Properties

Label 294.6.e.j.67.1
Level $294$
Weight $6$
Character 294.67
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.6.e.j.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-13.0000 - 22.5167i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(2.00000 + 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-13.0000 - 22.5167i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(52.0000 - 90.0666i) q^{10} +(179.000 - 310.037i) q^{11} +(-72.0000 - 124.708i) q^{12} +332.000 q^{13} +234.000 q^{15} +(-128.000 - 221.703i) q^{16} +(-63.0000 + 109.119i) q^{17} +(162.000 - 280.592i) q^{18} +(1100.00 + 1905.26i) q^{19} +416.000 q^{20} +1432.00 q^{22} +(1071.00 + 1855.03i) q^{23} +(288.000 - 498.831i) q^{24} +(1224.50 - 2120.90i) q^{25} +(664.000 + 1150.08i) q^{26} +729.000 q^{27} -3610.00 q^{29} +(468.000 + 810.600i) q^{30} +(-2834.00 + 4908.63i) q^{31} +(512.000 - 886.810i) q^{32} +(1611.00 + 2790.33i) q^{33} -504.000 q^{34} +1296.00 q^{36} +(1461.00 + 2530.53i) q^{37} +(-4400.00 + 7621.02i) q^{38} +(-1494.00 + 2587.68i) q^{39} +(832.000 + 1441.07i) q^{40} -2142.00 q^{41} +6388.00 q^{43} +(2864.00 + 4960.59i) q^{44} +(-1053.00 + 1823.85i) q^{45} +(-4284.00 + 7420.11i) q^{46} +(3260.00 + 5646.49i) q^{47} +2304.00 q^{48} +9796.00 q^{50} +(-567.000 - 982.073i) q^{51} +(-2656.00 + 4600.33i) q^{52} +(5351.00 - 9268.20i) q^{53} +(1458.00 + 2525.33i) q^{54} -9308.00 q^{55} -19800.0 q^{57} +(-7220.00 - 12505.4i) q^{58} +(-21262.0 + 36826.9i) q^{59} +(-1872.00 + 3242.40i) q^{60} +(22420.0 + 38832.6i) q^{61} -22672.0 q^{62} +4096.00 q^{64} +(-4316.00 - 7475.53i) q^{65} +(-6444.00 + 11161.3i) q^{66} +(724.000 - 1254.00i) q^{67} +(-1008.00 - 1745.91i) q^{68} -19278.0 q^{69} -4402.00 q^{71} +(2592.00 + 4489.48i) q^{72} +(-10250.0 + 17753.5i) q^{73} +(-5844.00 + 10122.1i) q^{74} +(11020.5 + 19088.1i) q^{75} -35200.0 q^{76} -11952.0 q^{78} +(-32618.0 - 56496.0i) q^{79} +(-3328.00 + 5764.27i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(-4284.00 - 7420.11i) q^{82} -102804. q^{83} +3276.00 q^{85} +(12776.0 + 22128.7i) q^{86} +(16245.0 - 28137.2i) q^{87} +(-11456.0 + 19842.4i) q^{88} +(64003.0 + 110856. i) q^{89} -8424.00 q^{90} -34272.0 q^{92} +(-25506.0 - 44177.7i) q^{93} +(-13040.0 + 22585.9i) q^{94} +(28600.0 - 49536.7i) q^{95} +(4608.00 + 7981.29i) q^{96} -113324. q^{97} -28998.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} - 26 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} - 26 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9} + 104 q^{10} + 358 q^{11} - 144 q^{12} + 664 q^{13} + 468 q^{15} - 256 q^{16} - 126 q^{17} + 324 q^{18} + 2200 q^{19} + 832 q^{20} + 2864 q^{22} + 2142 q^{23} + 576 q^{24} + 2449 q^{25} + 1328 q^{26} + 1458 q^{27} - 7220 q^{29} + 936 q^{30} - 5668 q^{31} + 1024 q^{32} + 3222 q^{33} - 1008 q^{34} + 2592 q^{36} + 2922 q^{37} - 8800 q^{38} - 2988 q^{39} + 1664 q^{40} - 4284 q^{41} + 12776 q^{43} + 5728 q^{44} - 2106 q^{45} - 8568 q^{46} + 6520 q^{47} + 4608 q^{48} + 19592 q^{50} - 1134 q^{51} - 5312 q^{52} + 10702 q^{53} + 2916 q^{54} - 18616 q^{55} - 39600 q^{57} - 14440 q^{58} - 42524 q^{59} - 3744 q^{60} + 44840 q^{61} - 45344 q^{62} + 8192 q^{64} - 8632 q^{65} - 12888 q^{66} + 1448 q^{67} - 2016 q^{68} - 38556 q^{69} - 8804 q^{71} + 5184 q^{72} - 20500 q^{73} - 11688 q^{74} + 22041 q^{75} - 70400 q^{76} - 23904 q^{78} - 65236 q^{79} - 6656 q^{80} - 6561 q^{81} - 8568 q^{82} - 205608 q^{83} + 6552 q^{85} + 25552 q^{86} + 32490 q^{87} - 22912 q^{88} + 128006 q^{89} - 16848 q^{90} - 68544 q^{92} - 51012 q^{93} - 26080 q^{94} + 57200 q^{95} + 9216 q^{96} - 226648 q^{97} - 57996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 3.46410i 0.353553 + 0.612372i
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −13.0000 22.5167i −0.232551 0.402790i 0.726007 0.687687i \(-0.241374\pi\)
−0.958558 + 0.284897i \(0.908041\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 52.0000 90.0666i 0.164438 0.284816i
\(11\) 179.000 310.037i 0.446037 0.772560i −0.552086 0.833787i \(-0.686168\pi\)
0.998124 + 0.0612274i \(0.0195015\pi\)
\(12\) −72.0000 124.708i −0.144338 0.250000i
\(13\) 332.000 0.544853 0.272427 0.962177i \(-0.412174\pi\)
0.272427 + 0.962177i \(0.412174\pi\)
\(14\) 0 0
\(15\) 234.000 0.268527
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −63.0000 + 109.119i −0.0528711 + 0.0915754i −0.891250 0.453513i \(-0.850171\pi\)
0.838379 + 0.545088i \(0.183504\pi\)
\(18\) 162.000 280.592i 0.117851 0.204124i
\(19\) 1100.00 + 1905.26i 0.699051 + 1.21079i 0.968796 + 0.247860i \(0.0797272\pi\)
−0.269745 + 0.962932i \(0.586939\pi\)
\(20\) 416.000 0.232551
\(21\) 0 0
\(22\) 1432.00 0.630792
\(23\) 1071.00 + 1855.03i 0.422153 + 0.731190i 0.996150 0.0876671i \(-0.0279412\pi\)
−0.573997 + 0.818858i \(0.694608\pi\)
\(24\) 288.000 498.831i 0.102062 0.176777i
\(25\) 1224.50 2120.90i 0.391840 0.678687i
\(26\) 664.000 + 1150.08i 0.192635 + 0.333653i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −3610.00 −0.797099 −0.398549 0.917147i \(-0.630486\pi\)
−0.398549 + 0.917147i \(0.630486\pi\)
\(30\) 468.000 + 810.600i 0.0949386 + 0.164438i
\(31\) −2834.00 + 4908.63i −0.529658 + 0.917395i 0.469743 + 0.882803i \(0.344346\pi\)
−0.999402 + 0.0345917i \(0.988987\pi\)
\(32\) 512.000 886.810i 0.0883883 0.153093i
\(33\) 1611.00 + 2790.33i 0.257520 + 0.446037i
