Properties

Label 294.6.e.c.67.1
Level $294$
Weight $6$
Character 294.67
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.6.e.c.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(38.0000 + 65.8179i) q^{5} +36.0000 q^{6} +64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(-2.00000 - 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(38.0000 + 65.8179i) q^{5} +36.0000 q^{6} +64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(152.000 - 263.272i) q^{10} +(-325.000 + 562.917i) q^{11} +(-72.0000 - 124.708i) q^{12} -762.000 q^{13} -684.000 q^{15} +(-128.000 - 221.703i) q^{16} +(-278.000 + 481.510i) q^{17} +(-162.000 + 280.592i) q^{18} +(-1226.00 - 2123.49i) q^{19} -1216.00 q^{20} +2600.00 q^{22} +(1475.00 + 2554.77i) q^{23} +(-288.000 + 498.831i) q^{24} +(-1325.50 + 2295.83i) q^{25} +(1524.00 + 2639.65i) q^{26} +729.000 q^{27} -674.000 q^{29} +(1368.00 + 2369.45i) q^{30} +(-1512.00 + 2618.86i) q^{31} +(-512.000 + 886.810i) q^{32} +(-2925.00 - 5066.25i) q^{33} +2224.00 q^{34} +1296.00 q^{36} +(-3865.00 - 6694.38i) q^{37} +(-4904.00 + 8493.98i) q^{38} +(3429.00 - 5939.20i) q^{39} +(2432.00 + 4212.35i) q^{40} +17016.0 q^{41} +21836.0 q^{43} +(-5200.00 - 9006.66i) q^{44} +(3078.00 - 5331.25i) q^{45} +(5900.00 - 10219.1i) q^{46} +(-11970.0 - 20732.6i) q^{47} +2304.00 q^{48} +10604.0 q^{50} +(-2502.00 - 4333.59i) q^{51} +(6096.00 - 10558.6i) q^{52} +(-7797.00 + 13504.8i) q^{53} +(-1458.00 - 2525.33i) q^{54} -49400.0 q^{55} +22068.0 q^{57} +(1348.00 + 2334.80i) q^{58} +(2804.00 - 4856.67i) q^{59} +(5472.00 - 9477.78i) q^{60} +(75.0000 + 129.904i) q^{61} +12096.0 q^{62} +4096.00 q^{64} +(-28956.0 - 50153.3i) q^{65} +(-11700.0 + 20265.0i) q^{66} +(21892.0 - 37918.1i) q^{67} +(-4448.00 - 7704.16i) q^{68} -26550.0 q^{69} -39178.0 q^{71} +(-2592.00 - 4489.48i) q^{72} +(-11785.0 + 20412.2i) q^{73} +(-15460.0 + 26777.5i) q^{74} +(-11929.5 - 20662.5i) q^{75} +39232.0 q^{76} -27432.0 q^{78} +(8946.00 + 15494.9i) q^{79} +(9728.00 - 16849.4i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(-34032.0 - 58945.2i) q^{82} -38972.0 q^{83} -42256.0 q^{85} +(-43672.0 - 75642.1i) q^{86} +(3033.00 - 5253.31i) q^{87} +(-20800.0 + 36026.7i) q^{88} +(3012.00 + 5216.94i) q^{89} -24624.0 q^{90} -47200.0 q^{92} +(-13608.0 - 23569.7i) q^{93} +(-47880.0 + 82930.6i) q^{94} +(93176.0 - 161386. i) q^{95} +(-4608.00 - 7981.29i) q^{96} -108430. q^{97} +52650.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 9 q^{3} - 16 q^{4} + 76 q^{5} + 72 q^{6} + 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} - 9 q^{3} - 16 q^{4} + 76 q^{5} + 72 q^{6} + 128 q^{8} - 81 q^{9} + 304 q^{10} - 650 q^{11} - 144 q^{12} - 1524 q^{13} - 1368 q^{15} - 256 q^{16} - 556 q^{17} - 324 q^{18} - 2452 q^{19} - 2432 q^{20} + 5200 q^{22} + 2950 q^{23} - 576 q^{24} - 2651 q^{25} + 3048 q^{26} + 1458 q^{27} - 1348 q^{29} + 2736 q^{30} - 3024 q^{31} - 1024 q^{32} - 5850 q^{33} + 4448 q^{34} + 2592 q^{36} - 7730 q^{37} - 9808 q^{38} + 6858 q^{39} + 4864 q^{40} + 34032 q^{41} + 43672 q^{43} - 10400 q^{44} + 6156 q^{45} + 11800 q^{46} - 23940 q^{47} + 4608 q^{48} + 21208 q^{50} - 5004 q^{51} + 12192 q^{52} - 15594 q^{53} - 2916 q^{54} - 98800 q^{55} + 44136 q^{57} + 2696 q^{58} + 5608 q^{59} + 10944 q^{60} + 150 q^{61} + 24192 q^{62} + 8192 q^{64} - 57912 q^{65} - 23400 q^{66} + 43784 q^{67} - 8896 q^{68} - 53100 q^{69} - 78356 q^{71} - 5184 q^{72} - 23570 q^{73} - 30920 q^{74} - 23859 q^{75} + 78464 q^{76} - 54864 q^{78} + 17892 q^{79} + 19456 q^{80} - 6561 q^{81} - 68064 q^{82} - 77944 q^{83} - 84512 q^{85} - 87344 q^{86} + 6066 q^{87} - 41600 q^{88} + 6024 q^{89} - 49248 q^{90} - 94400 q^{92} - 27216 q^{93} - 95760 q^{94} + 186352 q^{95} - 9216 q^{96} - 216860 q^{97} + 105300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) 38.0000 + 65.8179i 0.679765 + 1.17739i 0.975052 + 0.221978i \(0.0712514\pi\)
−0.295287 + 0.955409i \(0.595415\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 152.000 263.272i 0.480666 0.832538i
\(11\) −325.000 + 562.917i −0.809845 + 1.40269i 0.103127 + 0.994668i \(0.467115\pi\)
−0.912971 + 0.408024i \(0.866218\pi\)
\(12\) −72.0000 124.708i −0.144338 0.250000i
\(13\) −762.000 −1.25054 −0.625269 0.780410i \(-0.715011\pi\)
−0.625269 + 0.780410i \(0.715011\pi\)
\(14\) 0 0
\(15\) −684.000 −0.784925
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −278.000 + 481.510i −0.233304 + 0.404095i −0.958778 0.284155i \(-0.908287\pi\)
0.725474 + 0.688249i \(0.241620\pi\)
\(18\) −162.000 + 280.592i −0.117851 + 0.204124i
\(19\) −1226.00 2123.49i −0.779124 1.34948i −0.932447 0.361306i \(-0.882331\pi\)
0.153324 0.988176i \(-0.451002\pi\)
\(20\) −1216.00 −0.679765
\(21\) 0 0
\(22\) 2600.00 1.14529
\(23\) 1475.00 + 2554.77i 0.581397 + 1.00701i 0.995314 + 0.0966940i \(0.0308268\pi\)
−0.413918 + 0.910314i \(0.635840\pi\)
\(24\) −288.000 + 498.831i −0.102062 + 0.176777i
\(25\) −1325.50 + 2295.83i −0.424160 + 0.734667i
\(26\) 1524.00 + 2639.65i 0.442132 + 0.765794i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −674.000 −0.148821 −0.0744106 0.997228i \(-0.523708\pi\)
−0.0744106 + 0.997228i \(0.523708\pi\)
\(30\) 1368.00 + 2369.45i 0.277513 + 0.480666i
\(31\) −1512.00 + 2618.86i −0.282584 + 0.489450i −0.972020 0.234896i \(-0.924525\pi\)
