1496.49i 0.000502490 + 0.000870338i
\(313\) −1.18006e6 + 2.04393e6i −0.680840 + 1.17925i 0.293885 + 0.955841i \(0.405052\pi\)
−0.974725 + 0.223408i \(0.928282\pi\)
\(314\) −1.55884e6 −0.892231
\(315\) 0 0
\(316\) −488496. −0.275197
\(317\) 1.11210e6 1.92621e6i 0.621578 1.07660i −0.367614 0.929979i \(-0.619825\pi\)
0.989192 0.146626i \(-0.0468415\pi\)
\(318\) −359208. 622167.i −0.199195 0.345016i
\(319\) 110636. + 191627.i 0.0608723 + 0.105434i
\(320\) 176128. 305063.i 0.0961509 0.166538i
\(321\) −437832. −0.237162
\(322\) 0 0
\(323\) 2.83506e6 1.51201
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) −6406.50 11096.4i −0.00336444 0.00582738i
\(326\) −224744. 389268.i −0.117124 0.202864i
\(327\) 684338. 1.18531e6i 0.353917 0.613002i
\(328\) 986496. 0.506303
\(329\) 0 0
\(330\) 105264. 0.0532102
\(331\) 1.85152e6 3.20693e6i 0.928877 1.60886i 0.143673 0.989625i \(-0.454109\pi\)
0.785204 0.619237i \(-0.212558\pi\)
\(332\) 884816. + 1.53255e6i 0.440563 + 0.763077i
\(333\) 309136. + 535440.i 0.152771 + 0.264606i
\(334\) −105100. + 182039.i −0.0515509 + 0.0892888i
\(335\) 5.20842e6 2.53568
\(336\) 0 0
\(337\) 1.21432e6 0.582452 0.291226 0.956654i \(-0.405937\pi\)
0.291226 + 0.956654i \(0.405937\pi\)
\(338\) −742568. + 1.28617e6i −0.353545 + 0.612358i
\(339\) 273987. + 474559.i 0.129488 + 0.224280i
\(340\) 1.30995e6 + 2.26890e6i 0.614551 + 1.06443i
\(341\) 29427.0 50969.1i 0.0137044 0.0237367i
\(342\) −482436. −0.223036
\(343\) 0 0
\(344\) −1.18342e6 −0.539193
\(345\) −86688.0 + 150148.i −0.0392113 + 0.0679160i
\(346\) 270512. + 468541.i 0.121478 + 0.210405i
\(347\) 488952. + 846890.i 0.217993 + 0.377575i 0.954194 0.299188i \(-0.0967157\pi\)
−0.736201 + 0.676763i \(0.763382\pi\)
\(348\) 468576. 811597.i 0.207411 0.359247i
\(349\) −511282. −0.224697 −0.112348 0.993669i \(-0.535837\pi\)
−0.112348 + 0.993669i \(0.535837\pi\)
\(350\) 0 0
\(351\) 2187.00 0.000947504
\(352\) 17408.0 30151.5i 0.00748845 0.0129704i
\(353\) 1.51376e6 + 2.62191e6i 0.646577 + 1.11990i 0.983935 + 0.178528i \(0.0571336\pi\)
−0.337357 + 0.941377i \(0.609533\pi\)
\(354\) 572904. + 992299.i 0.242982 + 0.420857i
\(355\) −1.92786e6 + 3.33915e6i −0.811905 + 1.40626i
\(356\) 943872. 0.394719
\(357\) 0 0
\(358\) −1.00255e6 −0.413427
\(359\) −2.29728e6 + 3.97900e6i −0.940757 + 1.62944i −0.176725 + 0.984260i \(0.556550\pi\)
−0.764032 + 0.645179i \(0.776783\pi\)
\(360\) −222912. 386095.i −0.0906520 0.157014i
\(361\) 129489. + 224282.i 0.0522956 + 0.0905786i
\(362\) −398466. + 690163.i −0.159816 + 0.276809i
\(363\) −1.43906e6 −0.573206
\(364\) 0 0
\(365\) 1.79061e6 0.703506
\(366\) 1.03777e6 1.79747e6i 0.404948 0.701390i
\(367\) −556365. 963653.i −0.215623 0.373470i 0.737842 0.674973i \(-0.235845\pi\)
−0.953465 + 0.301503i \(0.902512\pi\)
\(368\) 28672.0 + 49661.4i 0.0110367 + 0.0191161i
\(369\) 624267. 1.08126e6i 0.238674 0.413395i