\(34\) −504.000 −0.0747710
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 1461.00 + 2530.53i 0.175447 + 0.303883i 0.940316 0.340303i \(-0.110530\pi\)
−0.764869 + 0.644186i \(0.777196\pi\)
\(38\) −4400.00 + 7621.02i −0.494303 + 0.856159i
\(39\) −1494.00 + 2587.68i −0.157286 + 0.272427i
\(40\) 832.000 + 1441.07i 0.0822192 + 0.142408i
\(41\) −2142.00 −0.199003 −0.0995015 0.995037i \(-0.531725\pi\)
−0.0995015 + 0.995037i \(0.531725\pi\)
\(42\) 0 0
\(43\) 6388.00 0.526858 0.263429 0.964679i \(-0.415146\pi\)
0.263429 + 0.964679i \(0.415146\pi\)
\(44\) 2864.00 + 4960.59i 0.223019 + 0.386280i
\(45\) −1053.00 + 1823.85i −0.0775170 + 0.134263i
\(46\) −4284.00 + 7420.11i −0.298507 + 0.517030i
\(47\) 3260.00 + 5646.49i 0.215265 + 0.372850i 0.953354 0.301853i \(-0.0976052\pi\)
−0.738090 + 0.674703i \(0.764272\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 9796.00 0.554145
\(51\) −567.000 982.073i −0.0305251 0.0528711i
\(52\) −2656.00 + 4600.33i −0.136213 + 0.235928i
\(53\) 5351.00 9268.20i 0.261665 0.453217i −0.705020 0.709188i \(-0.749062\pi\)
0.966684 + 0.255971i \(0.0823952\pi\)
\(54\) 1458.00 + 2525.33i 0.0680414 + 0.117851i
\(55\) −9308.00 −0.414906
\(56\) 0 0
\(57\) −19800.0 −0.807194
\(58\) −7220.00 12505.4i −0.281817 0.488121i
\(59\) −21262.0 + 36826.9i −0.795196 + 1.37732i 0.127519 + 0.991836i \(0.459299\pi\)
−0.922715 + 0.385483i \(0.874035\pi\)
\(60\) −1872.00 + 3242.40i −0.0671317 + 0.116276i
\(61\) 22420.0 + 38832.6i 0.771456 + 1.33620i 0.936765 + 0.349959i \(0.113804\pi\)
−0.165309 + 0.986242i \(0.552862\pi\)
\(62\) −22672.0 −0.749050
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −4316.00 7475.53i −0.126706 0.219462i
\(66\) −6444.00 + 11161.3i −0.182094 + 0.315396i
\(67\) 724.000 1254.00i 0.0197039 0.0341281i −0.856005 0.516967i \(-0.827061\pi\)
0.875709 + 0.482839i \(0.160394\pi\)
\(68\) −1008.00 1745.91i −0.0264355 0.0457877i
\(69\) −19278.0 −0.487460
\(70\) 0 0
\(71\) −4402.00 −0.103634 −0.0518172 0.998657i \(-0.516501\pi\)
−0.0518172 + 0.998657i \(0.516501\pi\)
\(72\) 2592.00 + 4489.48i 0.0589256 + 0.102062i
\(73\) −10250.0 + 17753.5i −0.225121 + 0.389922i −0.956356 0.292205i \(-0.905611\pi\)
0.731234 + 0.682126i \(0.238945\pi\)
\(74\) −5844.00 + 10122.1i −0.124060 + 0.214878i
\(75\) 11020.5 + 19088.1i 0.226229 + 0.391840i
\(76\) −35200.0 −0.699051
\(77\) 0 0
\(78\) −11952.0 −0.222435
\(79\) −32618.0 56496.0i −0.588017 1.01847i −0.994492 0.104813i \(-0.966576\pi\)
0.406475 0.913662i \(-0.366758\pi\)
\(80\) −3328.00 + 5764.27i −0.0581378 + 0.100698i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) −4284.00 7420.11i −0.0703582 0.121864i
\(83\) −102804. −1.63800 −0.819002 0.573791i \(-0.805472\pi\)
−0.819002 + 0.573791i \(0.805472\pi\)
\(84\) 0 0
\(85\) 3276.00 0.0491809
\(86\) 12776.0 + 22128.7i 0.186273 + 0.322633i
\(87\) 16245.0 28137.2i 0.230103 0.398549i
\(88\) −11456.0 + 19842.4i −0.157698 + 0.273141i
\(89\) 64003.0 + 110856.i 0.856496 + 1.48349i 0.875250 + 0.483670i \(0.160697\pi\)
−0.0187543 + 0.999824i \(0.505970\pi\)
\(90\) −8424.00 −0.109626
\(91\) 0 0
\(92\) −34272.0 −0.422153
\(93\) −25506.0 44177.7i −0.305798 0.529658i
\(94\) −13040.0 + 22585.9i −0.152215 + 0.263644i
\(95\) 28600.0 49536.7i 0.325130 0.563142i
\(96\) 4608.00 + 7981.29i 0.0510310 + 0.0883883i
\(97\) −113324. −1.22290 −0.611452 0.791281i \(-0.709414\pi\)
−0.611452 + 0.791281i \(0.709414\pi\)
\(98\) 0 0
\(99\) −28998.0 −0.297358
\(100\) 19592.0 + 33934.3i 0.195920 + 0.339343i
\(101\) 69857.0 120996.i 0.681407 1.18023i −0.293145 0.956068i \(-0.594702\pi\)
0.974552 0.224163i \(-0.0719649\pi\)
\(102\) 2268.00 3928.29i 0.0215845 0.0373855i
\(103\) 71090.0 + 123131.i 0.660261 + 1.14361i 0.980547 + 0.196284i \(0.0628875\pi\)
−0.320286 + 0.947321i \(0.603779\pi\)
\(104\) −21248.0 −0.192635
\(105\) 0 0
\(106\) 42808.0 0.370050
\(107\) 99259.0 + 171922.i 0.838128 + 1.45168i 0.891458 + 0.453104i \(0.149683\pi\)
−0.0533296 + 0.998577i \(0.516983\pi\)
\(108\) −5832.00 + 10101.3i −0.0481125 + 0.0833333i
\(109\) −66269.0 + 114781.i −0.534250 + 0.925347i 0.464950 + 0.885337i \(0.346072\pi\)
−0.999199 + 0.0400103i \(0.987261\pi\)
\(110\) −18616.0 32243.9i −0.146691 0.254077i
\(111\) −26298.0 −0.202589
\(112\) 0 0
\(113\) 47026.0 0.346451 0.173226 0.984882i \(-0.444581\pi\)
0.173226 + 0.984882i \(0.444581\pi\)
\(114\) −39600.0 68589.2i −0.285386 0.494303i
\(115\) 27846.0 48230.7i 0.196344 0.340078i
\(116\) 28880.0 50021.6i 0.199275 0.345154i
\(117\) −13446.0 23289.2i −0.0908089 0.157286i
\(118\) −170096. −1.12458
\(119\) 0 0
\(120\) −14976.0 −0.0949386
\(121\) 16443.5 + 28481.0i 0.102101 + 0.176844i
\(122\) −89680.0 + 155330.i −0.545502 + 0.944836i
\(123\) 9639.00 16695.2i 0.0574472 0.0995015i
\(124\) −45344.0 78538.1i −0.264829 0.458697i
\(125\) −144924. −0.829593
\(126\) 0 0
\(127\) 165548. 0.910782 0.455391 0.890291i \(-0.349499\pi\)
0.455391 + 0.890291i \(0.349499\pi\)
\(128\) 8192.00 + 14189.0i 0.0441942 + 0.0765466i
\(129\) −28746.0 + 49789.5i −0.152091 + 0.263429i
\(130\) 17264.0 29902.1i 0.0895948 0.155183i
\(131\) 69654.0 + 120644.i 0.354624 + 0.614226i 0.987053 0.160391i \(-0.0512756\pi\)
−0.632430 + 0.774618i \(0.717942\pi\)
\(132\) −51552.0 −0.257520
\(133\) 0 0
\(134\) 5792.00 0.0278655
\(135\) −9477.00 16414.6i −0.0447545 0.0775170i
