Properties

Label 294.6.e.b.67.1
Level $294$
Weight $6$
Character 294.67
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.6.e.b.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-12.0000 - 20.7846i) q^{5} +36.0000 q^{6} +64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(-2.00000 - 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-12.0000 - 20.7846i) q^{5} +36.0000 q^{6} +64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(-48.0000 + 83.1384i) q^{10} +(-33.0000 + 57.1577i) q^{11} +(-72.0000 - 124.708i) q^{12} +98.0000 q^{13} +216.000 q^{15} +(-128.000 - 221.703i) q^{16} +(108.000 - 187.061i) q^{17} +(-162.000 + 280.592i) q^{18} +(170.000 + 294.449i) q^{19} +384.000 q^{20} +264.000 q^{22} +(519.000 + 898.934i) q^{23} +(-288.000 + 498.831i) q^{24} +(1274.50 - 2207.50i) q^{25} +(-196.000 - 339.482i) q^{26} +729.000 q^{27} -2490.00 q^{29} +(-432.000 - 748.246i) q^{30} +(3524.00 - 6103.75i) q^{31} +(-512.000 + 886.810i) q^{32} +(-297.000 - 514.419i) q^{33} -864.000 q^{34} +1296.00 q^{36} +(6119.00 + 10598.4i) q^{37} +(680.000 - 1177.79i) q^{38} +(-441.000 + 763.834i) q^{39} +(-768.000 - 1330.22i) q^{40} +6468.00 q^{41} -15412.0 q^{43} +(-528.000 - 914.523i) q^{44} +(-972.000 + 1683.55i) q^{45} +(2076.00 - 3595.74i) q^{46} +(-10302.0 - 17843.6i) q^{47} +2304.00 q^{48} -10196.0 q^{50} +(972.000 + 1683.55i) q^{51} +(-784.000 + 1357.93i) q^{52} +(-16245.0 + 28137.2i) q^{53} +(-1458.00 - 2525.33i) q^{54} +1584.00 q^{55} -3060.00 q^{57} +(4980.00 + 8625.61i) q^{58} +(-17112.0 + 29638.9i) q^{59} +(-1728.00 + 2992.98i) q^{60} +(-17827.0 - 30877.3i) q^{61} -28192.0 q^{62} +4096.00 q^{64} +(-1176.00 - 2036.89i) q^{65} +(-1188.00 + 2057.68i) q^{66} +(-6340.00 + 10981.2i) q^{67} +(1728.00 + 2992.98i) q^{68} -9342.00 q^{69} -42642.0 q^{71} +(-2592.00 - 4489.48i) q^{72} +(-16867.0 + 29214.5i) q^{73} +(24476.0 - 42393.7i) q^{74} +(11470.5 + 19867.5i) q^{75} -5440.00 q^{76} +3528.00 q^{78} +(42554.0 + 73705.7i) q^{79} +(-3072.00 + 5320.86i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(-12936.0 - 22405.8i) q^{82} -106764. q^{83} -5184.00 q^{85} +(30824.0 + 53388.7i) q^{86} +(11205.0 - 19407.6i) q^{87} +(-2112.00 + 3658.09i) q^{88} +(-17442.0 - 30210.4i) q^{89} +7776.00 q^{90} -16608.0 q^{92} +(31716.0 + 54933.7i) q^{93} +(-41208.0 + 71374.3i) q^{94} +(4080.00 - 7066.77i) q^{95} +(-4608.00 - 7981.29i) q^{96} +18662.0 q^{97} +5346.