\(370\) −2.62575e6 −0.997125
\(371\) 0 0
\(372\) −249264. −0.0933904
\(373\) 1.22947e6 2.12951e6i 0.457559 0.792516i −0.541272 0.840848i \(-0.682057\pi\)
0.998831 + 0.0483315i \(0.0153904\pi\)
\(374\) 129472. + 224252.i 0.0478627 + 0.0829006i
\(375\) 443502. + 768168.i 0.162861 + 0.282084i
\(376\) −590784. + 1.02327e6i −0.215506 + 0.373267i
\(377\) −19524.0 −0.00707482
\(378\) 0 0
\(379\) −4.10130e6 −1.46664 −0.733320 0.679884i \(-0.762030\pi\)
−0.733320 + 0.679884i \(0.762030\pi\)
\(380\) 1.02443e6 1.77437e6i 0.363935 0.630354i
\(381\) 683842. + 1.18445e6i 0.241348 + 0.418027i
\(382\) −477540. 827124.i −0.167437 0.290009i
\(383\) −1.29707e6 + 2.24658e6i −0.451820 + 0.782575i −0.998499 0.0547673i \(-0.982558\pi\)
0.546679 + 0.837342i \(0.315892\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −342764. −0.117092
\(387\) −748886. + 1.29711e6i −0.254178 + 0.440249i
\(388\) −958768. 1.66063e6i −0.323321 0.560009i
\(389\) −1.11703e6 1.93476e6i −0.374276 0.648265i 0.615942 0.787791i \(-0.288775\pi\)
−0.990218 + 0.139526i \(0.955442\pi\)
\(390\) −4644.00 + 8043.64i −0.00154608 + 0.00267788i
\(391\) −426496. −0.141082
\(392\) 0 0
\(393\) −2.11952e6 −0.692238
\(394\) −142816. + 247365.i −0.0463486 + 0.0802781i
\(395\) −1.31283e6 2.27389e6i −0.423367 0.733293i
\(396\) −22032.0 38160.5i −0.00706018 0.0122286i
\(397\) −1.03200e6 + 1.78747e6i −0.328627 + 0.569198i −0.982240 0.187631i \(-0.939919\pi\)
0.653613 + 0.756829i \(0.273252\pi\)
\(398\) −2.84541e6 −0.900403
\(399\) 0 0
\(400\) 1.09338e6 0.341680
\(401\) −576414. + 998378.i −0.179008 + 0.310052i −0.941541 0.336898i \(-0.890622\pi\)
0.762533 + 0.646950i \(0.223956\pi\)
\(402\) −1.09013e6 1.88817e6i −0.336446 0.582741i
\(403\) 2596.50 + 4497.27i 0.000796390 + 0.00137939i
\(404\) 800080. 1.38578e6i 0.243882 0.422416i
\(405\) −564246. −0.170935
\(406\) 0 0
\(407\) −259522. −0.0776583
\(408\) 548352. 949774.i 0.163083 0.282468i
\(409\) 2.96706e6 + 5.13910e6i 0.877038 + 1.51907i 0.854576 + 0.519327i \(0.173817\pi\)
0.0224623 + 0.999748i \(0.492849\pi\)
\(410\) 2.65121e6 + 4.59203e6i 0.778904 + 1.34910i
\(411\) −1.46479e6 + 2.53708e6i −0.427730 + 0.740850i
\(412\) −1.94706e6 −0.565113
\(413\) 0 0
\(414\) 72576.0 0.0208110
\(415\) −4.75589e6 + 8.23744e6i −1.35554 + 2.34786i
\(416\) 1536.00 + 2660.43i 0.000435169 + 0.000753735i
\(417\) 14449.5 + 25027.3i 0.00406923 + 0.00704812i
\(418\) 101252. 175374.i 0.0283441 0.0490934i
\(419\) −771666. −0.214731 −0.107365 0.994220i \(-0.534241\pi\)
−0.107365 + 0.994220i \(0.534241\pi\)
\(420\) 0 0
\(421\) −2.87542e6 −0.790671 −0.395336 0.918537i \(-0.629372\pi\)
−0.395336 + 0.918537i \(0.629372\pi\)
\(422\) −520520. + 901567.i −0.142284 + 0.246443i
\(423\) 747711. + 1.29507e6i 0.203181 + 0.351920i
\(424\) −638592. 1.10607e6i −0.172508 0.298792i
\(425\) −4.06599e6 + 7.04250e6i −1.09193 + 1.89128i
\(426\) 1.61402e6 0.430909
\(427\) 0 0