\(136\) 4032.00 6983.63i 0.0186928 0.0323768i
\(137\) 166421. 288250.i 0.757542 1.31210i −0.186559 0.982444i \(-0.559733\pi\)
0.944101 0.329657i \(-0.106933\pi\)
\(138\) −38556.0 66781.0i −0.172343 0.298507i
\(139\) 8556.00 0.0375607 0.0187804 0.999824i \(-0.494022\pi\)
0.0187804 + 0.999824i \(0.494022\pi\)
\(140\) 0 0
\(141\) −58680.0 −0.248566
\(142\) −8804.00 15249.0i −0.0366403 0.0634629i
\(143\) 59428.0 102932.i 0.243025 0.420932i
\(144\) −10368.0 + 17957.9i −0.0416667 + 0.0721688i
\(145\) 46930.0 + 81285.1i 0.185366 + 0.321064i
\(146\) −82000.0 −0.318370
\(147\) 0 0
\(148\) −46752.0 −0.175447
\(149\) −34777.0 60235.5i −0.128329 0.222273i 0.794700 0.607002i \(-0.207628\pi\)
−0.923029 + 0.384729i \(0.874295\pi\)
\(150\) −44082.0 + 76352.3i −0.159968 + 0.277073i
\(151\) −264620. + 458335.i −0.944453 + 1.63584i −0.187610 + 0.982244i \(0.560074\pi\)
−0.756843 + 0.653597i \(0.773259\pi\)
\(152\) −70400.0 121936.i −0.247152 0.428079i
\(153\) 10206.0 0.0352474
\(154\) 0 0
\(155\) 147368. 0.492690
\(156\) −23904.0 41402.9i −0.0786428 0.136213i
\(157\) −6520.00 + 11293.0i −0.0211105 + 0.0365645i −0.876388 0.481606i \(-0.840054\pi\)
0.855277 + 0.518171i \(0.173387\pi\)
\(158\) 130472. 225984.i 0.415791 0.720170i
\(159\) 48159.0 + 83413.8i 0.151072 + 0.261665i
\(160\) −26624.0 −0.0822192
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 175620. + 304183.i 0.517732 + 0.896738i 0.999788 + 0.0205976i \(0.00655687\pi\)
−0.482056 + 0.876140i \(0.660110\pi\)
\(164\) 17136.0 29680.4i 0.0497508 0.0861709i
\(165\) 41886.0 72548.7i 0.119773 0.207453i
\(166\) −205608. 356124.i −0.579122 1.00307i
\(167\) 626128. 1.73729 0.868644 0.495436i \(-0.164992\pi\)
0.868644 + 0.495436i \(0.164992\pi\)
\(168\) 0 0
\(169\) −261069. −0.703135
\(170\) 6552.00 + 11348.4i 0.0173881 + 0.0301170i
\(171\) 89100.0 154326.i 0.233017 0.403597i
\(172\) −51104.0 + 88514.7i −0.131715 + 0.228136i
\(173\) 92413.0 + 160064.i 0.234757 + 0.406610i 0.959202 0.282722i \(-0.0912374\pi\)
−0.724445 + 0.689332i \(0.757904\pi\)
\(174\) 129960. 0.325414
\(175\) 0 0
\(176\) −91648.0 −0.223019
\(177\) −191358. 331442.i −0.459107 0.795196i
\(178\) −256012. + 443426.i −0.605634 + 1.04899i
\(179\) 178761. 309623.i 0.417004 0.722272i −0.578633 0.815588i \(-0.696413\pi\)
0.995637 + 0.0933163i \(0.0297468\pi\)
\(180\) −16848.0 29181.6i −0.0387585 0.0671317i
\(181\) 696508. 1.58026 0.790132 0.612937i \(-0.210012\pi\)
0.790132 + 0.612937i \(0.210012\pi\)
\(182\) 0 0
\(183\) −403560. −0.890800
\(184\) −68544.0 118722.i −0.149254 0.258515i
\(185\) 37986.0 65793.7i 0.0816008 0.141337i
\(186\) 102024. 176711.i 0.216232 0.374525i
\(187\) 22554.0 + 39064.7i 0.0471650 + 0.0816921i
\(188\) −104320. −0.215265
\(189\) 0 0
\(190\) 228800. 0.459803
\(191\) −34335.0 59470.0i −0.0681010 0.117954i 0.829964 0.557816i \(-0.188361\pi\)
−0.898065 + 0.439862i \(0.855027\pi\)
\(192\) −18432.0 + 31925.2i −0.0360844 + 0.0625000i
\(193\) −413611. + 716395.i −0.799280 + 1.38439i 0.120806 + 0.992676i \(0.461452\pi\)
−0.920086 + 0.391717i \(0.871881\pi\)
\(194\) −226648. 392566.i −0.432362 0.748873i
\(195\) 77688.0 0.146308
\(196\) 0 0
\(197\) −143382. −0.263226 −0.131613 0.991301i \(-0.542016\pi\)
−0.131613 + 0.991301i \(0.542016\pi\)
\(198\) −57996.0 100452.i −0.105132 0.182094i
\(199\) 271300. 469905.i 0.485643 0.841158i −0.514221 0.857658i \(-0.671919\pi\)
0.999864 + 0.0164995i \(0.00525219\pi\)
\(200\) −78368.0 + 135737.i −0.138536 + 0.239952i
\(201\) 6516.00 + 11286.0i 0.0113760 + 0.0197039i
\(202\) 558856. 0.963655
\(203\) 0 0
\(204\) 18144.0 0.0305251
\(205\) 27846.0 + 48230.7i 0.0462784 + 0.0801565i
\(206\) −284360. + 492526.i −0.466875 + 0.808651i
\(207\) 86751.0 150257.i 0.140718 0.243730i
\(208\) −42496.0 73605.2i −0.0681067 0.117964i
\(209\) 787600. 1.24721
\(210\) 0 0
\(211\) 1.12776e6 1.74385 0.871925 0.489640i \(-0.162872\pi\)
0.871925 + 0.489640i \(0.162872\pi\)
\(212\) 85616.0 + 148291.i 0.130832 + 0.226608i
\(213\) 19809.0 34310.2i 0.0299167 0.0518172i
\(214\) −397036. + 687687.i −0.592646 + 1.02649i
\(215\) −83044.0 143836.i −0.122521 0.212213i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −530152. −0.755543
\(219\) −92250.0 159782.i −0.129974 0.225121i
\(220\) 74464.0 128975.i 0.103726 0.179660i
\(221\) −20916.0 + 36227.6i −0.0288070 + 0.0498952i
\(222\) −52596.0 91098.9i −0.0716259 0.124060i
\(223\) 897976. 1.20921 0.604606 0.796525i \(-0.293331\pi\)
0.604606 + 0.796525i \(0.293331\pi\)
\(224\) 0 0
\(225\) −198369. −0.261227
\(226\) 94052.0 + 162903.i 0.122489 + 0.212157i
\(227\) 233806. 404964.i 0.301156 0.521617i −0.675242 0.737596i \(-0.735961\pi\)
0.976398 + 0.215979i \(0.0692943\pi\)
\(228\) 158400. 274357.i 0.201799 0.349525i
\(229\) 223070. + 386369.i 0.281095 + 0.486870i 0.971655 0.236405i \(-0.0759692\pi\)
−0.690560 + 0.723275i \(0.742636\pi\)
\(230\) 222768. 0.277673
\(231\) 0 0
\(232\) 231040. 0.281817
\(233\) −350743. 607505.i −0.423252 0.733094i 0.573003 0.819553i \(-0.305778\pi\)
−0.996255 + 0.0864588i \(0.972445\pi\)
\(234\) 53784.0 93156.6i 0.0642116 0.111218i
\(235\) 84760.0 146809.i 0.100120 0.173413i
\(236\) −340192. 589230.i −0.397598 0.688660i
\(237\) 587124. 0.678983
\(238\) 0 0
\(239\) −384198. −0.435071 −0.217536 0.976052i \(-0.569802\pi\)
−0.217536 + 0.976052i \(0.569802\pi\)