0.689436 + 0.724346i \(0.257858\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) −2925.00 5066.25i −0.467564 0.809845i
\(34\) 2224.00 0.329942
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −3865.00 6694.38i −0.464136 0.803907i 0.535026 0.844835i \(-0.320302\pi\)
−0.999162 + 0.0409285i \(0.986968\pi\)
\(38\) −4904.00 + 8493.98i −0.550924 + 0.954228i
\(39\) 3429.00 5939.20i 0.360999 0.625269i
\(40\) 2432.00 + 4212.35i 0.240333 + 0.416269i
\(41\) 17016.0 1.58088 0.790438 0.612542i \(-0.209853\pi\)
0.790438 + 0.612542i \(0.209853\pi\)
\(42\) 0 0
\(43\) 21836.0 1.80095 0.900476 0.434907i \(-0.143219\pi\)
0.900476 + 0.434907i \(0.143219\pi\)
\(44\) −5200.00 9006.66i −0.404922 0.701346i
\(45\) 3078.00 5331.25i 0.226588 0.392462i
\(46\) 5900.00 10219.1i 0.411109 0.712062i
\(47\) −11970.0 20732.6i −0.790405 1.36902i −0.925717 0.378218i \(-0.876537\pi\)
0.135312 0.990803i \(-0.456796\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 10604.0 0.599853
\(51\) −2502.00 4333.59i −0.134698 0.233304i
\(52\) 6096.00 10558.6i 0.312634 0.541498i
\(53\) −7797.00 + 13504.8i −0.381275 + 0.660387i −0.991245 0.132037i \(-0.957848\pi\)
0.609970 + 0.792424i \(0.291181\pi\)
\(54\) −1458.00 2525.33i −0.0680414 0.117851i
\(55\) −49400.0 −2.20201
\(56\) 0 0
\(57\) 22068.0 0.899655
\(58\) 1348.00 + 2334.80i 0.0526163 + 0.0911340i
\(59\) 2804.00 4856.67i 0.104869 0.181639i −0.808816 0.588062i \(-0.799891\pi\)
0.913685 + 0.406424i \(0.133224\pi\)
\(60\) 5472.00 9477.78i 0.196231 0.339882i
\(61\) 75.0000 + 129.904i 0.00258069 + 0.00446989i 0.867313 0.497763i \(-0.165845\pi\)
−0.864732 + 0.502233i \(0.832512\pi\)
\(62\) 12096.0 0.399634
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −28956.0 50153.3i −0.850071 1.47237i
\(66\) −11700.0 + 20265.0i −0.330618 + 0.572647i
\(67\) 21892.0 37918.1i 0.595797 1.03195i −0.397637 0.917543i \(-0.630170\pi\)
0.993434 0.114408i \(-0.0364971\pi\)
\(68\) −4448.00 7704.16i −0.116652 0.202047i
\(69\) −26550.0 −0.671339
\(70\) 0 0
\(71\) −39178.0 −0.922351 −0.461176 0.887309i \(-0.652572\pi\)
−0.461176 + 0.887309i \(0.652572\pi\)
\(72\) −2592.00 4489.48i −0.0589256 0.102062i
\(73\) −11785.0 + 20412.2i −0.258835 + 0.448315i −0.965930 0.258803i \(-0.916672\pi\)
0.707095 + 0.707118i \(0.250005\pi\)
\(74\) −15460.0 + 26777.5i −0.328194 + 0.568448i
\(75\) −11929.5 20662.5i −0.244889 0.424160i
\(76\) 39232.0 0.779124
\(77\) 0 0
\(78\) −27432.0 −0.510530
\(79\) 8946.00 + 15494.9i 0.161273 + 0.279333i 0.935325 0.353789i \(-0.115107\pi\)
−0.774053 + 0.633121i \(0.781773\pi\)
\(80\) 9728.00 16849.4i 0.169941 0.294347i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) −34032.0 58945.2i −0.558924 0.968085i
\(83\) −38972.0 −0.620951 −0.310476 0.950581i \(-0.600488\pi\)
−0.310476 + 0.950581i \(0.600488\pi\)
\(84\) 0 0
\(85\) −42256.0 −0.634368
\(86\) −43672.0 75642.1i −0.636732 1.10285i
\(87\) 3033.00 5253.31i 0.0429610 0.0744106i
\(88\) −20800.0 + 36026.7i −0.286323 + 0.495926i
\(89\) 3012.00 + 5216.94i 0.0403070 + 0.0698137i 0.885475 0.464687i \(-0.153833\pi\)
−0.845168 + 0.534501i \(0.820500\pi\)
\(90\) −24624.0 −0.320444
\(91\) 0 0
\(92\) −47200.0 −0.581397
\(93\) −13608.0 23569.7i −0.163150 0.282584i
\(94\) −47880.0 + 82930.6i −0.558901 + 0.968044i
\(95\) 93176.0 161386.i 1.05924 1.83466i
\(96\) −4608.00 7981.29i −0.0510310 0.0883883i
\(97\) −108430. −1.17009 −0.585046 0.811000i \(-0.698924\pi\)
−0.585046 + 0.811000i \(0.698924\pi\)
\(98\) 0 0
\(99\) 52650.0 0.539896
\(100\) −21208.0 36733.3i −0.212080 0.367333i
\(101\) −35212.0 + 60989.0i −0.343469 + 0.594905i −0.985074 0.172129i \(-0.944935\pi\)
0.641606 + 0.767035i \(0.278269\pi\)
\(102\) −10008.0 + 17334.4i −0.0952460 + 0.164971i
\(103\) −15776.0 27324.8i −0.146522 0.253784i 0.783418 0.621496i \(-0.213475\pi\)
−0.929940 + 0.367712i \(0.880141\pi\)
\(104\) −48768.0 −0.442132
\(105\) 0 0
\(106\) 62376.0 0.539204
\(107\) −54141.0 93775.0i −0.457159 0.791822i 0.541651 0.840604i \(-0.317799\pi\)
−0.998809 + 0.0487817i \(0.984466\pi\)
\(108\) −5832.00 + 10101.3i −0.0481125 + 0.0833333i
\(109\) 36073.0 62480.3i 0.290814 0.503705i −0.683188 0.730242i \(-0.739407\pi\)
0.974003 + 0.226537i \(0.0727404\pi\)
\(110\) 98800.0 + 171127.i 0.778530 + 1.34845i
\(111\) 69570.0 0.535938
\(112\) 0 0
\(113\) 220906. 1.62746 0.813732 0.581240i \(-0.197432\pi\)
0.813732 + 0.581240i \(0.197432\pi\)
\(114\) −44136.0 76445.8i −0.318076 0.550924i
\(115\) −112100. + 194163.i −0.790426 + 1.36906i
\(116\) 5392.00 9339.22i 0.0372053 0.0644415i
\(117\) 30861.0 + 53452.8i 0.208423 + 0.360999i
\(118\) −22432.0 −0.148307
\(119\) 0 0
\(120\) −43776.0 −0.277513
\(121\) −130724. 226421.i −0.811696 1.40590i
\(122\) 300.000 519.615i 0.00182483 0.00316069i
\(123\) −76572.0 + 132627.i −0.456360 + 0.790438i
\(124\) −24192.0 41901.8i −0.141292 0.244725i
\(125\) 36024.0 0.206213
\(126\) 0 0
\(127\) −239652. −1.31847 −0.659237 0.751935i \(-0.729121\pi\)
−0.659237 + 0.751935i \(0.729121\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) −98262.0 + 170195.i −0.519890 + 0.900476i
\(130\) −115824. + 200613.i −0.601091 + 1.04112i
\(131\) −137086. 237440.i −0.697935 1.20886i −0.969181 0.246349i \(-0.920769\pi\)
0.271246 0.962510i \(-0.412564\pi\)
\(132\) 93600.0 0.467564
\(133\) 0 0
\(134\) −175136. −0.842584
\(135\) 27702.0 + 47981.3i 0.130821 + 0.226588i
\(136\) −17792.0 + 30816.6i −0.0824855 + 0.142869i