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 9 q^{3} - 16 q^{4} - 24 q^{5} + 72 q^{6} + 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} - 9 q^{3} - 16 q^{4} - 24 q^{5} + 72 q^{6} + 128 q^{8} - 81 q^{9} - 96 q^{10} - 66 q^{11} - 144 q^{12} + 196 q^{13} + 432 q^{15} - 256 q^{16} + 216 q^{17} - 324 q^{18} + 340 q^{19} + 768 q^{20} + 528 q^{22} + 1038 q^{23} - 576 q^{24} + 2549 q^{25} - 392 q^{26} + 1458 q^{27} - 4980 q^{29} - 864 q^{30} + 7048 q^{31} - 1024 q^{32} - 594 q^{33} - 1728 q^{34} + 2592 q^{36} + 12238 q^{37} + 1360 q^{38} - 882 q^{39} - 1536 q^{40} + 12936 q^{41} - 30824 q^{43} - 1056 q^{44} - 1944 q^{45} + 4152 q^{46} - 20604 q^{47} + 4608 q^{48} - 20392 q^{50} + 1944 q^{51} - 1568 q^{52} - 32490 q^{53} - 2916 q^{54} + 3168 q^{55} - 6120 q^{57} + 9960 q^{58} - 34224 q^{59} - 3456 q^{60} - 35654 q^{61} - 56384 q^{62} + 8192 q^{64} - 2352 q^{65} - 2376 q^{66} - 12680 q^{67} + 3456 q^{68} - 18684 q^{69} - 85284 q^{71} - 5184 q^{72} - 33734 q^{73} + 48952 q^{74} + 22941 q^{75} - 10880 q^{76} + 7056 q^{78} + 85108 q^{79} - 6144 q^{80} - 6561 q^{81} - 25872 q^{82} - 213528 q^{83} - 10368 q^{85} + 61648 q^{86} + 22410 q^{87} - 4224 q^{88} - 34884 q^{89} + 15552 q^{90} - 33216 q^{92} + 63432 q^{93} - 82416 q^{94} + 8160 q^{95} - 9216 q^{96} + 37324 q^{97} + 10692 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −12.0000 20.7846i −0.214663 0.371806i 0.738506 0.674247i \(-0.235532\pi\)
−0.953168 + 0.302441i \(0.902198\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) −48.0000 + 83.1384i −0.151789 + 0.262907i
\(11\) −33.0000 + 57.1577i −0.0822304 + 0.142427i −0.904208 0.427093i \(-0.859538\pi\)
0.821977 + 0.569520i \(0.192871\pi\)
\(12\) −72.0000 124.708i −0.144338 0.250000i
\(13\) 98.0000 0.160830 0.0804151 0.996761i \(-0.474375\pi\)
0.0804151 + 0.996761i \(0.474375\pi\)
\(14\) 0 0
\(15\) 216.000 0.247871
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) 108.000 187.061i 0.0906362 0.156986i −0.817143 0.576435i \(-0.804443\pi\)
0.907779 + 0.419449i \(0.137777\pi\)
\(18\) −162.000 + 280.592i −0.117851 + 0.204124i
\(19\) 170.000 + 294.449i 0.108035 + 0.187122i 0.914974 0.403512i \(-0.132211\pi\)
−0.806939 + 0.590635i \(0.798877\pi\)
\(20\) 384.000 0.214663
\(21\) 0 0
\(22\) 264.000 0.116291
\(23\) 519.000 + 898.934i 0.204573 + 0.354330i 0.949997 0.312260i \(-0.101086\pi\)
−0.745424 + 0.666591i \(0.767753\pi\)
\(24\) −288.000 + 498.831i −0.102062 + 0.176777i
\(25\) 1274.50 2207.50i 0.407840 0.706400i
\(26\) −196.000 339.482i −0.0568621 0.0984880i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −2490.00 −0.549800 −0.274900 0.961473i \(-0.588645\pi\)
−0.274900 + 0.961473i \(0.588645\pi\)
\(30\) −432.000 748.246i −0.0876356 0.151789i
\(31\) 3524.00 6103.75i 0.658615 1.14075i −0.322359 0.946617i \(-0.604476\pi\)
0.980974 0.194137i \(-0.0621908\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) −297.000 514.419i −0.0474757 0.0822304i
\(34\) −864.000 −0.128179
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 6119.00 + 10598.4i 0.734812 + 1.27273i 0.954806 + 0.297230i \(0.0960629\pi\)
−0.219994 + 0.975501i \(0.570604\pi\)
\(38\) 680.000 1177.79i 0.0763924 0.132315i
\(39\) −441.000 + 763.834i −0.0464277 + 0.0804151i