\(240\) −29952.0 51878.4i −0.0335659 0.0581378i
\(241\) 476890. 825998.i 0.528902 0.916086i −0.470529 0.882384i \(-0.655937\pi\)
0.999432 0.0337017i \(-0.0107296\pi\)
\(242\) −65774.0 + 113924.i −0.0721964 + 0.125048i
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) −717440. −0.771456
\(245\) 0 0
\(246\) 77112.0 0.0812427
\(247\) 365200. + 632545.i 0.380880 + 0.659704i
\(248\) 181376. 314152.i 0.187262 0.324348i
\(249\) 462618. 801278.i 0.472851 0.819002i
\(250\) −289848. 502031.i −0.293306 0.508020i
\(251\) 569540. 0.570611 0.285305 0.958437i \(-0.407905\pi\)
0.285305 + 0.958437i \(0.407905\pi\)
\(252\) 0 0
\(253\) 766836. 0.753184
\(254\) 331096. + 573475.i 0.322010 + 0.557738i
\(255\) −14742.0 + 25533.9i −0.0141973 + 0.0245905i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −533321. 923739.i −0.503681 0.872402i −0.999991 0.00425609i \(-0.998645\pi\)
0.496310 0.868146i \(-0.334688\pi\)
\(258\) −229968. −0.215089
\(259\) 0 0
\(260\) 138112. 0.126706
\(261\) 146205. + 253234.i 0.132850 + 0.230103i
\(262\) −278616. + 482577.i −0.250757 + 0.434324i
\(263\) 741215. 1.28382e6i 0.660777 1.14450i −0.319635 0.947541i \(-0.603560\pi\)
0.980412 0.196958i \(-0.0631064\pi\)
\(264\) −103104. 178581.i −0.0910470 0.157698i
\(265\) −278252. −0.243402
\(266\) 0 0
\(267\) −1.15205e6 −0.988996
\(268\) 11584.0 + 20064.1i 0.00985194 + 0.0170641i
\(269\) 107555. 186291.i 0.0906254 0.156968i −0.817149 0.576426i \(-0.804447\pi\)
0.907774 + 0.419459i \(0.137780\pi\)
\(270\) 37908.0 65658.6i 0.0316462 0.0548128i
\(271\) −965518. 1.67233e6i −0.798614 1.38324i −0.920519 0.390699i \(-0.872233\pi\)
0.121904 0.992542i \(-0.461100\pi\)
\(272\) 32256.0 0.0264355
\(273\) 0 0
\(274\) 1.33137e6 1.07133
\(275\) −438371. 759281.i −0.349551 0.605439i
\(276\) 154224. 267124.i 0.121865 0.211077i
\(277\) −1.01878e6 + 1.76458e6i −0.797777 + 1.38179i 0.123284 + 0.992371i \(0.460657\pi\)
−0.921061 + 0.389419i \(0.872676\pi\)
\(278\) 17112.0 + 29638.9i 0.0132797 + 0.0230011i
\(279\) 459108. 0.353105
\(280\) 0 0
\(281\) −639066. −0.482814 −0.241407 0.970424i \(-0.577609\pi\)
−0.241407 + 0.970424i \(0.577609\pi\)
\(282\) −117360. 203273.i −0.0878815 0.152215i
\(283\) −18872.0 + 32687.3i −0.0140072 + 0.0242612i −0.872944 0.487820i \(-0.837792\pi\)
0.858937 + 0.512082i \(0.171125\pi\)
\(284\) 35216.0 60995.9i 0.0259086 0.0448750i
\(285\) 257400. + 445830.i 0.187714 + 0.325130i
\(286\) 475424. 0.343689
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) 701990. + 1.21588e6i 0.494409 + 0.856342i
\(290\) −187720. + 325141.i −0.131074 + 0.227026i
\(291\) 509958. 883273.i 0.353022 0.611452i
\(292\) −164000. 284056.i −0.112561 0.194961i
\(293\) −1.83921e6 −1.25159 −0.625795 0.779987i \(-0.715225\pi\)
−0.625795 + 0.779987i \(0.715225\pi\)
\(294\) 0 0
\(295\) 1.10562e6 0.739695
\(296\) −93504.0 161954.i −0.0620299 0.107439i
\(297\) 130491. 226017.i 0.0858399 0.148679i
\(298\) 139108. 240942.i 0.0907426 0.157171i
\(299\) 355572. + 615869.i 0.230012 + 0.398392i
\(300\) −352656. −0.226229
\(301\) 0 0
\(302\) −2.11696e6 −1.33566
\(303\) 628713. + 1.08896e6i 0.393410 + 0.681407i
\(304\) 281600. 487746.i 0.174763 0.302698i
\(305\) 582920. 1.00965e6i 0.358806 0.621470i
\(306\) 20412.0 + 35354.6i 0.0124618 + 0.0215845i
\(307\) −1.06472e6 −0.644747 −0.322374 0.946613i \(-0.604481\pi\)
−0.322374 + 0.946613i \(0.604481\pi\)
\(308\) 0 0
\(309\) −1.27962e6 −0.762403
\(310\) 294736. + 510498.i 0.174192 + 0.301710i
\(311\) 504760. 874270.i 0.295927 0.512560i −0.679273 0.733885i \(-0.737705\pi\)
0.975200 + 0.221325i \(0.0710383\pi\)
\(312\) 95616.0 165612.i 0.0556089 0.0963174i
\(313\) 724548. + 1.25495e6i 0.418029 + 0.724047i 0.995741 0.0921932i \(-0.0293877\pi\)
−0.577712 + 0.816241i \(0.696054\pi\)
\(314\) −52160.0 −0.0298548
\(315\) 0 0
\(316\) 1.04378e6 0.588017
\(317\) −1.36155e6 2.35828e6i −0.761003 1.31810i −0.942334 0.334674i \(-0.891374\pi\)
0.181331 0.983422i \(-0.441959\pi\)
\(318\) −192636. + 333655.i −0.106824 + 0.185025i
\(319\) −646190. + 1.11923e6i −0.355536 + 0.615806i
\(320\) −53248.0 92228.2i −0.0290689 0.0503488i
\(321\) −1.78666e6 −0.967787
\(322\) 0 0
\(323\) −277200. −0.147838
\(324\) −52488.0 90911.9i −0.0277778 0.0481125i
\(325\) 406534. 704138.i 0.213495 0.369785i
\(326\) −702480. + 1.21673e6i −0.366092 + 0.634090i
\(327\) −596421. 1.03303e6i −0.308449 0.534250i
\(328\) 137088. 0.0703582
\(329\) 0 0
\(330\) 335088. 0.169385
\(331\) 550202. + 952978.i 0.276027 + 0.478093i 0.970394 0.241528i \(-0.0776486\pi\)
−0.694366 + 0.719622i \(0.744315\pi\)
\(332\) 822432. 1.42449e6i 0.409501 0.709276i
\(333\) 118341. 204973.i 0.0584823 0.101294i
\(334\) 1.25226e6 + 2.16897e6i 0.614224 + 1.06387i
\(335\) −37648.0 −0.0183286
\(336\) 0 0
\(337\) 1.73512e6 0.832251 0.416125 0.909307i \(-0.363388\pi\)
0.416125 + 0.909307i \(0.363388\pi\)
\(338\) −522138. 904370.i −0.248596 0.430580i
\(339\) −211617. + 366531.i −0.100012 + 0.173226i
\(340\) −26208.0 + 45393.6i −0.0122952 + 0.0212960i
\(341\) 1.01457e6 + 1.75729e6i 0.472495 + 0.818385i
\(342\) 712800. 0.329536
\(343\) 0 0
\(344\) −408832. −0.186273
\(345\) 250614. + 434076.i 0.113359 + 0.196344i
\(346\) −369652. + 640256.i −0.165998 + 0.287517i
\(347\) −795723. + 1.37823e6i −0.354763 + 0.614467i −0.987077 0.160244i \(-0.948772\pi\)
0.632314 + 0.774712i \(0.282105\pi\)