\(137\) 195577. 338749.i 0.890259 1.54197i 0.0506942 0.998714i \(-0.483857\pi\)
0.839565 0.543260i \(-0.182810\pi\)
\(138\) 53100.0 + 91971.9i 0.237354 + 0.411109i
\(139\) −339364. −1.48980 −0.744901 0.667175i \(-0.767503\pi\)
−0.744901 + 0.667175i \(0.767503\pi\)
\(140\) 0 0
\(141\) 215460. 0.912681
\(142\) 78356.0 + 135717.i 0.326100 + 0.564823i
\(143\) 247650. 428942.i 1.01274 1.75412i
\(144\) −10368.0 + 17957.9i −0.0416667 + 0.0721688i
\(145\) −25612.0 44361.3i −0.101163 0.175220i
\(146\) 94280.0 0.366047
\(147\) 0 0
\(148\) 123680. 0.464136
\(149\) 14667.0 + 25404.0i 0.0541222 + 0.0937424i 0.891817 0.452396i \(-0.149431\pi\)
−0.837695 + 0.546138i \(0.816097\pi\)
\(150\) −47718.0 + 82650.0i −0.173163 + 0.299926i
\(151\) −35804.0 + 62014.3i −0.127788 + 0.221335i −0.922819 0.385233i \(-0.874121\pi\)
0.795031 + 0.606568i \(0.207454\pi\)
\(152\) −78464.0 135904.i −0.275462 0.477114i
\(153\) 45036.0 0.155536
\(154\) 0 0
\(155\) −229824. −0.768362
\(156\) 54864.0 + 95027.2i 0.180499 + 0.312634i
\(157\) 148159. 256619.i 0.479710 0.830882i −0.520019 0.854155i \(-0.674075\pi\)
0.999729 + 0.0232723i \(0.00740848\pi\)
\(158\) 35784.0 61979.7i 0.114037 0.197518i
\(159\) −70173.0 121543.i −0.220129 0.381275i
\(160\) −77824.0 −0.240333
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 240200. + 416039.i 0.708115 + 1.22649i 0.965555 + 0.260197i \(0.0837877\pi\)
−0.257440 + 0.966294i \(0.582879\pi\)
\(164\) −136128. + 235781.i −0.395219 + 0.684539i
\(165\) 222300. 385035.i 0.635667 1.10101i
\(166\) 77944.0 + 135003.i 0.219539 + 0.380253i
\(167\) −160180. −0.444444 −0.222222 0.974996i \(-0.571331\pi\)
−0.222222 + 0.974996i \(0.571331\pi\)
\(168\) 0 0
\(169\) 209351. 0.563843
\(170\) 84512.0 + 146379.i 0.224283 + 0.388469i
\(171\) −99306.0 + 172003.i −0.259708 + 0.449827i
\(172\) −174688. + 302568.i −0.450238 + 0.779835i
\(173\) −4492.00 7780.37i −0.0114110 0.0197645i 0.860264 0.509850i \(-0.170299\pi\)
−0.871675 + 0.490085i \(0.836966\pi\)
\(174\) −24264.0 −0.0607560
\(175\) 0 0
\(176\) 166400. 0.404922
\(177\) 25236.0 + 43710.0i 0.0605463 + 0.104869i
\(178\) 12048.0 20867.7i 0.0285013 0.0493657i
\(179\) −91443.0 + 158384.i −0.213313 + 0.369469i −0.952749 0.303757i \(-0.901759\pi\)
0.739436 + 0.673227i \(0.235092\pi\)
\(180\) 49248.0 + 85300.0i 0.113294 + 0.196231i
\(181\) −138330. −0.313848 −0.156924 0.987611i \(-0.550158\pi\)
−0.156924 + 0.987611i \(0.550158\pi\)
\(182\) 0 0
\(183\) −1350.00 −0.00297993
\(184\) 94400.0 + 163506.i 0.205555 + 0.356031i
\(185\) 293740. 508773.i 0.631006 1.09294i
\(186\) −54432.0 + 94279.0i −0.115364 + 0.199817i
\(187\) −180700. 312982.i −0.377880 0.654508i
\(188\) 383040. 0.790405
\(189\) 0 0
\(190\) −745408. −1.49799
\(191\) −163611. 283383.i −0.324511 0.562069i 0.656902 0.753976i \(-0.271866\pi\)
−0.981413 + 0.191906i \(0.938533\pi\)
\(192\) −18432.0 + 31925.2i −0.0360844 + 0.0625000i
\(193\) −393451. + 681477.i −0.760322 + 1.31692i 0.182363 + 0.983231i \(0.441625\pi\)
−0.942685 + 0.333685i \(0.891708\pi\)
\(194\) 216860. + 375613.i 0.413690 + 0.716532i
\(195\) 521208. 0.981577
\(196\) 0 0
\(197\) 423098. 0.776740 0.388370 0.921504i \(-0.373038\pi\)
0.388370 + 0.921504i \(0.373038\pi\)
\(198\) −105300. 182385.i −0.190882 0.330618i
\(199\) 511960. 886741.i 0.916439 1.58732i 0.111657 0.993747i \(-0.464384\pi\)
0.804781 0.593571i \(-0.202283\pi\)
\(200\) −84832.0 + 146933.i −0.149963 + 0.259744i
\(201\) 197028. + 341263.i 0.343984 + 0.595797i
\(202\) 281696. 0.485738
\(203\) 0 0
\(204\) 80064.0 0.134698
\(205\) 646608. + 1.11996e6i 1.07462 + 1.86130i
\(206\) −63104.0 + 109299.i −0.103607 + 0.179452i
\(207\) 119475. 206937.i 0.193799 0.335669i
\(208\) 97536.0 + 168937.i 0.156317 + 0.270749i
\(209\) 1.59380e6 2.52388
\(210\) 0 0
\(211\) 461516. 0.713642 0.356821 0.934173i \(-0.383861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(212\) −124752. 216077.i −0.190637 0.330193i
\(213\) 176301. 305362.i 0.266260 0.461176i
\(214\) −216564. + 375100.i −0.323260 + 0.559903i
\(215\) 829768. + 1.43720e6i 1.22422 + 2.12042i
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) −288584. −0.411274
\(219\) −106065. 183710.i −0.149438 0.258835i
\(220\) 395200. 684506.i 0.550504 0.953500i
\(221\) 211836. 366911.i 0.291756 0.505335i
\(222\) −139140. 240998.i −0.189483 0.328194i
\(223\) −995048. −1.33993 −0.669965 0.742393i \(-0.733691\pi\)
−0.669965 + 0.742393i \(0.733691\pi\)
\(224\) 0 0
\(225\) 214731. 0.282773
\(226\) −441812. 765241.i −0.575395 0.996614i
\(227\) −47784.0 + 82764.3i −0.0615486 + 0.106605i −0.895158 0.445749i \(-0.852937\pi\)
0.833609 + 0.552355i \(0.186271\pi\)
\(228\) −176544. + 305783.i −0.224914 + 0.389562i
\(229\) −522043. 904205.i −0.657836 1.13941i −0.981175 0.193122i \(-0.938139\pi\)
0.323339 0.946283i \(-0.395195\pi\)
\(230\) 896800. 1.11783
\(231\) 0 0
\(232\) −43136.0 −0.0526163
\(233\) 584705. + 1.01274e6i 0.705581 + 1.22210i 0.966481 + 0.256737i \(0.0826473\pi\)
−0.260900 + 0.965366i \(0.584019\pi\)
\(234\) 123444. 213811.i 0.147377 0.255265i
\(235\) 909720. 1.57568e6i 1.07458 1.86122i
\(236\) 44864.0 + 77706.7i 0.0524346 + 0.0908194i
\(237\) −161028. −0.186222
\(238\) 0 0
\(239\) −27342.0 −0.0309625 −0.0154812 0.999880i \(-0.504928\pi\)
−0.0154812 + 0.999880i \(0.504928\pi\)