\(428\) −778368. −0.205388
\(429\) −459.000 + 795.011i −0.000120412 + 0.000208560i
\(430\) −3.18045e6 5.50870e6i −0.829503 1.43674i
\(431\) 68931.0 + 119392.i 0.0178740 + 0.0309587i 0.874824 0.484441i \(-0.160977\pi\)
−0.856950 + 0.515399i \(0.827644\pi\)
\(432\) −93312.0 + 161621.i −0.0240563 + 0.0416667i
\(433\) −1.56526e6 −0.401204 −0.200602 0.979673i \(-0.564290\pi\)
−0.200602 + 0.979673i \(0.564290\pi\)
\(434\) 0 0
\(435\) 5.03719e6 1.27634
\(436\) 1.21660e6 2.10721e6i 0.306501 0.530875i
\(437\) 166768. + 288851.i 0.0417743 + 0.0723552i
\(438\) −374778. 649135.i −0.0933445 0.161677i
\(439\) 2.44079e6 4.22757e6i 0.604462 1.04696i −0.387675 0.921796i \(-0.626722\pi\)
0.992136 0.125162i \(-0.0399451\pi\)
\(440\) 187136. 0.0460814
\(441\) 0 0
\(442\) −22848.0 −0.00556279
\(443\) 650758. 1.12715e6i 0.157547 0.272879i −0.776437 0.630195i \(-0.782975\pi\)
0.933984 + 0.357316i \(0.116308\pi\)
\(444\) 549576. + 951894.i 0.132303 + 0.229156i
\(445\) 2.53666e6 + 4.39362e6i 0.607242 + 1.05177i
\(446\) −211312. + 366003.i −0.0503022 + 0.0871260i
\(447\) −1.36696e6 −0.323583
\(448\) 0 0
\(449\) −3.13141e6 −0.733034 −0.366517 0.930411i \(-0.619450\pi\)
−0.366517 + 0.930411i \(0.619450\pi\)
\(450\) 691902. 1.19841e6i 0.161069 0.278981i
\(451\) 262038. + 453863.i 0.0606629 + 0.105071i
\(452\) 487088. + 843661.i 0.112140 + 0.194233i
\(453\) −344916. + 597412.i −0.0789710 + 0.136782i
\(454\) 2.61900e6 0.596343
\(455\) 0 0
\(456\) −857664. −0.193155
\(457\) −3.24634e6 + 5.62283e6i −0.727116 + 1.25940i 0.230981 + 0.972958i \(0.425807\pi\)
−0.958097 + 0.286444i \(0.907527\pi\)
\(458\) −1.11543e6 1.93197e6i −0.248472 0.430366i
\(459\) −694008. 1.20206e6i −0.153756 0.266314i
\(460\) −154112. + 266930.i −0.0339580 + 0.0588170i
\(461\) −5.34717e6 −1.17185 −0.585925 0.810365i \(-0.699269\pi\)
−0.585925 + 0.810365i \(0.699269\pi\)
\(462\) 0 0
\(463\) 3.37285e6 0.731215 0.365607 0.930769i \(-0.380861\pi\)
0.365607 + 0.930769i \(0.380861\pi\)
\(464\) 833024. 1.44284e6i 0.179623 0.311117i
\(465\) −669897. 1.16030e6i −0.143673 0.248849i
\(466\) −2.49519e6 4.32179e6i −0.532278 0.921932i
\(467\) 1.11726e6 1.93515e6i 0.237062 0.410604i −0.722808 0.691049i \(-0.757149\pi\)
0.959870 + 0.280445i \(0.0904821\pi\)
\(468\) 3888.00 0.000820562
\(469\) 0 0
\(470\) −6.35093e6 −1.32615
\(471\) −1.75369e6 + 3.03749e6i −0.364252 + 0.630903i
\(472\) 1.01850e6 + 1.76409e6i 0.210428 + 0.364473i
\(473\) −314347. 544465.i −0.0646036 0.111897i
\(474\) −549558. + 951862.i −0.112349 + 0.194593i
\(475\) 6.35952e6 1.29327
\(476\) 0 0
\(477\) −1.61644e6 −0.325284
\(478\) −993852. + 1.72140e6i −0.198954 + 0.344598i
\(479\) −1.26068e6 2.18357e6i −0.251054 0.434838i 0.712762 0.701406i \(-0.247444\pi\)
−0.963816 + 0.266568i \(0.914110\pi\)
\(480\) −396288. 686391.i −0.0785069 0.135978i
\(481\) 11449.5 19831.1i 0.00225644 0.00390827i
\(482\) −1.11047e6 −0.217716