\(348\) 259920. + 450195.i 0.115051 + 0.199275i
\(349\) −2.33376e6 −1.02563 −0.512817 0.858498i \(-0.671398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(350\) 0 0
\(351\) 242028. 0.104857
\(352\) −183296. 317478.i −0.0788490 0.136571i
\(353\) −1.40541e6 + 2.43424e6i −0.600296 + 1.03974i 0.392480 + 0.919760i \(0.371617\pi\)
−0.992776 + 0.119982i \(0.961716\pi\)
\(354\) 765432. 1.32577e6i 0.324637 0.562288i
\(355\) 57226.0 + 99118.3i 0.0241003 + 0.0417429i
\(356\) −2.04810e6 −0.856496
\(357\) 0 0
\(358\) 1.43009e6 0.589733
\(359\) −469655. 813466.i −0.192328 0.333122i 0.753693 0.657226i \(-0.228270\pi\)
−0.946021 + 0.324104i \(0.894937\pi\)
\(360\) 67392.0 116726.i 0.0274064 0.0474693i
\(361\) −1.18195e6 + 2.04720e6i −0.477344 + 0.826784i
\(362\) 1.39302e6 + 2.41277e6i 0.558708 + 0.967710i
\(363\) −295983. −0.117896
\(364\) 0 0
\(365\) 533000. 0.209409
\(366\) −807120. 1.39797e6i −0.314945 0.545502i
\(367\) −1.54926e6 + 2.68339e6i −0.600424 + 1.03996i 0.392333 + 0.919823i \(0.371668\pi\)
−0.992757 + 0.120141i \(0.961665\pi\)
\(368\) 274176. 474887.i 0.105538 0.182798i
\(369\) 86751.0 + 150257.i 0.0331672 + 0.0574472i
\(370\) 303888. 0.115401
\(371\) 0 0
\(372\) 816192. 0.305798
\(373\) 114133. + 197684.i 0.0424756 + 0.0735698i 0.886482 0.462764i \(-0.153142\pi\)
−0.844006 + 0.536334i \(0.819809\pi\)
\(374\) −90216.0 + 156259.i −0.0333507 + 0.0577651i
\(375\) 652158. 1.12957e6i 0.239483 0.414797i
\(376\) −208640. 361375.i −0.0761076 0.131822i
\(377\) −1.19852e6 −0.434302
\(378\) 0 0
\(379\) −1.03669e6 −0.370725 −0.185362 0.982670i \(-0.559346\pi\)
−0.185362 + 0.982670i \(0.559346\pi\)
\(380\) 457600. + 792586.i 0.162565 + 0.281571i
\(381\) −744966. + 1.29032e6i −0.262920 + 0.455391i
\(382\) 137340. 237880.i 0.0481547 0.0834064i
\(383\) 105888. + 183403.i 0.0368850 + 0.0638867i 0.883879 0.467716i \(-0.154923\pi\)
−0.846994 + 0.531603i \(0.821590\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −3.30889e6 −1.13035
\(387\) −258714. 448106.i −0.0878097 0.152091i
\(388\) 906592. 1.57026e6i 0.305726 0.529533i
\(389\) −706623. + 1.22391e6i −0.236763 + 0.410085i −0.959784 0.280741i \(-0.909420\pi\)
0.723021 + 0.690826i \(0.242753\pi\)
\(390\) 155376. + 269119.i 0.0517276 + 0.0895948i
\(391\) −269892. −0.0892788
\(392\) 0 0
\(393\) −1.25377e6 −0.409484
\(394\) −286764. 496690.i −0.0930645 0.161192i
\(395\) −848068. + 1.46890e6i −0.273488 + 0.473695i
\(396\) 231984. 401808.i 0.0743396 0.128760i
\(397\) 545168. + 944259.i 0.173602 + 0.300687i 0.939676 0.342064i \(-0.111126\pi\)
−0.766075 + 0.642751i \(0.777793\pi\)
\(398\) 2.17040e6 0.686803
\(399\) 0 0
\(400\) −626944. −0.195920
\(401\) −1.32126e6 2.28849e6i −0.410325 0.710704i 0.584600 0.811322i \(-0.301252\pi\)
−0.994925 + 0.100617i \(0.967918\pi\)
\(402\) −26064.0 + 45144.2i −0.00804407 + 0.0139327i
\(403\) −940888. + 1.62967e6i −0.288586 + 0.499846i
\(404\) 1.11771e6 + 1.93593e6i 0.340703 + 0.590116i
\(405\) 170586. 0.0516780
\(406\) 0 0
\(407\) 1.04608e6 0.313024
\(408\) 36288.0 + 62852.7i 0.0107923 + 0.0186928i
\(409\) −3.12713e6 + 5.41635e6i −0.924354 + 1.60103i −0.131757 + 0.991282i \(0.542062\pi\)
−0.792597 + 0.609746i \(0.791272\pi\)
\(410\) −111384. + 192923.i −0.0327238 + 0.0566792i
\(411\) 1.49779e6 + 2.59425e6i 0.437367 + 0.757542i
\(412\) −2.27488e6 −0.660261
\(413\) 0 0
\(414\) 694008. 0.199005
\(415\) 1.33645e6 + 2.31480e6i 0.380919 + 0.659772i
\(416\) 169984. 294421.i 0.0481587 0.0834133i
\(417\) −38502.0 + 66687.4i −0.0108428 + 0.0187804i
\(418\) 1.57520e6 + 2.72833e6i 0.440956 + 0.763758i
\(419\) −973924. −0.271013 −0.135506 0.990776i \(-0.543266\pi\)
−0.135506 + 0.990776i \(0.543266\pi\)
\(420\) 0 0
\(421\) 864618. 0.237749 0.118875 0.992909i \(-0.462071\pi\)
0.118875 + 0.992909i \(0.462071\pi\)
\(422\) 2.25551e6 + 3.90666e6i 0.616544 + 1.06789i
\(423\) 264060. 457365.i 0.0717549 0.124283i
\(424\) −342464. + 593165.i −0.0925125 + 0.160236i
\(425\) 154287. + 267233.i 0.0414340 + 0.0717658i
\(426\) 158472. 0.0423086
\(427\) 0 0
\(428\) −3.17629e6 −0.838128
\(429\) 534852. + 926391.i 0.140311 + 0.243025i
\(430\) 332176. 575346.i 0.0866357 0.150058i
\(431\) 1.83023e6 3.17005e6i 0.474583 0.822002i −0.524993 0.851106i \(-0.675932\pi\)
0.999576 + 0.0291043i \(0.00926551\pi\)
\(432\) −93312.0 161621.i −0.0240563 0.0416667i
\(433\) −4.93667e6 −1.26536 −0.632681 0.774413i \(-0.718045\pi\)
−0.632681 + 0.774413i \(0.718045\pi\)
\(434\) 0 0
\(435\) −844740. −0.214042
\(436\) −1.06030e6 1.83650e6i −0.267125 0.462674i
\(437\) −2.35620e6 + 4.08106e6i −0.590213 + 1.02228i
\(438\) 369000. 639127.i 0.0919054 0.159185i
\(439\) −365652. 633328.i −0.0905538 0.156844i 0.817190 0.576368i \(-0.195530\pi\)
−0.907744 + 0.419524i \(0.862197\pi\)
\(440\) 595712. 0.146691
\(441\) 0 0
\(442\) −167328. −0.0407392
\(443\) −2.43310e6 4.21425e6i −0.589048 1.02026i −0.994357 0.106081i \(-0.966170\pi\)
0.405310 0.914179i \(-0.367164\pi\)
\(444\) 210384. 364396.i 0.0506472 0.0877235i
\(445\) 1.66408e6 2.88227e6i 0.398358 0.689976i
\(446\) 1.79595e6 + 3.11068e6i 0.427521 + 0.740488i
\(447\) 625986. 0.148182
\(448\) 0 0
\(449\) 5.71987e6 1.33897 0.669484 0.742827i \(-0.266515\pi\)
0.669484 + 0.742827i \(0.266515\pi\)
\(450\) −396738. 687170.i −0.0923576 0.159968i
\(451\) −383418. + 664099.i −0.0887628 + 0.153742i