\(40\) −768.000 1330.22i −0.0758947 0.131453i
\(41\) 6468.00 0.600911 0.300456 0.953796i \(-0.402861\pi\)
0.300456 + 0.953796i \(0.402861\pi\)
\(42\) 0 0
\(43\) −15412.0 −1.27112 −0.635562 0.772050i \(-0.719232\pi\)
−0.635562 + 0.772050i \(0.719232\pi\)
\(44\) −528.000 914.523i −0.0411152 0.0712136i
\(45\) −972.000 + 1683.55i −0.0715542 + 0.123935i
\(46\) 2076.00 3595.74i 0.144655 0.250549i
\(47\) −10302.0 17843.6i −0.680263 1.17825i −0.974900 0.222641i \(-0.928532\pi\)
0.294637 0.955609i \(-0.404801\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) −10196.0 −0.576773
\(51\) 972.000 + 1683.55i 0.0523288 + 0.0906362i
\(52\) −784.000 + 1357.93i −0.0402076 + 0.0696415i
\(53\) −16245.0 + 28137.2i −0.794383 + 1.37591i 0.128847 + 0.991664i \(0.458872\pi\)
−0.923230 + 0.384248i \(0.874461\pi\)
\(54\) −1458.00 2525.33i −0.0680414 0.117851i
\(55\) 1584.00 0.0706071
\(56\) 0 0
\(57\) −3060.00 −0.124748
\(58\) 4980.00 + 8625.61i 0.194383 + 0.336682i
\(59\) −17112.0 + 29638.9i −0.639986 + 1.10849i 0.345449 + 0.938438i \(0.387727\pi\)
−0.985435 + 0.170051i \(0.945607\pi\)
\(60\) −1728.00 + 2992.98i −0.0619677 + 0.107331i
\(61\) −17827.0 30877.3i −0.613414 1.06246i −0.990661 0.136351i \(-0.956462\pi\)
0.377247 0.926113i \(-0.376871\pi\)
\(62\) −28192.0 −0.931422
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −1176.00 2036.89i −0.0345242 0.0597977i
\(66\) −1188.00 + 2057.68i −0.0335704 + 0.0581456i
\(67\) −6340.00 + 10981.2i −0.172545 + 0.298857i −0.939309 0.343073i \(-0.888532\pi\)
0.766764 + 0.641929i \(0.221866\pi\)
\(68\) 1728.00 + 2992.98i 0.0453181 + 0.0784932i
\(69\) −9342.00 −0.236220
\(70\) 0 0
\(71\) −42642.0 −1.00390 −0.501951 0.864896i \(-0.667384\pi\)
−0.501951 + 0.864896i \(0.667384\pi\)
\(72\) −2592.00 4489.48i −0.0589256 0.102062i
\(73\) −16867.0 + 29214.5i −0.370451 + 0.641640i −0.989635 0.143606i \(-0.954130\pi\)
0.619184 + 0.785246i \(0.287464\pi\)
\(74\) 24476.0 42393.7i 0.519590 0.899957i
\(75\) 11470.5 + 19867.5i 0.235467 + 0.407840i
\(76\) −5440.00 −0.108035
\(77\) 0 0
\(78\) 3528.00 0.0656587
\(79\) 42554.0 + 73705.7i 0.767137 + 1.32872i 0.939110 + 0.343618i \(0.111652\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(80\) −3072.00 + 5320.86i −0.0536656 + 0.0929516i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) −12936.0 22405.8i −0.212454 0.367982i
\(83\) −106764. −1.70110 −0.850550 0.525895i \(-0.823730\pi\)
−0.850550 + 0.525895i \(0.823730\pi\)
\(84\) 0 0
\(85\) −5184.00 −0.0778247
\(86\) 30824.0 + 53388.7i 0.449410 + 0.778401i
\(87\) 11205.0 19407.6i 0.158713 0.274900i
\(88\) −2112.00 + 3658.09i −0.0290728 + 0.0503556i
\(89\) −17442.0 30210.4i −0.233411 0.404280i 0.725399 0.688329i \(-0.241655\pi\)
−0.958810 + 0.284049i \(0.908322\pi\)
\(90\) 7776.00 0.101193
\(91\) 0 0
\(92\) −16608.0 −0.204573