\(240\) 87552.0 + 151645.i 0.0981156 + 0.169941i
\(241\) −453857. + 786103.i −0.503357 + 0.871841i 0.496635 + 0.867959i \(0.334569\pi\)
−0.999992 + 0.00388111i \(0.998765\pi\)
\(242\) −522898. + 905686.i −0.573956 + 0.994121i
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) −2400.00 −0.00258069
\(245\) 0 0
\(246\) 612576. 0.645390
\(247\) 934212. + 1.61810e6i 0.974323 + 1.68758i
\(248\) −96768.0 + 167607.i −0.0999085 + 0.173047i
\(249\) 175374. 303757.i 0.179253 0.310476i
\(250\) −72048.0 124791.i −0.0729074 0.126279i
\(251\) −44088.0 −0.0441709 −0.0220854 0.999756i \(-0.507031\pi\)
−0.0220854 + 0.999756i \(0.507031\pi\)
\(252\) 0 0
\(253\) −1.91750e6 −1.88336
\(254\) 479304. + 830179.i 0.466151 + 0.807397i
\(255\) 190152. 329353.i 0.183126 0.317184i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −414600. 718108.i −0.391558 0.678199i 0.601097 0.799176i \(-0.294731\pi\)
−0.992655 + 0.120977i \(0.961397\pi\)
\(258\) 786096. 0.735235
\(259\) 0 0
\(260\) 926592. 0.850071
\(261\) 27297.0 + 47279.8i 0.0248035 + 0.0429610i
\(262\) −548344. + 949760.i −0.493514 + 0.854792i
\(263\) −659733. + 1.14269e6i −0.588137 + 1.01868i 0.406339 + 0.913722i \(0.366805\pi\)
−0.994476 + 0.104961i \(0.966528\pi\)
\(264\) −187200. 324240.i −0.165309 0.286323i
\(265\) −1.18514e6 −1.03671
\(266\) 0 0
\(267\) −54216.0 −0.0465425
\(268\) 350272. + 606689.i 0.297899 + 0.515975i
\(269\) −391894. + 678780.i −0.330208 + 0.571937i −0.982553 0.185985i \(-0.940452\pi\)
0.652344 + 0.757923i \(0.273786\pi\)
\(270\) 110808. 191925.i 0.0925043 0.160222i
\(271\) 477540. + 827124.i 0.394990 + 0.684143i 0.993100 0.117271i \(-0.0374146\pi\)
−0.598110 + 0.801414i \(0.704081\pi\)
\(272\) 142336. 0.116652
\(273\) 0 0
\(274\) −1.56462e6 −1.25902
\(275\) −861575. 1.49229e6i −0.687007 1.18993i
\(276\) 212400. 367888.i 0.167835 0.290698i
\(277\) −956365. + 1.65647e6i −0.748901 + 1.29713i 0.199449 + 0.979908i \(0.436085\pi\)
−0.948350 + 0.317226i \(0.897249\pi\)
\(278\) 678728. + 1.17559e6i 0.526725 + 0.912314i
\(279\) 244944. 0.188389
\(280\) 0 0
\(281\) −1.02620e6 −0.775295 −0.387648 0.921808i \(-0.626712\pi\)
−0.387648 + 0.921808i \(0.626712\pi\)
\(282\) −430920. 746375.i −0.322681 0.558901i
\(283\) 873338. 1.51267e6i 0.648211 1.12273i −0.335339 0.942097i \(-0.608851\pi\)
0.983550 0.180637i \(-0.0578158\pi\)
\(284\) 313424. 542866.i 0.230588 0.399390i
\(285\) 838584. + 1.45247e6i 0.611553 + 1.05924i
\(286\) −1.98120e6 −1.43223
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) 555360. + 961913.i 0.391138 + 0.677471i
\(290\) −102448. + 177445.i −0.0715333 + 0.123899i
\(291\) 487935. 845128.i 0.337777 0.585046i
\(292\) −188560. 326596.i −0.129417 0.224157i
\(293\) −2.23212e6 −1.51897 −0.759484 0.650526i \(-0.774548\pi\)
−0.759484 + 0.650526i \(0.774548\pi\)
\(294\) 0 0
\(295\) 426208. 0.285146
\(296\) −247360. 428440.i −0.164097 0.284224i
\(297\) −236925. + 410366.i −0.155855 + 0.269948i
\(298\) 58668.0 101616.i 0.0382702 0.0662859i
\(299\) −1.12395e6 1.94674e6i −0.727058 1.25930i
\(300\) 381744. 0.244889
\(301\) 0 0
\(302\) 286432. 0.180719
\(303\) −316908. 548901.i −0.198302 0.343469i
\(304\) −313856. + 543615.i −0.194781 + 0.337370i
\(305\) −5700.00 + 9872.69i −0.00350853 + 0.00607695i
\(306\) −90072.0 156009.i −0.0549903 0.0952460i
\(307\) −1.85324e6 −1.12224 −0.561119 0.827735i \(-0.689629\pi\)
−0.561119 + 0.827735i \(0.689629\pi\)
\(308\) 0 0
\(309\) 283968. 0.169189
\(310\) 459648. + 796134.i 0.271657 + 0.470524i
\(311\) −225478. + 390539.i −0.132191 + 0.228962i −0.924521 0.381131i \(-0.875535\pi\)
0.792330 + 0.610093i \(0.208868\pi\)
\(312\) 219456. 380109.i 0.127632 0.221066i
\(313\) 801317. + 1.38792e6i 0.462321 + 0.800763i 0.999076 0.0429747i \(-0.0136835\pi\)
−0.536755 + 0.843738i \(0.680350\pi\)
\(314\) −1.18527e6 −0.678413
\(315\) 0 0
\(316\) −286272. −0.161273
\(317\) 10431.0 + 18067.0i 0.00583012 + 0.0100981i 0.868926 0.494942i \(-0.164811\pi\)
−0.863096 + 0.505041i \(0.831478\pi\)
\(318\) −280692. + 486173.i −0.155655 + 0.269602i
\(319\) 219050. 379406.i 0.120522 0.208750i
\(320\) 155648. + 269590.i 0.0849706 + 0.147173i
\(321\) 974538. 0.527881
\(322\) 0 0
\(323\) 1.36331e6 0.727091
\(324\) −52488.0 90911.9i −0.0277778 0.0481125i
\(325\) 1.01003e6 1.74943e6i 0.530428 0.918728i
\(326\) 960800. 1.66415e6i 0.500713 0.867261i
\(327\) 324657. + 562322.i 0.167902 + 0.290814i
\(328\) 1.08902e6 0.558924
\(329\) 0 0
\(330\) −1.77840e6 −0.898969
\(331\) −1.03811e6 1.79805e6i −0.520801 0.902054i −0.999707 0.0241877i \(-0.992300\pi\)
0.478907 0.877866i \(-0.341033\pi\)
\(332\) 311776. 540012.i 0.155238 0.268880i
\(333\) −313065. + 542244.i −0.154712 + 0.267969i
\(334\) 320360. + 554880.i 0.157135 + 0.272165i
\(335\) 3.32758e6 1.62001
\(336\) 0 0
\(337\) 1.20508e6 0.578019 0.289009 0.957326i \(-0.406674\pi\)
0.289009 + 0.957326i \(0.406674\pi\)
\(338\) −418702. 725213.i −0.199349 0.345282i
\(339\) −994077. + 1.72179e6i −0.469808 + 0.813732i
\(340\) 338048. 585516.i 0.158592 0.274689i
\(341\) −982800. 1.70226e6i −0.457698 0.792757i
\(342\) 794448. 0.367282
\(343\) 0 0
\(344\) 1.39750e6 0.636732
\(345\) −1.00890e6 1.74747e6i −0.456352 0.790426i
\(346\) −17968.0 + 31121.5i −0.00806881 + 0.0139756i
\(347\) 438321. 759194.i 0.195420 0.338477i −0.751618 0.659598i \(-0.770726\pi\)
0.947038 + 0.321121i \(0.104060\pi\)