\(452\) −376208. + 651611.i −0.0866128 + 0.150018i
\(453\) −2.38158e6 4.12502e6i −0.545280 0.944453i
\(454\) 1.87045e6 0.425898
\(455\) 0 0
\(456\) 1.26720e6 0.285386
\(457\) 3.41017e6 + 5.90659e6i 0.763811 + 1.32296i 0.940873 + 0.338759i \(0.110007\pi\)
−0.177063 + 0.984200i \(0.556660\pi\)
\(458\) −892280. + 1.54547e6i −0.198764 + 0.344269i
\(459\) −45927.0 + 79547.9i −0.0101750 + 0.0176237i
\(460\) 445536. + 771691.i 0.0981721 + 0.170039i
\(461\) −7.45934e6 −1.63474 −0.817369 0.576115i \(-0.804568\pi\)
−0.817369 + 0.576115i \(0.804568\pi\)
\(462\) 0 0
\(463\) −5.23848e6 −1.13567 −0.567836 0.823142i \(-0.692219\pi\)
−0.567836 + 0.823142i \(0.692219\pi\)
\(464\) 462080. + 800346.i 0.0996374 + 0.172577i
\(465\) −663156. + 1.14862e6i −0.142227 + 0.246345i
\(466\) 1.40297e6 2.43002e6i 0.299284 0.518376i
\(467\) −4.47997e6 7.75954e6i −0.950568 1.64643i −0.744199 0.667958i \(-0.767168\pi\)
−0.206370 0.978474i \(-0.566165\pi\)
\(468\) 430272. 0.0908089
\(469\) 0 0
\(470\) 678080. 0.141591
\(471\) −58680.0 101637.i −0.0121882 0.0211105i
\(472\) 1.36077e6 2.35692e6i 0.281144 0.486956i
\(473\) 1.14345e6 1.98052e6i 0.234998 0.407029i
\(474\) 1.17425e6 + 2.03386e6i 0.240057 + 0.415791i
\(475\) 5.38780e6 1.09566
\(476\) 0 0
\(477\) −866862. −0.174443
\(478\) −768396. 1.33090e6i −0.153821 0.266426i
\(479\) 876768. 1.51861e6i 0.174601 0.302417i −0.765422 0.643528i \(-0.777470\pi\)
0.940023 + 0.341111i \(0.110803\pi\)
\(480\) 119808. 207514.i 0.0237346 0.0411096i
\(481\) 485052. + 840135.i 0.0955929 + 0.165572i
\(482\) 3.81512e6 0.747981
\(483\) 0 0
\(484\) −526192. −0.102101
\(485\) 1.47321e6 + 2.55168e6i 0.284388 + 0.492574i
\(486\) 118098. 204552.i 0.0226805 0.0392837i
\(487\) −463784. + 803297.i −0.0886122 + 0.153481i −0.906925 0.421293i \(-0.861577\pi\)
0.818313 + 0.574773i \(0.194910\pi\)
\(488\) −1.43488e6 2.48529e6i −0.272751 0.472418i
\(489\) −3.16116e6 −0.597825
\(490\) 0 0
\(491\) 8.43733e6 1.57943 0.789716 0.613472i \(-0.210228\pi\)
0.789716 + 0.613472i \(0.210228\pi\)
\(492\) 154224. + 267124.i 0.0287236 + 0.0497508i
\(493\) 227430. 393920.i 0.0421435 0.0729947i
\(494\) −1.46080e6 + 2.53018e6i −0.269323 + 0.466481i
\(495\) 376974. + 652938.i 0.0691510 + 0.119773i
\(496\) 1.45101e6 0.264829
\(497\) 0 0
\(498\) 3.70094e6 0.668712
\(499\) −666390. 1.15422e6i −0.119806 0.207509i 0.799885 0.600153i \(-0.204894\pi\)
−0.919691 + 0.392644i \(0.871560\pi\)
\(500\) 1.15939e6 2.00813e6i 0.207398 0.359224i
\(501\) −2.81758e6 + 4.88018e6i −0.501512 + 0.868644i
\(502\) 1.13908e6 + 1.97294e6i 0.201741 + 0.349426i
\(503\) 3.64494e6 0.642349 0.321174 0.947020i \(-0.395922\pi\)
0.321174 + 0.947020i \(0.395922\pi\)
\(504\) 0 0
\(505\) −3.63256e6 −0.633848
\(506\) 1.53367e6 + 2.65640e6i 0.266291 + 0.461229i
\(507\) 1.17481e6 2.03483e6i 0.202978 0.351567i
\(508\) −1.32438e6 + 2.29390e6i −0.227696 + 0.394380i
\(509\) 1.63083e6 + 2.82468e6i 0.279007 + 0.483254i 0.971138 0.238518i \(-0.0766615\pi\)
−0.692132 + 0.721771i \(0.743328\pi\)
\(510\) −117936. −0.0200780
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 801900. + 1.38893e6i 0.134532 + 0.233017i
\(514\) 2.13328e6 3.69496e6i 0.356157 0.616881i
\(515\) 1.84834e6 3.20142e6i 0.307089 0.531893i
\(516\) −459936. 796633.i −0.0760454 0.131715i
\(517\) 2.33416e6 0.384065
\(518\) 0 0
\(519\) −1.66343e6 −0.271074
\(520\) 276224. + 478434.i 0.0447974 + 0.0775914i
\(521\) 1.09370e6 1.89435e6i 0.176525 0.305750i −0.764163 0.645023i \(-0.776848\pi\)
0.940688 + 0.339273i \(0.110181\pi\)
\(522\) −584820. + 1.01294e6i −0.0939390 + 0.162707i
\(523\) −5.19451e6 8.99716e6i −0.830406 1.43831i −0.897717 0.440573i \(-0.854775\pi\)
0.0673110 0.997732i \(-0.478558\pi\)
\(524\) −2.22893e6 −0.354624
\(525\) 0 0
\(526\) 5.92972e6 0.934480
\(527\) −357084. 618488.i −0.0560072 0.0970073i
\(528\) 412416. 714325.i 0.0643800 0.111509i
\(529\) 924090. 1.60057e6i 0.143574 0.248677i
\(530\) −556504. 963893.i −0.0860555 0.149052i
\(531\) 3.44444e6 0.530131
\(532\) 0 0
\(533\) −711144. −0.108428
\(534\) −2.30411e6 3.99083e6i −0.349663 0.605634i
\(535\) 2.58073e6 4.46996e6i 0.389815 0.675180i
\(536\) −46336.0 + 80256.3i −0.00696637 + 0.0120661i
\(537\) 1.60885e6 + 2.78661e6i 0.240757 + 0.417004i
\(538\) 860440. 0.128164
\(539\) 0 0
\(540\) 303264. 0.0447545
\(541\) −6.38620e6 1.10612e7i −0.938101 1.62484i −0.769009 0.639238i \(-0.779250\pi\)
−0.169091 0.985600i \(-0.554083\pi\)
\(542\) 3.86207e6 6.68930e6i 0.564706 0.978099i
\(543\) −3.13429e6 + 5.42874e6i −0.456183 + 0.790132i
\(544\) 64512.0 + 111738.i 0.00934638 + 0.0161884i
\(545\) 3.44599e6 0.496961
\(546\) 0 0
\(547\) −5.22238e6 −0.746278 −0.373139 0.927776i \(-0.621719\pi\)
−0.373139 + 0.927776i \(0.621719\pi\)
\(548\) 2.66274e6 + 4.61199e6i 0.378771 + 0.656051i
\(549\) 1.81602e6 3.14544e6i 0.257152 0.445400i
\(550\) 1.75348e6 3.03712e6i 0.247170 0.428110i
\(551\) −3.97100e6 6.87797e6i −0.557213 0.965120i
\(552\) 1.23379e6 0.172343
\(553\) 0 0
\(554\) −8.15025e6 −1.12823
\(555\) 341874. + 592143.i 0.0471122 + 0.0816008i
\(556\) −68448.0 + 118555.i −0.00939018 + 0.0162643i
\(557\) 2.87024e6 4.97139e6i 0.391994 0.678954i −0.600718 0.799461i \(-0.705119\pi\)
0.992712 + 0.120507i \(0.0384520\pi\)
\(558\) 918216. + 1.59040e6i 0.124842 + 0.216232i
\(559\) 2.12082e6 0.287061
\(560\) 0 0
\(561\) −405972. −0.0544614