\(93\) 31716.0 + 54933.7i 0.380252 + 0.658615i
\(94\) −41208.0 + 71374.3i −0.481019 + 0.833149i
\(95\) 4080.00 7066.77i 0.0463822 0.0803363i
\(96\) −4608.00 7981.29i −0.0510310 0.0883883i
\(97\) 18662.0 0.201386 0.100693 0.994918i \(-0.467894\pi\)
0.100693 + 0.994918i \(0.467894\pi\)
\(98\) 0 0
\(99\) 5346.00 0.0548202
\(100\) 20392.0 + 35320.0i 0.203920 + 0.353200i
\(101\) −76542.0 + 132575.i −0.746614 + 1.29317i 0.202822 + 0.979216i \(0.434989\pi\)
−0.949437 + 0.313959i \(0.898345\pi\)
\(102\) 3888.00 6734.21i 0.0370021 0.0640894i
\(103\) −17932.0 31059.1i −0.166547 0.288467i 0.770657 0.637250i \(-0.219928\pi\)
−0.937203 + 0.348783i \(0.886595\pi\)
\(104\) 6272.00 0.0568621
\(105\) 0 0
\(106\) 129960. 1.12343
\(107\) 47727.0 + 82665.6i 0.403000 + 0.698016i 0.994086 0.108592i \(-0.0346342\pi\)
−0.591087 + 0.806608i \(0.701301\pi\)
\(108\) −5832.00 + 10101.3i −0.0481125 + 0.0833333i
\(109\) −106111. + 183790.i −0.855449 + 1.48168i 0.0207787 + 0.999784i \(0.493385\pi\)
−0.876228 + 0.481897i \(0.839948\pi\)
\(110\) −3168.00 5487.14i −0.0249634 0.0432378i
\(111\) −110142. −0.848488
\(112\) 0 0
\(113\) 62106.0 0.457549 0.228774 0.973479i \(-0.426528\pi\)
0.228774 + 0.973479i \(0.426528\pi\)
\(114\) 6120.00 + 10600.2i 0.0441051 + 0.0763924i
\(115\) 12456.0 21574.4i 0.0878282 0.152123i
\(116\) 19920.0 34502.5i 0.137450 0.238070i
\(117\) −3969.00 6874.51i −0.0268050 0.0464277i
\(118\) 136896. 0.905077
\(119\) 0 0
\(120\) 13824.0 0.0876356
\(121\) 78347.5 + 135702.i 0.486476 + 0.842602i
\(122\) −71308.0 + 123509.i −0.433749 + 0.751276i
\(123\) −29106.0 + 50413.1i −0.173468 + 0.300456i
\(124\) 56384.0 + 97660.0i 0.329308 + 0.570377i
\(125\) −136176. −0.779517
\(126\) 0 0
\(127\) −53044.0 −0.291828 −0.145914 0.989297i \(-0.546612\pi\)
−0.145914 + 0.989297i \(0.546612\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) 69354.0 120125.i 0.366942 0.635562i
\(130\) −4704.00 + 8147.57i −0.0244123 + 0.0422834i
\(131\) −34662.0 60036.3i −0.176472 0.305658i 0.764198 0.644982i \(-0.223135\pi\)
−0.940670 + 0.339324i \(0.889802\pi\)
\(132\) 9504.00 0.0474757
\(133\) 0 0
\(134\) 50720.0 0.244015
\(135\) −8748.00 15152.0i −0.0413118 0.0715542i
\(136\) 6912.00 11971.9i 0.0320447 0.0555031i
\(137\) −64923.0 + 112450.i −0.295527 + 0.511868i −0.975107 0.221733i \(-0.928829\pi\)
0.679580 + 0.733601i \(0.262162\pi\)
\(138\) 18684.0 + 32361.6i 0.0835165 + 0.144655i
\(139\) −104356. −0.458121 −0.229061 0.973412i \(-0.573565\pi\)
−0.229061 + 0.973412i \(0.573565\pi\)
\(140\) 0 0
\(141\) 185436. 0.785500
\(142\) 85284.0 + 147716.i 0.354933 + 0.614762i
\(143\) −3234.00 + 5601.45i −0.0132251 + 0.0229066i
\(144\) −10368.0 + 17957.9i −0.0416667 + 0.0721688i
\(145\) 29880.0 + 51753.7i 0.118021 + 0.204419i
\(146\) 134936. 0.523897
\(147\) 0 0
\(148\) −195808. −0.734812