\(348\) 48528.0 + 84053.0i 0.0214805 + 0.0372053i
\(349\) 1.29593e6 0.569532 0.284766 0.958597i \(-0.408084\pi\)
0.284766 + 0.958597i \(0.408084\pi\)
\(350\) 0 0
\(351\) −555498. −0.240666
\(352\) −332800. 576427.i −0.143162 0.247963i
\(353\) −1.99520e6 + 3.45578e6i −0.852215 + 1.47608i 0.0269896 + 0.999636i \(0.491408\pi\)
−0.879205 + 0.476444i \(0.841925\pi\)
\(354\) 100944. 174840.i 0.0428127 0.0741537i
\(355\) −1.48876e6 2.57861e6i −0.626982 1.08596i
\(356\) −96384.0 −0.0403070
\(357\) 0 0
\(358\) 731544. 0.301671
\(359\) −2.03226e6 3.51998e6i −0.832229 1.44146i −0.896267 0.443516i \(-0.853731\pi\)
0.0640374 0.997947i \(-0.479602\pi\)
\(360\) 196992. 341200.i 0.0801110 0.138756i
\(361\) −1.76810e6 + 3.06244e6i −0.714068 + 1.23680i
\(362\) 276660. + 479189.i 0.110962 + 0.192192i
\(363\) 2.35304e6 0.937266
\(364\) 0 0
\(365\) −1.79132e6 −0.703787
\(366\) 2700.00 + 4676.54i 0.00105356 + 0.00182483i
\(367\) −836216. + 1.44837e6i −0.324081 + 0.561324i −0.981326 0.192352i \(-0.938388\pi\)
0.657245 + 0.753677i \(0.271722\pi\)
\(368\) 377600. 654022.i 0.145349 0.251752i
\(369\) −689148. 1.19364e6i −0.263479 0.456360i
\(370\) −2.34992e6 −0.892378
\(371\) 0 0
\(372\) 435456. 0.163150
\(373\) −1.58384e6 2.74330e6i −0.589441 1.02094i −0.994306 0.106565i \(-0.966015\pi\)
0.404865 0.914376i \(-0.367318\pi\)
\(374\) −722800. + 1.25193e6i −0.267202 + 0.462807i
\(375\) −162108. + 280779.i −0.0595287 + 0.103107i
\(376\) −766080. 1.32689e6i −0.279450 0.484022i
\(377\) 513588. 0.186106
\(378\) 0 0
\(379\) −4.20388e6 −1.50332 −0.751662 0.659548i \(-0.770748\pi\)
−0.751662 + 0.659548i \(0.770748\pi\)
\(380\) 1.49082e6 + 2.58217e6i 0.529621 + 0.917330i
\(381\) 1.07843e6 1.86790e6i 0.380611 0.659237i
\(382\) −654444. + 1.13353e6i −0.229464 + 0.397443i
\(383\) −171308. 296714.i −0.0596734 0.103357i 0.834645 0.550788i \(-0.185673\pi\)
−0.894319 + 0.447430i \(0.852339\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 3.14761e6 1.07526
\(387\) −884358. 1.53175e6i −0.300159 0.519890i
\(388\) 867440. 1.50245e6i 0.292523 0.506665i
\(389\) 1.91980e6 3.32519e6i 0.643252 1.11415i −0.341450 0.939900i \(-0.610918\pi\)
0.984702 0.174246i \(-0.0557487\pi\)
\(390\) −1.04242e6 1.80552e6i −0.347040 0.601091i
\(391\) −1.64020e6 −0.542569
\(392\) 0 0
\(393\) 2.46755e6 0.805906
\(394\) −846196. 1.46565e6i −0.274619 0.475654i
\(395\) −679896. + 1.17761e6i −0.219255 + 0.379761i
\(396\) −421200. + 729540.i −0.134974 + 0.233782i
\(397\) 1.71947e6 + 2.97821e6i 0.547543 + 0.948373i 0.998442 + 0.0557979i \(0.0177703\pi\)
−0.450899 + 0.892575i \(0.648896\pi\)
\(398\) −4.09568e6 −1.29604
\(399\) 0 0
\(400\) 678656. 0.212080
\(401\) 1.94710e6 + 3.37248e6i 0.604684 + 1.04734i 0.992101 + 0.125439i \(0.0400339\pi\)
−0.387417 + 0.921904i \(0.626633\pi\)
\(402\) 788112. 1.36505e6i 0.243233 0.421292i
\(403\) 1.15214e6 1.99557e6i 0.353382 0.612075i
\(404\) −563392. 975824.i −0.171734 0.297453i
\(405\) −498636. −0.151059
\(406\) 0 0
\(407\) 5.02450e6 1.50351
\(408\) −160128. 277350.i −0.0476230 0.0824855i
\(409\) −823397. + 1.42617e6i −0.243389 + 0.421562i −0.961677 0.274183i \(-0.911593\pi\)
0.718288 + 0.695745i \(0.244926\pi\)
\(410\) 2.58643e6 4.47983e6i 0.759874 1.31614i
\(411\) 1.76019e6 + 3.04874e6i 0.513991 + 0.890259i
\(412\) 504832. 0.146522
\(413\) 0 0
\(414\) −955800. −0.274073
\(415\) −1.48094e6 2.56506e6i −0.422101 0.731100i
\(416\) 390144. 675749.i 0.110533 0.191449i
\(417\) 1.52714e6 2.64508e6i 0.430069 0.744901i
\(418\) −3.18760e6 5.52109e6i −0.892325 1.54555i
\(419\) 1.67659e6 0.466544 0.233272 0.972412i \(-0.425057\pi\)
0.233272 + 0.972412i \(0.425057\pi\)
\(420\) 0 0
\(421\) −566742. −0.155840 −0.0779202 0.996960i \(-0.524828\pi\)
−0.0779202 + 0.996960i \(0.524828\pi\)
\(422\) −923032. 1.59874e6i −0.252311 0.437015i
\(423\) −969570. + 1.67934e6i −0.263468 + 0.456340i
\(424\) −499008. + 864307.i −0.134801 + 0.233482i
\(425\) −736978. 1.27648e6i −0.197917 0.342802i
\(426\) −1.41041e6 −0.376548
\(427\) 0 0
\(428\) 1.73251e6 0.457159
\(429\) 2.22885e6 + 3.86048e6i 0.584706 + 1.01274i
\(430\) 3.31907e6 5.74880e6i 0.865656 1.49936i
\(431\) −3.34234e6 + 5.78910e6i −0.866677 + 1.50113i −0.00130487 + 0.999999i \(0.500415\pi\)
−0.865372 + 0.501130i \(0.832918\pi\)
\(432\) −93312.0 161621.i −0.0240563 0.0416667i
\(433\) −6.91337e6 −1.77203 −0.886013 0.463661i \(-0.846536\pi\)
−0.886013 + 0.463661i \(0.846536\pi\)
\(434\) 0 0
\(435\) 461016. 0.116813
\(436\) 577168. + 999684.i 0.145407 + 0.251853i
\(437\) 3.61670e6 6.26431e6i 0.905960 1.56917i
\(438\) −424260. + 734840.i −0.105669 + 0.183024i
\(439\) −2.28140e6 3.95151e6i −0.564990 0.978592i −0.997051 0.0767470i \(-0.975547\pi\)
0.432060 0.901845i \(-0.357787\pi\)
\(440\) −3.16160e6 −0.778530
\(441\) 0 0
\(442\) −1.69469e6 −0.412605
\(443\) −2.29880e6 3.98164e6i −0.556534 0.963945i −0.997782 0.0665601i \(-0.978798\pi\)
0.441248 0.897385i \(-0.354536\pi\)
\(444\) −556560. + 963990.i −0.133985 + 0.232068i
\(445\) −228912. + 396487.i −0.0547985 + 0.0949138i
\(446\) 1.99010e6 + 3.44695e6i 0.473737 + 0.820536i
\(447\) −264006. −0.0624950
\(448\) 0 0
\(449\) 1.70658e6 0.399494 0.199747 0.979848i \(-0.435988\pi\)
0.199747 + 0.979848i \(0.435988\pi\)
\(450\) −429462. 743850.i −0.0999755 0.173163i
\(451\) −5.53020e6 + 9.57859e6i −1.28026 + 2.21748i