\(562\) −1.27813e6 2.21379e6i −0.170701 0.295662i
\(563\) 1.15224e6 1.99573e6i 0.153204 0.265358i −0.779199 0.626776i \(-0.784374\pi\)
0.932404 + 0.361418i \(0.117707\pi\)
\(564\) 469440. 813094.i 0.0621416 0.107632i
\(565\) −611338. 1.05887e6i −0.0805676 0.139547i
\(566\) −150976. −0.0198092
\(567\) 0 0
\(568\) 281728. 0.0366403
\(569\) 2.56075e6 + 4.43535e6i 0.331578 + 0.574311i 0.982822 0.184558i \(-0.0590855\pi\)
−0.651243 + 0.758869i \(0.725752\pi\)
\(570\) −1.02960e6 + 1.78332e6i −0.132734 + 0.229902i
\(571\) 1.19318e6 2.06666e6i 0.153150 0.265264i −0.779234 0.626733i \(-0.784392\pi\)
0.932384 + 0.361470i \(0.117725\pi\)
\(572\) 950848. + 1.64692e6i 0.121513 + 0.210466i
\(573\) 618030. 0.0786363
\(574\) 0 0
\(575\) 5.24576e6 0.661666
\(576\) −165888. 287326.i −0.0208333 0.0360844i
\(577\) 2.62076e6 4.53928e6i 0.327708 0.567607i −0.654349 0.756193i \(-0.727057\pi\)
0.982057 + 0.188586i \(0.0603904\pi\)
\(578\) −2.80796e6 + 4.86353e6i −0.349600 + 0.605525i
\(579\) −3.72250e6 6.44756e6i −0.461464 0.799280i
\(580\) −1.50176e6 −0.185366
\(581\) 0 0
\(582\) 4.07966e6 0.499249
\(583\) −1.91566e6 3.31802e6i −0.233425 0.404303i
\(584\) 656000. 1.13623e6i 0.0795924 0.137858i
\(585\) −349596. + 605518.i −0.0422354 + 0.0731539i
\(586\) −3.67842e6 6.37121e6i −0.442504 0.766440i
\(587\) 9.11548e6 1.09190 0.545952 0.837816i \(-0.316168\pi\)
0.545952 + 0.837816i \(0.316168\pi\)
\(588\) 0 0
\(589\) −1.24696e7 −1.48103
\(590\) 2.21125e6 + 3.82999e6i 0.261522 + 0.452969i
\(591\) 645219. 1.11755e6i 0.0759869 0.131613i
\(592\) 374016. 647815.i 0.0438617 0.0759708i
\(593\) −1.52522e6 2.64175e6i −0.178112 0.308500i 0.763122 0.646255i \(-0.223666\pi\)
−0.941234 + 0.337755i \(0.890332\pi\)
\(594\) 1.04393e6 0.121396
\(595\) 0 0
\(596\) 1.11286e6 0.128329
\(597\) 2.44170e6 + 4.22915e6i 0.280386 + 0.485643i
\(598\) −1.42229e6 + 2.46348e6i −0.162643 + 0.281705i
\(599\) −7.17041e6 + 1.24195e7i −0.816539 + 1.41429i 0.0916783 + 0.995789i \(0.470777\pi\)
−0.908217 + 0.418499i \(0.862556\pi\)
\(600\) −705312. 1.22164e6i −0.0799840 0.138536i
\(601\) −3.12662e6 −0.353092 −0.176546 0.984292i \(-0.556492\pi\)
−0.176546 + 0.984292i \(0.556492\pi\)
\(602\) 0 0
\(603\) −117288. −0.0131359
\(604\) −4.23392e6 7.33336e6i −0.472226 0.817920i
\(605\) 427531. 740505.i 0.0474875 0.0822507i
\(606\) −2.51485e6 + 4.35585e6i −0.278183 + 0.481827i
\(607\) −5.75492e6 9.96782e6i −0.633969 1.09807i −0.986733 0.162354i \(-0.948091\pi\)
0.352764 0.935712i \(-0.385242\pi\)
\(608\) 2.25280e6 0.247152
\(609\) 0 0
\(610\) 4.66336e6 0.507428
\(611\) 1.08232e6 + 1.87463e6i 0.117288 + 0.203148i
\(612\) −81648.0 + 141418.i −0.00881185 + 0.0152626i
\(613\) 6.08910e6 1.05466e7i 0.654488 1.13361i −0.327534 0.944840i \(-0.606217\pi\)
0.982022 0.188767i \(-0.0604492\pi\)
\(614\) −2.12944e6 3.68830e6i −0.227953 0.394825i
\(615\) −501228. −0.0534377
\(616\) 0 0
\(617\) 1.77629e6 0.187845 0.0939226 0.995580i \(-0.470059\pi\)
0.0939226 + 0.995580i \(0.470059\pi\)
\(618\) −2.55924e6 4.43273e6i −0.269550 0.466875i
\(619\) 2.97758e6 5.15732e6i 0.312347 0.541001i −0.666523 0.745484i \(-0.732218\pi\)
0.978870 + 0.204484i \(0.0655516\pi\)
\(620\) −1.17894e6 + 2.04199e6i −0.123173 + 0.213341i
\(621\) 780759. + 1.35231e6i 0.0812434 + 0.140718i
\(622\) 4.03808e6 0.418503
\(623\) 0 0
\(624\) 764928. 0.0786428
\(625\) −1.94255e6 3.36460e6i −0.198917 0.344535i
\(626\) −2.89819e6 + 5.01982e6i −0.295591 + 0.511979i
\(627\) −3.54420e6 + 6.13873e6i −0.360039 + 0.623606i
\(628\) −104320. 180688.i −0.0105552 0.0182822i
\(629\) −368172. −0.0371043
\(630\) 0 0
\(631\) −1.45351e7 −1.45327 −0.726633 0.687026i \(-0.758916\pi\)
−0.726633 + 0.687026i \(0.758916\pi\)
\(632\) 2.08755e6 + 3.61575e6i 0.207895 + 0.360085i
\(633\) −5.07490e6 + 8.78999e6i −0.503406 + 0.871925i
\(634\) 5.44621e6 9.43312e6i 0.538110 0.932035i
\(635\) −2.15212e6 3.72759e6i −0.211803 0.366854i
\(636\) −1.54109e6 −0.151072
\(637\) 0 0
\(638\) −5.16952e6 −0.502804
\(639\) 178281. + 308792.i 0.0172724 + 0.0299167i
\(640\) 212992. 368913.i 0.0205548 0.0356020i
\(641\) 5.36747e6 9.29673e6i 0.515970 0.893686i −0.483858 0.875146i \(-0.660765\pi\)
0.999828 0.0185398i \(-0.00590175\pi\)
\(642\) −3.57332e6 6.18918e6i −0.342164 0.592646i
\(643\) 1.62815e7 1.55298 0.776492 0.630127i \(-0.216997\pi\)
0.776492 + 0.630127i \(0.216997\pi\)
\(644\) 0 0
\(645\) 1.49479e6 0.141476
\(646\) −554400. 960249.i −0.0522687 0.0905321i
\(647\) 3.95974e6 6.85846e6i 0.371882 0.644119i −0.617973 0.786199i \(-0.712046\pi\)
0.989855 + 0.142080i \(0.0453792\pi\)
\(648\) 209952. 363648.i 0.0196419 0.0340207i
\(649\) 7.61180e6 + 1.31840e7i 0.709374 + 1.22867i
\(650\) 3.25227e6 0.301928
\(651\) 0 0
\(652\) −5.61984e6 −0.517732
\(653\) −672391. 1.16462e6i −0.0617076 0.106881i 0.833521 0.552488i \(-0.186321\pi\)
−0.895229 + 0.445607i \(0.852988\pi\)
\(654\) 2.38568e6 4.13213e6i 0.218106 0.377771i
\(655\) 1.81100e6 3.13675e6i 0.164936 0.285678i
\(656\) 274176. + 474887.i 0.0248754 + 0.0430854i
\(657\) 1.66050e6 0.150081
\(658\) 0 0
\(659\) 2.02235e7 1.81402 0.907010 0.421109i \(-0.138359\pi\)
0.907010 + 0.421109i \(0.138359\pi\)
\(660\) 670176. + 1.16078e6i 0.0598865 + 0.103726i
\(661\) −3.58901e6 + 6.21635e6i −0.319500 + 0.553391i −0.980384 0.197098i \(-0.936848\pi\)
0.660884 + 0.750488i \(0.270182\pi\)