\(149\) −108597. 188096.i −0.400730 0.694085i 0.593084 0.805141i \(-0.297910\pi\)
−0.993814 + 0.111055i \(0.964577\pi\)
\(150\) 45882.0 79470.0i 0.166500 0.288386i
\(151\) −110500. + 191392.i −0.394385 + 0.683094i −0.993022 0.117926i \(-0.962376\pi\)
0.598638 + 0.801020i \(0.295709\pi\)
\(152\) 10880.0 + 18844.7i 0.0381962 + 0.0661577i
\(153\) −17496.0 −0.0604241
\(154\) 0 0
\(155\) −169152. −0.565520
\(156\) −7056.00 12221.4i −0.0232138 0.0402076i
\(157\) 189185. 327678.i 0.612544 1.06096i −0.378266 0.925697i \(-0.623479\pi\)
0.990810 0.135261i \(-0.0431873\pi\)
\(158\) 170216. 294823.i 0.542447 0.939547i
\(159\) −146205. 253234.i −0.458637 0.794383i
\(160\) 24576.0 0.0758947
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) −52408.0 90773.3i −0.154500 0.267602i 0.778377 0.627797i \(-0.216043\pi\)
−0.932877 + 0.360195i \(0.882710\pi\)
\(164\) −51744.0 + 89623.2i −0.150228 + 0.260202i
\(165\) −7128.00 + 12346.1i −0.0203825 + 0.0353036i
\(166\) 213528. + 369841.i 0.601429 + 1.04171i
\(167\) −426972. −1.18470 −0.592350 0.805681i \(-0.701800\pi\)
−0.592350 + 0.805681i \(0.701800\pi\)
\(168\) 0 0
\(169\) −361689. −0.974134
\(170\) 10368.0 + 17957.9i 0.0275152 + 0.0476577i
\(171\) 13770.0 23850.3i 0.0360117 0.0623741i
\(172\) 123296. 213555.i 0.317781 0.550413i
\(173\) −165534. 286713.i −0.420506 0.728337i 0.575483 0.817814i \(-0.304814\pi\)
−0.995989 + 0.0894763i \(0.971481\pi\)
\(174\) −89640.0 −0.224455
\(175\) 0 0
\(176\) 16896.0 0.0411152
\(177\) −154008. 266750.i −0.369496 0.639986i
\(178\) −69768.0 + 120842.i −0.165046 + 0.285869i
\(179\) 200097. 346578.i 0.466775 0.808479i −0.532504 0.846427i \(-0.678749\pi\)
0.999280 + 0.0379485i \(0.0120823\pi\)
\(180\) −15552.0 26936.9i −0.0357771 0.0619677i
\(181\) 588098. 1.33430 0.667150 0.744924i \(-0.267514\pi\)
0.667150 + 0.744924i \(0.267514\pi\)
\(182\) 0 0
\(183\) 320886. 0.708309
\(184\) 33216.0 + 57531.8i 0.0723274 + 0.125275i
\(185\) 146856. 254362.i 0.315473 0.546415i
\(186\) 126864. 219735.i 0.268878 0.465711i
\(187\) 7128.00 + 12346.1i 0.0149061 + 0.0258181i
\(188\) 329664. 0.680263
\(189\) 0 0
\(190\) −32640.0 −0.0655943
\(191\) −469671. 813494.i −0.931559 1.61351i −0.780658 0.624958i \(-0.785116\pi\)
−0.150901 0.988549i \(-0.548217\pi\)
\(192\) −18432.0 + 31925.2i −0.0360844 + 0.0625000i
\(193\) −169195. + 293054.i −0.326960 + 0.566311i −0.981907 0.189364i \(-0.939357\pi\)
0.654947 + 0.755675i \(0.272691\pi\)
\(194\) −37324.0 64647.1i −0.0712006 0.123323i
\(195\) 21168.0 0.0398651
\(196\) 0 0
\(197\) −237942. −0.436823 −0.218412 0.975857i \(-0.570088\pi\)
−0.218412 + 0.975857i \(0.570088\pi\)
\(198\) −10692.0 18519.1i −0.0193819 0.0335704i
\(199\) −102232. + 177071.i −0.183001 + 0.316968i −0.942901 0.333073i \(-0.891915\pi\)
0.759900 + 0.650040i \(0.225248\pi\)
\(200\) 81568.0 141280.i 0.144193 0.249750i