\(483\) 0 0
\(484\) −2.55832e6 −0.496411
\(485\) 5.15338e6 8.92591e6i 0.994804 1.72305i
\(486\) 118098. + 204552.i 0.0226805 + 0.0392837i
\(487\) −958358. 1.65993e6i −0.183107 0.317151i 0.759830 0.650122i \(-0.225282\pi\)
−0.942937 + 0.332971i \(0.891949\pi\)
\(488\) 1.84493e6 3.19551e6i 0.350695 0.607422i
\(489\) −1.01135e6 −0.191262
\(490\) 0 0
\(491\) 5.82875e6 1.09112 0.545559 0.838073i \(-0.316317\pi\)
0.545559 + 0.838073i \(0.316317\pi\)
\(492\) 1.10981e6 1.92224e6i 0.206697 0.358010i
\(493\) 6.19562e6 + 1.07311e7i 1.14807 + 1.98851i
\(494\) 8934.00 + 15474.1i 0.00164713 + 0.00285292i
\(495\) 118422. 205113.i 0.0217230 0.0376253i
\(496\) −443136. −0.0808785
\(497\) 0 0
\(498\) 3.98167e6 0.719436
\(499\) 5.00243e6 8.66446e6i 0.899352 1.55772i 0.0710277 0.997474i \(-0.477372\pi\)
0.828324 0.560249i \(-0.189295\pi\)
\(500\) 788448. + 1.36563e6i 0.141042 + 0.244292i
\(501\) 236475. + 409587.i 0.0420912 + 0.0729040i
\(502\) 616656. 1.06808e6i 0.109215 0.189167i
\(503\) −1.13666e6 −0.200313 −0.100157 0.994972i \(-0.531934\pi\)
−0.100157 + 0.994972i \(0.531934\pi\)
\(504\) 0 0
\(505\) 8.60086e6 1.50077
\(506\) −15232.0 + 26382.6i −0.00264473 + 0.00458080i
\(507\) 1.67078e6 + 2.89387e6i 0.288668 + 0.499988i
\(508\) 1.21572e6 + 2.10569e6i 0.209013 + 0.362022i
\(509\) 2.00968e6 3.48088e6i 0.343822 0.595517i −0.641317 0.767276i \(-0.721612\pi\)
0.985139 + 0.171759i \(0.0549450\pi\)
\(510\) 5.89478e6 1.00356
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −542740. + 940054.i −0.0910540 + 0.157710i
\(514\) −817524. 1.41599e6i −0.136487 0.236403i
\(515\) −5.23271e6 9.06332e6i −0.869378 1.50581i
\(516\) −1.33135e6 + 2.30597e6i −0.220125 + 0.381267i
\(517\) −627708. −0.103284
\(518\) 0 0
\(519\) 1.21730e6 0.198372
\(520\) −8256.00 + 14299.8i −0.00133894 + 0.00231911i
\(521\) −2.76014e6 4.78070e6i −0.445488 0.771609i 0.552598 0.833448i \(-0.313637\pi\)
−0.998086 + 0.0618395i \(0.980303\pi\)
\(522\) −1.05430e6 1.82609e6i −0.169350 0.293324i
\(523\) 4.47236e6 7.74636e6i 0.714961 1.23835i −0.248013 0.968757i \(-0.579778\pi\)
0.962974 0.269593i \(-0.0868891\pi\)
\(524\) −3.76803e6 −0.599496
\(525\) 0 0
\(526\) −4.35250e6 −0.685921
\(527\) 1.64791e6 2.85427e6i 0.258468 0.447680i
\(528\) −39168.0 67841.0i −0.00611430 0.0105903i
\(529\) 3.19308e6 + 5.53058e6i 0.496102 + 0.859274i
\(530\) 3.43243e6 5.94515e6i 0.530777 0.919333i
\(531\) 2.57807e6 0.396788
\(532\) 0 0
\(533\) −46242.0 −0.00705048
\(534\) 1.06186e6 1.83919e6i 0.161143 0.279109i
\(535\) −2.09186e6 3.62321e6i −0.315972 0.547280i
\(536\) −1.93802e6 3.35674e6i −0.291370 0.504668i
\(537\) −1.12787e6 + 1.95353e6i −0.168781 + 0.292337i
\(538\) −2.67316e6 −0.398171
\(539\) 0 0
\(540\) −1.00310e6 −0.148034
\(541\) −424528. + 735305.i −0.0623611 + 0.108013i −0.895520 0.445021i \(-0.853196\pi\)
0.833159 + 0.553033i \(0.186530\pi\)