\(452\) −1.76725e6 + 3.06096e6i −0.406866 + 0.704713i
\(453\) −322236. 558129.i −0.0737783 0.127788i
\(454\) 382272. 0.0870428
\(455\) 0 0
\(456\) 1.41235e6 0.318076
\(457\) 3.46958e6 + 6.00949e6i 0.777117 + 1.34601i 0.933597 + 0.358325i \(0.116652\pi\)
−0.156480 + 0.987681i \(0.550015\pi\)
\(458\) −2.08817e6 + 3.61682e6i −0.465160 + 0.805681i
\(459\) −202662. + 351021.i −0.0448994 + 0.0777681i
\(460\) −1.79360e6 3.10661e6i −0.395213 0.684529i
\(461\) 2.61805e6 0.573753 0.286877 0.957968i \(-0.407383\pi\)
0.286877 + 0.957968i \(0.407383\pi\)
\(462\) 0 0
\(463\) 7.13602e6 1.54705 0.773524 0.633767i \(-0.218492\pi\)
0.773524 + 0.633767i \(0.218492\pi\)
\(464\) 86272.0 + 149427.i 0.0186027 + 0.0322207i
\(465\) 1.03421e6 1.79130e6i 0.221807 0.384181i
\(466\) 2.33882e6 4.05096e6i 0.498921 0.864157i
\(467\) −1.08699e6 1.88272e6i −0.230639 0.399478i 0.727357 0.686259i \(-0.240748\pi\)
−0.957996 + 0.286781i \(0.907415\pi\)
\(468\) −987552. −0.208423
\(469\) 0 0
\(470\) −7.27776e6 −1.51968
\(471\) 1.33343e6 + 2.30957e6i 0.276961 + 0.479710i
\(472\) 179456. 310827.i 0.0370769 0.0642190i
\(473\) −7.09670e6 + 1.22918e7i −1.45849 + 2.52618i
\(474\) 322056. + 557817.i 0.0658394 + 0.114037i
\(475\) 6.50025e6 1.32189
\(476\) 0 0
\(477\) 1.26311e6 0.254183
\(478\) 54684.0 + 94715.5i 0.0109469 + 0.0189606i
\(479\) −2.31647e6 + 4.01224e6i −0.461305 + 0.799003i −0.999026 0.0441193i \(-0.985952\pi\)
0.537722 + 0.843122i \(0.319285\pi\)
\(480\) 350208. 606578.i 0.0693782 0.120167i
\(481\) 2.94513e6 + 5.10111e6i 0.580419 + 1.00532i
\(482\) 3.63086e6 0.711855
\(483\) 0 0
\(484\) 4.18318e6 0.811696
\(485\) −4.12034e6 7.13664e6i −0.795387 1.37765i
\(486\) −118098. + 204552.i −0.0226805 + 0.0392837i
\(487\) 2.28322e6 3.95466e6i 0.436241 0.755591i −0.561155 0.827710i \(-0.689643\pi\)
0.997396 + 0.0721195i \(0.0229763\pi\)
\(488\) 4800.00 + 8313.84i 0.000912413 + 0.00158035i
\(489\) −4.32360e6 −0.817661
\(490\) 0 0
\(491\) −5.31429e6 −0.994813 −0.497407 0.867518i \(-0.665714\pi\)
−0.497407 + 0.867518i \(0.665714\pi\)
\(492\) −1.22515e6 2.12203e6i −0.228180 0.395219i
\(493\) 187372. 324538.i 0.0347206 0.0601379i
\(494\) 3.73685e6 6.47241e6i 0.688951 1.19330i
\(495\) 2.00070e6 + 3.46531e6i 0.367002 + 0.635667i
\(496\) 774144. 0.141292
\(497\) 0 0
\(498\) −1.40299e6 −0.253502
\(499\) 1.23157e6 + 2.13314e6i 0.221415 + 0.383503i 0.955238 0.295838i \(-0.0955990\pi\)
−0.733823 + 0.679341i \(0.762266\pi\)
\(500\) −288192. + 499163.i −0.0515534 + 0.0892930i
\(501\) 720810. 1.24848e6i 0.128300 0.222222i
\(502\) 88176.0 + 152725.i 0.0156168 + 0.0270490i
\(503\) −2.79924e6 −0.493310 −0.246655 0.969103i \(-0.579331\pi\)
−0.246655 + 0.969103i \(0.579331\pi\)
\(504\) 0 0
\(505\) −5.35222e6 −0.933912
\(506\) 3.83500e6 + 6.64241e6i 0.665869 + 1.15332i
\(507\) −942079. + 1.63173e6i −0.162767 + 0.281922i
\(508\) 1.91722e6 3.32072e6i 0.329619 0.570916i
\(509\) 999570. + 1.73131e6i 0.171009 + 0.296196i 0.938773 0.344537i \(-0.111964\pi\)
−0.767764 + 0.640733i \(0.778631\pi\)
\(510\) −1.52122e6 −0.258980
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −893754. 1.54803e6i −0.149942 0.259708i
\(514\) −1.65840e6 + 2.87243e6i −0.276874 + 0.479559i
\(515\) 1.19898e6 2.07669e6i 0.199201 0.345027i
\(516\) −1.57219e6 2.72312e6i −0.259945 0.450238i
\(517\) 1.55610e7 2.56042
\(518\) 0 0
\(519\) 80856.0 0.0131763
\(520\) −1.85318e6 3.20981e6i −0.300545 0.520560i
\(521\) 1.76080e6 3.04980e6i 0.284195 0.492240i −0.688219 0.725503i \(-0.741607\pi\)
0.972414 + 0.233263i \(0.0749404\pi\)
\(522\) 109188. 189119.i 0.0175388 0.0303780i
\(523\) 1.30343e6 + 2.25760e6i 0.208369 + 0.360905i 0.951201 0.308573i \(-0.0998513\pi\)
−0.742832 + 0.669478i \(0.766518\pi\)
\(524\) 4.38675e6 0.697935
\(525\) 0 0
\(526\) 5.27786e6 0.831752
\(527\) −840672. 1.45609e6i −0.131856 0.228381i
\(528\) −748800. + 1.29696e6i −0.116891 + 0.202461i
\(529\) −1.13308e6 + 1.96255e6i −0.176044 + 0.304917i
\(530\) 2.37029e6 + 4.10546e6i 0.366532 + 0.634851i
\(531\) −454248. −0.0699128
\(532\) 0 0
\(533\) −1.29662e7 −1.97694
\(534\) 108432. + 187810.i 0.0164552 + 0.0285013i
\(535\) 4.11472e6 7.12690e6i 0.621520 1.07650i
\(536\) 1.40109e6 2.42676e6i 0.210646 0.364850i
\(537\) −822987. 1.42546e6i −0.123156 0.213313i
\(538\) 3.13515e6 0.466985
\(539\) 0 0
\(540\) −886464. −0.130821
\(541\) 687207. + 1.19028e6i 0.100947 + 0.174846i 0.912075 0.410023i \(-0.134479\pi\)
−0.811128 + 0.584869i \(0.801146\pi\)
\(542\) 1.91016e6 3.30849e6i 0.279300 0.483762i
\(543\) 622485. 1.07818e6i 0.0906002 0.156924i
\(544\) −284672. 493066.i −0.0412427 0.0714345i
\(545\) 5.48310e6 0.790742
\(546\) 0 0
\(547\) −8.78398e6 −1.25523 −0.627614 0.778524i \(-0.715968\pi\)
−0.627614 + 0.778524i \(0.715968\pi\)
\(548\) 3.12923e6 + 5.41999e6i 0.445129 + 0.770987i
\(549\) 6075.00 10522.2i 0.000860232 0.00148996i
\(550\) −3.44630e6 + 5.96917e6i −0.485788 + 0.841409i
\(551\) 826324. + 1.43124e6i 0.115950 + 0.200832i
\(552\) −1.69920e6 −0.237354
\(553\) 0 0
\(554\) 7.65092e6 1.05911
\(555\) 2.64366e6 + 4.57895e6i 0.364312 + 0.631006i
\(556\) 2.71491e6 4.70237e6i 0.372451 0.645104i
\(557\) −3.14631e6 + 5.44957e6i −0.429698 + 0.744259i −0.996846 0.0793569i \(-0.974713\pi\)
0.567148 + 0.823616i \(0.308047\pi\)
\(558\) −489888. 848511.i −0.0666057 0.115364i
\(559\) −1.66390e7 −2.25216
\(560\) 0 0