\(201\) −57060.0 98830.8i −0.0996189 0.172545i
\(202\) 612336. 1.05587
\(203\) 0 0
\(204\) −31104.0 −0.0523288
\(205\) −77616.0 134435.i −0.128993 0.223423i
\(206\) −71728.0 + 124237.i −0.117766 + 0.203977i
\(207\) 42039.0 72813.7i 0.0681909 0.118110i
\(208\) −12544.0 21726.8i −0.0201038 0.0348208i
\(209\) −22440.0 −0.0355351
\(210\) 0 0
\(211\) −348724. −0.539232 −0.269616 0.962968i \(-0.586897\pi\)
−0.269616 + 0.962968i \(0.586897\pi\)
\(212\) −259920. 450195.i −0.397192 0.687956i
\(213\) 191889. 332361.i 0.289802 0.501951i
\(214\) 190908. 330662.i 0.284964 0.493572i
\(215\) 184944. + 320332.i 0.272863 + 0.472612i
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) 848888. 1.20979
\(219\) −151803. 262931.i −0.213880 0.370451i
\(220\) −12672.0 + 21948.5i −0.0176518 + 0.0305738i
\(221\) 10584.0 18332.0i 0.0145770 0.0252482i
\(222\) 220284. + 381543.i 0.299986 + 0.519590i
\(223\) 1.47006e6 1.97957 0.989787 0.142554i \(-0.0455316\pi\)
0.989787 + 0.142554i \(0.0455316\pi\)
\(224\) 0 0
\(225\) −206469. −0.271893
\(226\) −124212. 215141.i −0.161768 0.280190i
\(227\) 294780. 510574.i 0.379694 0.657649i −0.611324 0.791381i \(-0.709363\pi\)
0.991018 + 0.133732i \(0.0426961\pi\)
\(228\) 24480.0 42400.6i 0.0311870 0.0540176i
\(229\) 522671. + 905293.i 0.658627 + 1.14078i 0.980971 + 0.194153i \(0.0621959\pi\)
−0.322344 + 0.946623i \(0.604471\pi\)
\(230\) −99648.0 −0.124208
\(231\) 0 0
\(232\) −159360. −0.194383
\(233\) −325611. 563975.i −0.392925 0.680565i 0.599909 0.800068i \(-0.295203\pi\)
−0.992834 + 0.119503i \(0.961870\pi\)
\(234\) −15876.0 + 27498.0i −0.0189540 + 0.0328293i
\(235\) −247248. + 428246.i −0.292054 + 0.505852i
\(236\) −273792. 474222.i −0.319993 0.554244i
\(237\) −765972. −0.885813
\(238\) 0 0
\(239\) −513462. −0.581452 −0.290726 0.956806i \(-0.593897\pi\)
−0.290726 + 0.956806i \(0.593897\pi\)
\(240\) −27648.0 47887.7i −0.0309839 0.0536656i
\(241\) 347357. 601640.i 0.385242 0.667258i −0.606561 0.795037i \(-0.707451\pi\)
0.991803 + 0.127779i \(0.0407847\pi\)
\(242\) 313390. 542807.i 0.343991 0.595809i
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) 570464. 0.613414
\(245\) 0 0
\(246\) 232848. 0.245321
\(247\) 16660.0 + 28856.0i 0.0173753 + 0.0300949i
\(248\) 225536. 390640.i 0.232856 0.403318i
\(249\) 480438. 832143.i 0.491065 0.850550i
\(250\) 272352. + 471728.i 0.275601 + 0.477355i
\(251\) −1.39608e6 −1.39870 −0.699352 0.714777i \(-0.746528\pi\)
−0.699352 + 0.714777i \(0.746528\pi\)
\(252\) 0 0
\(253\) −68508.0 −0.0672884
\(254\) 106088. + 183750.i 0.103177 + 0.178707i
\(255\) 23328.0 40405.3i 0.0224661 0.0389124i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) 502602. + 870532.i 0.474670 + 0.822152i 0.999579 0.0290061i \(-0.00923423\pi\)
−0.524910 + 0.851158i \(0.675901\pi\)
\(258\) −554832. −0.518934
\(259\) 0 0
\(260\) 37632.0 0.0345242