\(662\) −2.20081e6 + 3.81191e6i −0.195181 + 0.338063i
\(663\) −188244. 326048.i −0.0166317 0.0288070i
\(664\) 6.57946e6 0.579122
\(665\) 0 0
\(666\) 946728. 0.0827065
\(667\) −3.86631e6 6.69665e6i −0.336498 0.582831i
\(668\) −5.00902e6 + 8.67588e6i −0.434322 + 0.752268i
\(669\) −4.04089e6 + 6.99903e6i −0.349070 + 0.604606i
\(670\) −75296.0 130416.i −0.00648015 0.0112239i
\(671\) 1.60527e7 1.37639
\(672\) 0 0
\(673\) 9.61217e6 0.818057 0.409029 0.912522i \(-0.365868\pi\)
0.409029 + 0.912522i \(0.365868\pi\)
\(674\) 3.47024e6 + 6.01063e6i 0.294245 + 0.509647i
\(675\) 892660. 1.54613e6i 0.0754096 0.130613i
\(676\) 2.08855e6 3.61748e6i 0.175784 0.304466i
\(677\) 4.83408e6 + 8.37287e6i 0.405361 + 0.702106i 0.994363 0.106025i \(-0.0338125\pi\)
−0.589002 + 0.808131i \(0.700479\pi\)
\(678\) −1.69294e6 −0.141438
\(679\) 0 0
\(680\) −209664. −0.0173881
\(681\) 2.10425e6 + 3.64467e6i 0.173872 + 0.301156i
\(682\) −4.05829e6 + 7.02916e6i −0.334104 + 0.578685i
\(683\) −194927. + 337623.i −0.0159890 + 0.0276937i −0.873909 0.486089i \(-0.838423\pi\)
0.857920 + 0.513783i \(0.171756\pi\)
\(684\) 1.42560e6 + 2.46921e6i 0.116508 + 0.201799i
\(685\) −8.65389e6 −0.704669
\(686\) 0 0
\(687\) −4.01526e6 −0.324580
\(688\) −817664. 1.41624e6i −0.0658573 0.114068i
\(689\) 1.77653e6 3.07704e6i 0.142569 0.246937i
\(690\) −1.00246e6 + 1.73630e6i −0.0801572 + 0.138836i
\(691\) −1.86993e6 3.23881e6i −0.148980 0.258042i 0.781870 0.623441i \(-0.214266\pi\)
−0.930851 + 0.365399i \(0.880932\pi\)
\(692\) −2.95722e6 −0.234757
\(693\) 0 0
\(694\) −6.36578e6 −0.501711
\(695\) −111228. 192653.i −0.00873478 0.0151291i
\(696\) −1.03968e6 + 1.80078e6i −0.0813536 + 0.140909i
\(697\) 134946. 233733.i 0.0105215 0.0182238i
\(698\) −4.66752e6 8.08438e6i −0.362617 0.628070i
\(699\) 6.31337e6 0.488730
\(700\) 0 0
\(701\) 2.49886e7 1.92064 0.960322 0.278893i \(-0.0899674\pi\)
0.960322 + 0.278893i \(0.0899674\pi\)
\(702\) 484056. + 838410.i 0.0370726 + 0.0642116i
\(703\) −3.21420e6 + 5.56716e6i −0.245293 + 0.424859i
\(704\) 733184. 1.26991e6i 0.0557547 0.0965699i
\(705\) 762840. + 1.32128e6i 0.0578044 + 0.100120i
\(706\) −1.12433e7 −0.848947
\(707\) 0 0
\(708\) 6.12346e6 0.459107
\(709\) 4.91792e6 + 8.51809e6i 0.367423 + 0.636394i 0.989162 0.146830i \(-0.0469070\pi\)
−0.621739 + 0.783224i \(0.713574\pi\)
\(710\) −228904. + 396473.i −0.0170415 + 0.0295167i
\(711\) −2.64206e6 + 4.57618e6i −0.196006 + 0.339492i
\(712\) −4.09619e6 7.09481e6i −0.302817 0.524495i
\(713\) −1.21409e7 −0.894387
\(714\) 0 0
\(715\) −3.09026e6 −0.226063
\(716\) 2.86018e6 + 4.95397e6i 0.208502 + 0.361136i
\(717\) 1.72889e6 2.99453e6i 0.125594 0.217536i
\(718\) 1.87862e6 3.25387e6i 0.135997 0.235553i
\(719\) 1.06812e7 + 1.85004e7i 0.770546 + 1.33463i 0.937264 + 0.348621i \(0.113350\pi\)
−0.166717 + 0.986005i \(0.553317\pi\)
\(720\) 539136. 0.0387585
\(721\) 0 0
\(722\) −9.45560e6 −0.675066
\(723\) 4.29201e6 + 7.43398e6i 0.305362 + 0.528902i
\(724\) −5.57206e6 + 9.65110e6i −0.395066 + 0.684274i
\(725\) −4.42044e6 + 7.65644e6i −0.312335 + 0.540980i
\(726\) −591966. 1.02532e6i −0.0416826 0.0721964i
\(727\) 6.53025e6 0.458241 0.229120 0.973398i \(-0.426415\pi\)
0.229120 + 0.973398i \(0.426415\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.06600e6 + 1.84637e6i 0.0740372 + 0.128236i
\(731\) −402444. + 697053.i −0.0278556 + 0.0482473i
\(732\) 3.22848e6 5.59189e6i 0.222700 0.385728i
\(733\) 8.32855e6 + 1.44255e7i 0.572545 + 0.991677i 0.996304 + 0.0859016i \(0.0273771\pi\)
−0.423759 + 0.905775i \(0.639290\pi\)
\(734\) −1.23940e7 −0.849128
\(735\) 0 0
\(736\) 2.19341e6 0.149254
\(737\) −259192. 448934.i −0.0175773 0.0304448i
\(738\) −347004. + 601029.i −0.0234527 + 0.0406213i
\(739\) 1.19768e7 2.07444e7i 0.806733 1.39730i −0.108383 0.994109i \(-0.534567\pi\)
0.915115 0.403192i \(-0.132099\pi\)
\(740\) 607776. + 1.05270e6i 0.0408004 + 0.0706683i
\(741\) −6.57360e6 −0.439803
\(742\) 0 0
\(743\) −7.48982e6 −0.497736 −0.248868 0.968537i \(-0.580059\pi\)
−0.248868 + 0.968537i \(0.580059\pi\)
\(744\) 1.63238e6 + 2.82737e6i 0.108116 + 0.187262i
\(745\) −904202. + 1.56612e6i −0.0596863 + 0.103380i
\(746\) −456532. + 790737.i −0.0300348 + 0.0520217i
\(747\) 4.16356e6 + 7.21150e6i 0.273001 + 0.472851i
\(748\) −721728. −0.0471650
\(749\) 0 0
\(750\) 5.21726e6 0.338680
\(751\) 2.35922e6 + 4.08630e6i 0.152640 + 0.264381i 0.932197 0.361950i \(-0.117889\pi\)
−0.779557 + 0.626331i \(0.784556\pi\)
\(752\) 834560. 1.44550e6i 0.0538162 0.0932124i
\(753\) −2.56293e6 + 4.43912e6i −0.164721 + 0.285305i
\(754\) −2.39704e6 4.15180e6i −0.153549 0.265955i
\(755\) 1.37602e7 0.878534
\(756\) 0 0
\(757\) −2.67397e7 −1.69597 −0.847983 0.530024i \(-0.822183\pi\)
−0.847983 + 0.530024i \(0.822183\pi\)
\(758\) −2.07338e6 3.59121e6i −0.131071 0.227022i
\(759\) −3.45076e6 + 5.97690e6i −0.217426 + 0.376592i
\(760\) −1.83040e6 + 3.17035e6i −0.114951 + 0.199101i
\(761\) 7.21654e6 + 1.24994e7i 0.451718 + 0.782398i 0.998493 0.0548815i \(-0.0174781\pi\)
−0.546775 + 0.837279i \(0.684145\pi\)
\(762\) −5.95973e6 −0.371825
\(763\) 0 0
\(764\) 1.09872e6 0.0681010
\(765\) −132678. 229805.i −0.00819682 0.0141973i
\(766\) −423552. + 733614.i −0.0260816 + 0.0451747i
\(767\) −7.05898e6 + 1.22265e7i −0.433265 + 0.750437i
\(768\) −294912. 510803.i −0.0180422 0.0312500i
\(769\) −8.55510e6 −0.521686