\(561\) 3.25260e6 0.436338
\(562\) 2.05240e6 + 3.55487e6i 0.274108 + 0.474769i
\(563\) 2.43291e6 4.21392e6i 0.323485 0.560293i −0.657719 0.753263i \(-0.728479\pi\)
0.981205 + 0.192970i \(0.0618120\pi\)
\(564\) −1.72368e6 + 2.98550e6i −0.228170 + 0.395202i
\(565\) 8.39443e6 + 1.45396e7i 1.10629 + 1.91615i
\(566\) −6.98670e6 −0.916709
\(567\) 0 0
\(568\) −2.50739e6 −0.326100
\(569\) 2.23191e6 + 3.86579e6i 0.288999 + 0.500561i 0.973571 0.228384i \(-0.0733442\pi\)
−0.684572 + 0.728945i \(0.740011\pi\)
\(570\) 3.35434e6 5.80988e6i 0.432434 0.748997i
\(571\) −4.08527e6 + 7.07589e6i −0.524361 + 0.908220i 0.475237 + 0.879858i \(0.342362\pi\)
−0.999598 + 0.0283618i \(0.990971\pi\)
\(572\) 3.96240e6 + 6.86308e6i 0.506370 + 0.877059i
\(573\) 2.94500e6 0.374713
\(574\) 0 0
\(575\) −7.82045e6 −0.986421
\(576\) −165888. 287326.i −0.0208333 0.0360844i
\(577\) −2.75172e6 + 4.76611e6i −0.344084 + 0.595970i −0.985187 0.171484i \(-0.945144\pi\)
0.641103 + 0.767455i \(0.278477\pi\)
\(578\) 2.22144e6 3.84765e6i 0.276577 0.479045i
\(579\) −3.54106e6 6.13329e6i −0.438972 0.760322i
\(580\) 819584. 0.101163
\(581\) 0 0
\(582\) −3.90348e6 −0.477688
\(583\) −5.06805e6 8.77812e6i −0.617546 1.06962i
\(584\) −754240. + 1.30638e6i −0.0915119 + 0.158503i
\(585\) −2.34544e6 + 4.06241e6i −0.283357 + 0.490789i
\(586\) 4.46424e6 + 7.73229e6i 0.537036 + 0.930174i
\(587\) −8.14251e6 −0.975356 −0.487678 0.873024i \(-0.662156\pi\)
−0.487678 + 0.873024i \(0.662156\pi\)
\(588\) 0 0
\(589\) 7.41485e6 0.880672
\(590\) −852416. 1.47643e6i −0.100814 0.174615i
\(591\) −1.90394e6 + 3.29772e6i −0.224225 + 0.388370i
\(592\) −989440. + 1.71376e6i −0.116034 + 0.200977i
\(593\) −1.36568e6 2.36542e6i −0.159482 0.276231i 0.775200 0.631716i \(-0.217649\pi\)
−0.934682 + 0.355485i \(0.884316\pi\)
\(594\) 1.89540e6 0.220412
\(595\) 0 0
\(596\) −469344. −0.0541222
\(597\) 4.60764e6 + 7.98067e6i 0.529106 + 0.916439i
\(598\) −4.49580e6 + 7.78695e6i −0.514108 + 0.890460i
\(599\) −618663. + 1.07156e6i −0.0704510 + 0.122025i −0.899099 0.437745i \(-0.855777\pi\)
0.828648 + 0.559770i \(0.189111\pi\)
\(600\) −763488. 1.32240e6i −0.0865813 0.149963i
\(601\) 1.59756e7 1.80414 0.902071 0.431587i \(-0.142046\pi\)
0.902071 + 0.431587i \(0.142046\pi\)
\(602\) 0 0
\(603\) −3.54650e6 −0.397198
\(604\) −572864. 992230.i −0.0638939 0.110667i
\(605\) 9.93506e6 1.72080e7i 1.10352 1.91136i
\(606\) −1.26763e6 + 2.19560e6i −0.140221 + 0.242869i
\(607\) −941376. 1.63051e6i −0.103703 0.179619i 0.809505 0.587114i \(-0.199736\pi\)
−0.913208 + 0.407495i \(0.866402\pi\)
\(608\) 2.51085e6 0.275462
\(609\) 0 0
\(610\) 45600.0 0.00496181
\(611\) 9.12114e6 + 1.57983e7i 0.988430 + 1.71201i
\(612\) −360288. + 624037.i −0.0388840 + 0.0673491i
\(613\) 4.91402e6 8.51133e6i 0.528185 0.914843i −0.471275 0.881986i \(-0.656206\pi\)
0.999460 0.0328566i \(-0.0104605\pi\)
\(614\) 3.70647e6 + 6.41980e6i 0.396771 + 0.687227i
\(615\) −1.16389e7 −1.24087
\(616\) 0 0
\(617\) −8.21262e6 −0.868498 −0.434249 0.900793i \(-0.642986\pi\)
−0.434249 + 0.900793i \(0.642986\pi\)
\(618\) −567936. 983694.i −0.0598175 0.103607i
\(619\) 3.49233e6 6.04889e6i 0.366343 0.634525i −0.622648 0.782502i \(-0.713943\pi\)
0.988991 + 0.147977i \(0.0472763\pi\)
\(620\) 1.83859e6 3.18453e6i 0.192091 0.332711i
\(621\) 1.07528e6 + 1.86243e6i 0.111890 + 0.193799i
\(622\) 1.80382e6 0.186947
\(623\) 0 0
\(624\) −1.75565e6 −0.180499
\(625\) 5.51110e6 + 9.54550e6i 0.564337 + 0.977460i
\(626\) 3.20527e6 5.55169e6i 0.326910 0.566225i
\(627\) −7.17210e6 + 1.24224e7i −0.728580 + 1.26194i
\(628\) 2.37054e6 + 4.10590e6i 0.239855 + 0.415441i
\(629\) 4.29788e6 0.433139
\(630\) 0 0
\(631\) 1.26789e7 1.26767 0.633837 0.773467i \(-0.281479\pi\)
0.633837 + 0.773467i \(0.281479\pi\)
\(632\) 572544. + 991675.i 0.0570186 + 0.0987590i
\(633\) −2.07682e6 + 3.59716e6i −0.206011 + 0.356821i
\(634\) 41724.0 72268.1i 0.00412252 0.00714041i
\(635\) −9.10678e6 1.57734e7i −0.896252 1.55235i
\(636\) 2.24554e6 0.220129
\(637\) 0 0
\(638\) −1.75240e6 −0.170444
\(639\) 1.58671e6 + 2.74826e6i 0.153725 + 0.266260i
\(640\) 622592. 1.07836e6i 0.0600833 0.104067i
\(641\) 7.01619e6 1.21524e7i 0.674460 1.16820i −0.302166 0.953255i \(-0.597710\pi\)
0.976626 0.214944i \(-0.0689568\pi\)
\(642\) −1.94908e6 3.37590e6i −0.186634 0.323260i
\(643\) −1.30368e6 −0.124349 −0.0621745 0.998065i \(-0.519804\pi\)
−0.0621745 + 0.998065i \(0.519804\pi\)
\(644\) 0 0
\(645\) −1.49358e7 −1.41361
\(646\) −2.72662e6 4.72265e6i −0.257066 0.445251i
\(647\) 785550. 1.36061e6i 0.0737757 0.127783i −0.826778 0.562529i \(-0.809828\pi\)
0.900553 + 0.434746i \(0.143162\pi\)
\(648\) −209952. + 363648.i −0.0196419 + 0.0340207i
\(649\) 1.82260e6 + 3.15684e6i 0.169856 + 0.294198i
\(650\) −8.08025e6 −0.750138
\(651\) 0 0
\(652\) −7.68640e6 −0.708115
\(653\) 4.17057e6 + 7.22364e6i 0.382748 + 0.662939i 0.991454 0.130457i \(-0.0416445\pi\)
−0.608706 + 0.793396i \(0.708311\pi\)
\(654\) 1.29863e6 2.24929e6i 0.118725 0.205637i
\(655\) 1.04185e7 1.80454e7i 0.948863 1.64348i
\(656\) −2.17805e6 3.77249e6i −0.197610 0.342270i
\(657\) 1.90917e6 0.172556
\(658\) 0 0
\(659\) 6.18334e6 0.554638 0.277319 0.960778i \(-0.410554\pi\)
0.277319 + 0.960778i \(0.410554\pi\)
\(660\) 3.55680e6 + 6.16056e6i 0.317833 + 0.550504i
\(661\) 464483. 804508.i 0.0413491 0.0716188i −0.844610 0.535382i \(-0.820168\pi\)