\(542\) 1.66133e6 + 2.87750e6i 0.242917 + 0.420744i
\(543\) 896548. + 1.55287e6i 0.130489 + 0.226014i
\(544\) 974848. 1.68849e6i 0.141234 0.244625i
\(545\) 1.30784e7 1.88610
\(546\) 0 0
\(547\) 8.61340e6 1.23085 0.615426 0.788194i \(-0.288984\pi\)
0.615426 + 0.788194i \(0.288984\pi\)
\(548\) −2.60406e6 + 4.51037e6i −0.370425 + 0.641595i
\(549\) −2.33499e6 4.04432e6i −0.330639 0.572683i
\(550\) 290428. + 503036.i 0.0409385 + 0.0709075i
\(551\) 4.84521e6 8.39214e6i 0.679882 1.17759i
\(552\) 129024. 0.0180228
\(553\) 0 0
\(554\) −3.70029e6 −0.512226
\(555\) −2.95397e6 + 5.11643e6i −0.407074 + 0.705074i
\(556\) 25688.0 + 44492.9i 0.00352406 + 0.00610385i
\(557\) −3.89940e6 6.75395e6i −0.532549 0.922401i −0.999278 0.0380009i \(-0.987901\pi\)
0.466729 0.884400i \(-0.345432\pi\)
\(558\) −280422. + 485705.i −0.0381265 + 0.0660370i
\(559\) 55473.0 0.00750848
\(560\) 0 0
\(561\) 582624. 0.0781594
\(562\) 2.67270e6 4.62925e6i 0.356951 0.618258i
\(563\) 536357. + 928998.i 0.0713153 + 0.123522i 0.899478 0.436966i \(-0.143947\pi\)
−0.828163 + 0.560488i \(0.810614\pi\)
\(564\) 1.32926e6 + 2.30235e6i 0.175960 + 0.304771i
\(565\) −2.61810e6 + 4.53468e6i −0.345036 + 0.597620i
\(566\) −3.97183e6 −0.521134
\(567\) 0 0
\(568\) 2.86938e6 0.373179
\(569\) 507621. 879225.i 0.0657293 0.113846i −0.831288 0.555842i \(-0.812396\pi\)
0.897017 + 0.441996i \(0.145729\pi\)
\(570\) −2.30497e6 3.99233e6i −0.297152 0.514682i
\(571\) 3.39047e6 + 5.87246e6i 0.435180 + 0.753754i 0.997310 0.0732945i \(-0.0233513\pi\)
−0.562130 + 0.827049i \(0.690018\pi\)
\(572\) −816.000 + 1413.35i −0.000104280 + 0.000180618i
\(573\) −2.14893e6 −0.273423
\(574\) 0 0
\(575\) −956704. −0.120672
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) −1.65268e6 2.86253e6i −0.206657 0.357941i 0.744002 0.668177i \(-0.232925\pi\)
−0.950659 + 0.310236i \(0.899592\pi\)
\(578\) 4.41072e6 + 7.63959e6i 0.549148 + 0.951153i
\(579\) −385610. + 667895.i −0.0478026 + 0.0827965i
\(580\) 8.95501e6 1.10534
\(581\) 0 0
\(582\) −4.31446e6 −0.527981
\(583\) 339252. 587602.i 0.0413381 0.0715998i
\(584\) −666272. 1.15402e6i −0.0808387 0.140017i
\(585\) 10449.0 + 18098.2i 0.00126237 + 0.00218648i
\(586\) −1.12709e6 + 1.95217e6i −0.135586 + 0.234841i
\(587\) 1.19833e7 1.43543 0.717715 0.696337i \(-0.245188\pi\)
0.717715 + 0.696337i \(0.245188\pi\)
\(588\) 0 0
\(589\) −2.57746e6 −0.306128
\(590\) −5.47442e6 + 9.48197e6i −0.647452 + 1.12142i
\(591\) 321336. + 556570.i 0.0378434 + 0.0655468i
\(592\) 977024. + 1.69226e6i 0.114578 + 0.198455i
\(593\) −2.65510e6 + 4.59877e6i −0.310059 + 0.537038i −0.978375 0.206840i \(-0.933682\pi\)
0.668316 + 0.743877i \(0.267015\pi\)
\(594\) −99144.0 −0.0115292
\(595\) 0 0
\(596\) −2.43014e6 −0.280231
\(597\) −3.20108e6 + 5.54444e6i −0.367588 + 0.636681i
\(598\) −1344.00 2327.88i −0.000153690 0.000266199i
\(599\) −1.21118e6 2.09782e6i −0.137924 0.238892i 0.788786 0.614667i \(-0.210710\pi\)