0.885959 + 0.463763i \(0.153501\pi\)
\(662\) −4.15242e6 + 7.19221e6i −0.368262 + 0.637848i
\(663\) 1.90652e6 + 3.30220e6i 0.168445 + 0.291756i
\(664\) −2.49421e6 −0.219539
\(665\) 0 0
\(666\) 2.50452e6 0.218796
\(667\) −994150. 1.72192e6i −0.0865241 0.149864i
\(668\) 1.28144e6 2.21952e6i 0.111111 0.192450i
\(669\) 4.47772e6 7.75563e6i 0.386804 0.669965i
\(670\) −6.65517e6 1.15271e7i −0.572759 0.992048i
\(671\) −97500.0 −0.00835985
\(672\) 0 0
\(673\) 1.79131e7 1.52452 0.762259 0.647272i \(-0.224090\pi\)
0.762259 + 0.647272i \(0.224090\pi\)
\(674\) −2.41016e6 4.17453e6i −0.204360 0.353963i
\(675\) −966290. + 1.67366e6i −0.0816296 + 0.141387i
\(676\) −1.67481e6 + 2.90085e6i −0.140961 + 0.244151i
\(677\) −2.48198e6 4.29892e6i −0.208126 0.360486i 0.742998 0.669294i \(-0.233403\pi\)
−0.951124 + 0.308808i \(0.900070\pi\)
\(678\) 7.95262e6 0.664409
\(679\) 0 0
\(680\) −2.70438e6 −0.224283
\(681\) −430056. 744879.i −0.0355351 0.0615486i
\(682\) −3.93120e6 + 6.80904e6i −0.323641 + 0.560564i
\(683\) −44763.0 + 77531.8i −0.00367170 + 0.00635957i −0.867855 0.496817i \(-0.834502\pi\)
0.864184 + 0.503176i \(0.167835\pi\)
\(684\) −1.58890e6 2.75205e6i −0.129854 0.224914i
\(685\) 2.97277e7 2.42067
\(686\) 0 0
\(687\) 9.39677e6 0.759603
\(688\) −2.79501e6 4.84110e6i −0.225119 0.389917i
\(689\) 5.94131e6 1.02907e7i 0.476798 0.825838i
\(690\) −4.03560e6 + 6.98986e6i −0.322690 + 0.558915i
\(691\) −71198.0 123319.i −0.00567248 0.00982502i 0.863175 0.504904i \(-0.168472\pi\)
−0.868848 + 0.495079i \(0.835139\pi\)
\(692\) 143744. 0.0114110
\(693\) 0 0
\(694\) −3.50657e6 −0.276365
\(695\) −1.28958e7 2.23362e7i −1.01272 1.75407i
\(696\) 194112. 336212.i 0.0151890 0.0263081i
\(697\) −4.73045e6 + 8.19338e6i −0.368825 + 0.638824i
\(698\) −2.59186e6 4.48923e6i −0.201360 0.348766i
\(699\) −1.05247e7 −0.814735
\(700\) 0 0
\(701\) 1.03935e7 0.798852 0.399426 0.916765i \(-0.369209\pi\)
0.399426 + 0.916765i \(0.369209\pi\)
\(702\) 1.11100e6 + 1.92430e6i 0.0850883 + 0.147377i
\(703\) −9.47698e6 + 1.64146e7i −0.723239 + 1.25269i
\(704\) −1.33120e6 + 2.30571e6i −0.101231 + 0.175336i
\(705\) 8.18748e6 + 1.41811e7i 0.620408 + 1.07458i
\(706\) 1.59616e7 1.20521
\(707\) 0 0
\(708\) −807552. −0.0605463
\(709\) −2.32752e6 4.03137e6i −0.173891 0.301188i 0.765886 0.642976i \(-0.222301\pi\)
−0.939777 + 0.341789i \(0.888967\pi\)
\(710\) −5.95506e6 + 1.03145e7i −0.443343 + 0.767893i
\(711\) 724626. 1.25509e6i 0.0537576 0.0931109i
\(712\) 192768. + 333884.i 0.0142507 + 0.0246829i
\(713\) −8.92080e6 −0.657173
\(714\) 0 0
\(715\) 3.76428e7 2.75370
\(716\) −1.46309e6 2.53414e6i −0.106657 0.184735i
\(717\) 123039. 213110.i 0.00893809 0.0154812i
\(718\) −8.12904e6 + 1.40799e7i −0.588475 + 1.01927i
\(719\) −3.36067e6 5.82085e6i −0.242440 0.419918i 0.718969 0.695042i \(-0.244614\pi\)
−0.961409 + 0.275124i \(0.911281\pi\)
\(720\) −1.57594e6 −0.113294
\(721\) 0 0
\(722\) 1.41448e7 1.00984
\(723\) −4.08471e6 7.07493e6i −0.290614 0.503357i
\(724\) 1.10664e6 1.91676e6i 0.0784621 0.135900i
\(725\) 893387. 1.54739e6i 0.0631240 0.109334i
\(726\) −4.70608e6 8.15117e6i −0.331374 0.573956i
\(727\) 1.24076e7 0.870670 0.435335 0.900269i \(-0.356630\pi\)
0.435335 + 0.900269i \(0.356630\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 3.58264e6 + 6.20531e6i 0.248826 + 0.430980i
\(731\) −6.07041e6 + 1.05143e7i −0.420169 + 0.727755i
\(732\) 10800.0 18706.1i 0.000744982 0.00129035i
\(733\) 6.79790e6 + 1.17743e7i 0.467321 + 0.809423i 0.999303 0.0373325i \(-0.0118861\pi\)
−0.531982 + 0.846755i \(0.678553\pi\)
\(734\) 6.68973e6 0.458319
\(735\) 0 0
\(736\) −3.02080e6 −0.205555
\(737\) 1.42298e7 + 2.46467e7i 0.965006 + 1.67144i
\(738\) −2.75659e6 + 4.77456e6i −0.186308 + 0.322695i
\(739\) −1.28410e6 + 2.22412e6i −0.0864941 + 0.149812i −0.906027 0.423220i \(-0.860900\pi\)
0.819533 + 0.573032i \(0.194233\pi\)
\(740\) 4.69984e6 + 8.14036e6i 0.315503 + 0.546468i
\(741\) −1.68158e7 −1.12505
\(742\) 0 0
\(743\) −2.02133e7 −1.34327 −0.671637 0.740880i \(-0.734409\pi\)
−0.671637 + 0.740880i \(0.734409\pi\)
\(744\) −870912. 1.50846e6i −0.0576822 0.0999085i
\(745\) −1.11469e6 + 1.93070e6i −0.0735807 + 0.127446i
\(746\) −6.33537e6 + 1.09732e7i −0.416797 + 0.721914i
\(747\) 1.57837e6 + 2.73381e6i 0.103492 + 0.179253i
\(748\) 5.78240e6 0.377880
\(749\) 0 0
\(750\) 1.29686e6 0.0841863
\(751\) −3.52406e6 6.10386e6i −0.228005 0.394916i 0.729212 0.684288i \(-0.239887\pi\)
−0.957217 + 0.289372i \(0.906554\pi\)
\(752\) −3.06432e6 + 5.30756e6i −0.197601 + 0.342255i
\(753\) 198396. 343632.i 0.0127510 0.0220854i
\(754\) −1.02718e6 1.77912e6i −0.0657986 0.113966i
\(755\) −5.44221e6 −0.347462
\(756\) 0 0
\(757\) −2.04120e7 −1.29463 −0.647315 0.762223i \(-0.724108\pi\)
−0.647315 + 0.762223i \(0.724108\pi\)
\(758\) 8.40777e6 + 1.45627e7i 0.531505 + 0.920594i
\(759\) 8.62875e6 1.49454e7i 0.543680 0.941682i
\(760\) 5.96326e6 1.03287e7i 0.374498 0.648650i
\(761\) −2.53987e6 4.39918e6i −0.158983 0.275366i 0.775519 0.631324i \(-0.217488\pi\)
−0.934502 + 0.355958i \(0.884155\pi\)
\(762\) −8.62747e6 −0.538265
\(763\) 0 0
\(764\) 5.23555e6 0.324511
\(765\) 1.71137e6 + 2.96418e6i 0.105728 + 0.183126i
\(766\) −685232. + 1.18686e6i −0.0421955 + 0.0730847i
\(767\) −2.13665e6 + 3.70078e6i −0.131143 + 0.227146i
\(768\) −294912. 510803.i −0.0180422 0.0312500i