−0.926711 + 0.375775i \(0.877376\pi\)
\(600\) 1.23005e6 2.13051e6i 0.139490 0.241604i
\(601\) 7.10659e6 0.802556 0.401278 0.915956i \(-0.368566\pi\)
0.401278 + 0.915956i \(0.368566\pi\)
\(602\) 0 0
\(603\) −4.90560e6 −0.549413
\(604\) −613184. + 1.06207e6i −0.0683909 + 0.118457i
\(605\) −6.87548e6 1.19087e7i −0.763686 1.32274i
\(606\) −1.80018e6 3.11800e6i −0.199129 0.344901i
\(607\) 8.95970e6 1.55187e7i 0.987011 1.70955i 0.354374 0.935104i \(-0.384694\pi\)
0.632636 0.774449i \(-0.281973\pi\)
\(608\) −1.52474e6 −0.167277
\(609\) 0 0
\(610\) 1.98330e7 2.15806
\(611\) 27693.0 47965.7i 0.00300101 0.00519790i
\(612\) −1.23379e6 2.13699e6i −0.133157 0.230634i
\(613\) −6.98950e6 1.21062e7i −0.751269 1.30124i −0.947208 0.320619i \(-0.896109\pi\)
0.195940 0.980616i \(-0.437224\pi\)
\(614\) −5.65407e6 + 9.79313e6i −0.605257 + 1.04834i
\(615\) 1.19304e7 1.27195
\(616\) 0 0
\(617\) −5.25594e6 −0.555824 −0.277912 0.960606i \(-0.589642\pi\)
−0.277912 + 0.960606i \(0.589642\pi\)
\(618\) −2.19044e6 + 3.79395e6i −0.230706 + 0.399595i
\(619\) 721506. + 1.24969e6i 0.0756857 + 0.131091i 0.901384 0.433020i \(-0.142552\pi\)
−0.825699 + 0.564112i \(0.809219\pi\)
\(620\) −1.19093e6 2.06275e6i −0.124425 0.215510i
\(621\) 81648.0 141418.i 0.00849604 0.0147156i
\(622\) −4.50926e6 −0.467336
\(623\) 0 0
\(624\) 6912.00 0.000710628
\(625\) 2.43553e6 4.21846e6i 0.249398 0.431970i
\(626\) 4.72026e6 + 8.17573e6i 0.481426 + 0.833855i
\(627\) −227817. 394591.i −0.0231429 0.0400846i
\(628\) −3.11768e6 + 5.39998e6i −0.315451 + 0.546378i
\(629\) −1.45332e7 −1.46466
\(630\) 0 0
\(631\) 1.51723e7 1.51697 0.758487 0.651688i \(-0.225939\pi\)
0.758487 + 0.651688i \(0.225939\pi\)
\(632\) −976992. + 1.69220e6i −0.0972967 + 0.168523i
\(633\) 1.17117e6 + 2.02853e6i 0.116174 + 0.201220i
\(634\) −4.44840e6 7.70485e6i −0.439522 0.761275i
\(635\) −6.53450e6 + 1.13181e7i −0.643099 + 1.11388i
\(636\) −2.87366e6 −0.281704
\(637\) 0 0
\(638\) 885088. 0.0860864
\(639\) 1.81578e6 3.14502e6i 0.175918 0.304699i
\(640\) −704512. 1.22025e6i −0.0679890 0.117760i
\(641\) 72424.0 + 125442.i 0.00696205 + 0.0120586i 0.869485 0.493959i \(-0.164451\pi\)
−0.862523 + 0.506017i \(0.831117\pi\)
\(642\) −875664. + 1.51669e6i −0.0838494 + 0.145231i
\(643\) 27469.0 0.00262009 0.00131004 0.999999i \(-0.499583\pi\)
0.00131004 + 0.999999i \(0.499583\pi\)
\(644\) 0 0
\(645\) −1.43120e7 −1.35457
\(646\) 5.67011e6 9.82092e6i 0.534577 0.925915i
\(647\) 4.27892e6 + 7.41130e6i 0.401858 + 0.696039i 0.993950 0.109831i \(-0.0350311\pi\)
−0.592092 + 0.805870i \(0.701698\pi\)
\(648\) 209952. + 363648.i 0.0196419 + 0.0340207i
\(649\) −541076. + 937171.i −0.0504251 + 0.0873388i
\(650\) −51252.0 −0.00475803
\(651\) 0 0
\(652\) −1.79795e6 −0.165638
\(653\) −6.25152e6 + 1.08279e7i −0.573723 + 0.993718i 0.422456 + 0.906384i \(0.361168\pi\)
−0.996179 + 0.0873343i \(0.972165\pi\)
\(654\) −2.73735e6 4.74123e6i −0.250257 0.433458i
\(655\) −1.01266e7 1.75398e7i −0.922274 1.59742i
\(656\) 1.97299e6 3.41732e6i 0.179005 0.310046i
\(657\) −1.68650e6 −0.152431
\(658\) 0 0
\(659\) 1.80471e7 1.61880 0.809400 0.587258i \(-0.199793\pi\)
0.809400 + 0.587258i \(0.199793\pi\)
\(660\) 210528. 364645.i 0.0188127 0.0325845i
\(661\) 1.67072e6 + 2.89377e6i 0.148731 + 0.257609i 0.930759 0.365634i \(-0.119148\pi\)
−0.782028 + 0.623243i \(0.785815\pi\)
\(662\) −7.40608e6 1.28277e7i −0.656815 1.13764i
\(663\) −25704.0 + 44520.6i −0.00227100 + 0.00393349i
\(664\) 7.07853e6 0.623050
\(665\) 0 0
\(666\) 2.47309e6 0.216050
\(667\) −728896. + 1.26248e6i −0.0634382 + 0.109878i
\(668\) 420400. + 728154.i 0.0364520 + 0.0631367i
\(669\) 475452. + 823507.i 0.0410716 + 0.0711381i
\(670\) 1.04168e7 1.80425e7i 0.896497 1.55278i
\(671\) 1.96024e6 0.168075
\(672\) 0 0
\(673\) −8.47066e6 −0.720907 −0.360454 0.932777i \(-0.617378\pi\)
−0.360454 + 0.932777i \(0.617378\pi\)
\(674\) 2.42865e6 4.20655e6i 0.205928 0.356678i
\(675\) −1.55678e6 2.69642e6i −0.131513 0.227787i
\(676\) 2.97027e6 + 5.14466e6i 0.249994 + 0.433002i
\(677\) 7.32764e6 1.26918e7i 0.614458 1.06427i −0.376021 0.926611i \(-0.622708\pi\)
0.990479 0.137662i \(-0.0439587\pi\)
\(678\) 2.19190e6 0.183124
\(679\) 0 0
\(680\) 1.04796e7 0.869107
\(681\) 2.94638e6 5.10327e6i 0.243456 0.421678i
\(682\) −117708. 203876.i −0.00969047 0.0167844i
\(683\) −9.88081e6 1.71141e7i −0.810477 1.40379i −0.912531 0.409008i \(-0.865875\pi\)
0.102054 0.994779i \(-0.467459\pi\)
\(684\) −964872. + 1.67121e6i −0.0788550 + 0.136581i
\(685\) −2.79937e7 −2.27947
\(686\) 0 0
\(687\) −5.01942e6 −0.405753
\(688\) −2.36685e6 + 4.09950e6i −0.190634 + 0.330187i
\(689\) 29934.0 + 51847.2i 0.00240224 + 0.00416080i
\(690\) 346752. + 600592.i 0.0277266 + 0.0480238i
\(691\) 6.79162e6 1.17634e7i 0.541101 0.937214i −0.457740 0.889086i \(-0.651341\pi\)
0.998841 0.0481282i \(-0.0153256\pi\)
\(692\) 2.16410e6 0.171795
\(693\) 0 0
\(694\) 3.91162e6 0.308289
\(695\) −138073. + 239149.i −0.0108429 + 0.0187805i
\(696\) −1.87430e6 3.24639e6i −0.146662 0.254026i
\(697\) 1.46741e7 + 2.54163e7i 1.14412 + 1.98167i
\(698\) −1.02256e6 + 1.77113e6i −0.0794423 + 0.137598i
\(699\) −1.12283e7 −0.869206
\(700\) 0 0
\(701\) −1.29915e7 −0.998538 −0.499269 0.866447i \(-0.666398\pi\)
−0.499269 + 0.866447i \(0.666398\pi\)
\(702\) 4374.00 7575.99i 0.000334993 0.000580225i
\(703\) 5.68277e6 + 9.84284e6i 0.433682 + 0.751160i
\(704\) −69632.0 120606.i −0.00529514 0.00917145i
\(705\) −7.14479e6 + 1.23751e7i −0.541398 + 0.937729i
\(706\) 1.21101e7 0.914399
\(707\) 0 0
\(708\) 4.58323e6 0.343628
\(709\) −954367. + 1.65301e6i −0.0713017 + 0.123498i −0.899472 0.436978i \(-0.856049\pi\)
0.828170 + 0.560476i \(0.189382\pi\)
\(710\) 7.71145e6 + 1.33566e7i 0.574103 + 0.994376i
\(711\) 1.23651e6 + 2.14169e6i 0.0917323 + 0.158885i
\(712\) 1.88774e6 3.26967e6i 0.139554 0.241715i
\(713\) 387744. 0.0285641
\(714\) 0 0
\(715\) −8772.00 −0.000641702
\(716\) −2.00510e6 + 3.47294e6i −0.146169 + 0.253172i
\(717\) 2.23617e6 + 3.87315e6i 0.162445 + 0.281363i
\(718\) 9.18911e6 + 1.59160e7i 0.665216 + 1.15219i
\(719\) −5.55999e6 + 9.63018e6i −0.401099 + 0.694724i −0.993859 0.110655i \(-0.964705\pi\)
0.592760 + 0.805379i \(0.298038\pi\)
\(720\) −1.78330e6 −0.128201
\(721\) 0 0
\(722\) 1.03591e6 0.0739571
\(723\) −1.24928e6 + 2.16382e6i −0.0888821 + 0.153948i
\(724\) 1.59386e6 + 2.76065e6i 0.113007 + 0.195734i
\(725\) 1.38978e7 + 2.40718e7i 0.981979 + 1.70084i
\(726\) −2.87811e6 + 4.98503e6i −0.202659 + 0.351016i
\(727\) −8.37406e6 −0.587624 −0.293812 0.955863i \(-0.594924\pi\)
−0.293812 + 0.955863i \(0.594924\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 3.58121e6 6.20284e6i 0.248727 0.430808i
\(731\) −1.76034e7 3.04900e7i −1.21844 2.11040i
\(732\) −4.15109e6 7.18990e6i −0.286341 0.495958i
\(733\) 2.32224e6 4.02224e6i 0.159642 0.276508i −0.775098 0.631841i \(-0.782299\pi\)
0.934740 + 0.355334i \(0.115633\pi\)
\(734\) −4.45092e6 −0.304937
\(735\) 0 0
\(736\) 229376. 0.0156082
\(737\) 1.02957e6 1.78327e6i 0.0698212 0.120934i
\(738\) −2.49707e6 4.32505e6i −0.168768 0.292314i
\(739\) 5.53116e6 + 9.58026e6i 0.372568 + 0.645307i 0.989960 0.141349i \(-0.0451440\pi\)
−0.617392 + 0.786656i \(0.711811\pi\)
\(740\) −5.25150e6 + 9.09587e6i −0.352537 + 0.610612i
\(741\) 40203.0 0.00268976
\(742\) 0 0
\(743\) 1.97245e6 0.131079 0.0655395 0.997850i \(-0.479123\pi\)
0.0655395 + 0.997850i \(0.479123\pi\)
\(744\) −498528. + 863476.i −0.0330185 + 0.0571897i
\(745\) −6.53101e6 1.13120e7i −0.431112 0.746707i
\(746\) −4.91790e6 8.51805e6i −0.323543 0.560393i
\(747\) 4.47938e6 7.75852e6i 0.293708 0.508718i
\(748\) 1.03578e6 0.0676880
\(749\) 0 0
\(750\) 3.54802e6 0.230320
\(751\) −7.51232e6 + 1.30117e7i −0.486042 + 0.841850i −0.999871 0.0160425i \(-0.994893\pi\)
0.513829 + 0.857893i \(0.328227\pi\)
\(752\) 2.36314e6 + 4.09307e6i 0.152386 + 0.263940i
\(753\) −1.38748e6 2.40318e6i −0.0891740 0.154454i
\(754\) −39048.0 + 67633.1i −0.00250133 + 0.00433243i
\(755\) −6.59173e6 −0.420854
\(756\) 0 0
\(757\) −4.72426e6 −0.299636 −0.149818 0.988714i \(-0.547869\pi\)
−0.149818 + 0.988714i \(0.547869\pi\)
\(758\) −8.20260e6 + 1.42073e7i −0.518535 + 0.898130i
\(759\) 34272.0 + 59360.8i 0.00215941 + 0.00374021i
\(760\) −4.09773e6 7.09747e6i −0.257341 0.445728i
\(761\) −4.28918e6 + 7.42907e6i −0.268480 + 0.465021i −0.968470 0.249132i \(-0.919855\pi\)
0.699989 + 0.714153i \(0.253188\pi\)
\(762\) 5.47074e6 0.341318
\(763\) 0 0
\(764\) −3.82032e6 −0.236792
\(765\) 6.63163e6 1.14863e7i 0.409701 0.709623i
\(766\) 5.18826e6 + 8.98634e6i 0.319485 + 0.553364i
\(767\) −47742.0 82691.6i −0.00293030 0.00507543i
\(768\) −294912. + 510803.i −0.0180422 + 0.0312500i