\(261\) 100845. + 174669.i 0.0916333 + 0.158713i
\(262\) −138648. + 240145.i −0.124784 + 0.216133i
\(263\) −626505. + 1.08514e6i −0.558515 + 0.967377i 0.439105 + 0.898436i \(0.355296\pi\)
−0.997621 + 0.0689415i \(0.978038\pi\)
\(264\) −19008.0 32922.8i −0.0167852 0.0290728i
\(265\) 779760. 0.682097
\(266\) 0 0
\(267\) 313956. 0.269520
\(268\) −101440. 175699.i −0.0862725 0.149428i
\(269\) 880344. 1.52480e6i 0.741774 1.28479i −0.209913 0.977720i \(-0.567318\pi\)
0.951687 0.307070i \(-0.0993487\pi\)
\(270\) −34992.0 + 60607.9i −0.0292119 + 0.0505964i
\(271\) −385264. 667297.i −0.318666 0.551945i 0.661544 0.749906i \(-0.269901\pi\)
−0.980210 + 0.197961i \(0.936568\pi\)
\(272\) −55296.0 −0.0453181
\(273\) 0 0
\(274\) 519384. 0.417938
\(275\) 84117.0 + 145695.i 0.0670737 + 0.116175i
\(276\) 74736.0 129447.i 0.0590551 0.102286i
\(277\) −353869. + 612919.i −0.277104 + 0.479959i −0.970664 0.240441i \(-0.922708\pi\)
0.693560 + 0.720399i \(0.256041\pi\)
\(278\) 208712. + 361500.i 0.161970 + 0.280541i
\(279\) −570888. −0.439077
\(280\) 0 0
\(281\) 2.30432e6 1.74091 0.870456 0.492247i \(-0.163824\pi\)
0.870456 + 0.492247i \(0.163824\pi\)
\(282\) −370872. 642369.i −0.277716 0.481019i
\(283\) −804514. + 1.39346e6i −0.597128 + 1.03426i 0.396115 + 0.918201i \(0.370358\pi\)
−0.993243 + 0.116055i \(0.962975\pi\)
\(284\) 341136. 590865.i 0.250976 0.434703i
\(285\) 36720.0 + 63600.9i 0.0267788 + 0.0463822i
\(286\) 25872.0 0.0187032
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) 686600. + 1.18923e6i 0.483570 + 0.837568i
\(290\) 119520. 207015.i 0.0834537 0.144546i
\(291\) −83979.0 + 145456.i −0.0581351 + 0.100693i
\(292\) −269872. 467432.i −0.185225 0.320820i
\(293\) 517020. 0.351834 0.175917 0.984405i \(-0.443711\pi\)
0.175917 + 0.984405i \(0.443711\pi\)
\(294\) 0 0
\(295\) 821376. 0.549524
\(296\) 391616. + 678299.i 0.259795 + 0.449979i
\(297\) −24057.0 + 41667.9i −0.0158252 + 0.0274101i
\(298\) −434388. + 752382.i −0.283359 + 0.490792i
\(299\) 50862.0 + 88095.6i 0.0329015 + 0.0569870i
\(300\) −367056. −0.235467
\(301\) 0 0
\(302\) 884000. 0.557744
\(303\) −688878. 1.19317e6i −0.431058 0.746614i
\(304\) 43520.0 75378.9i 0.0270088 0.0467806i
\(305\) −427848. + 741054.i −0.263354 + 0.456142i
\(306\) 34992.0 + 60607.9i 0.0213631 + 0.0370021i
\(307\) 1.35002e6 0.817512 0.408756 0.912644i \(-0.365963\pi\)
0.408756 + 0.912644i \(0.365963\pi\)
\(308\) 0 0
\(309\) 322776. 0.192311
\(310\) 338304. + 585960.i 0.199941 + 0.346309i
\(311\) −672690. + 1.16513e6i −0.394379 + 0.683085i −0.993022 0.117931i \(-0.962374\pi\)
0.598643 + 0.801016i \(0.295707\pi\)
\(312\) −28224.0 + 48885.4i −0.0164147 + 0.0284310i
\(313\) −128077. 221836.i −0.0738942 0.127988i 0.826711 0.562627i \(-0.190209\pi\)
−0.900605 + 0.434639i \(0.856876\pi\)
\(314\) −1.51348e6 −0.866269
\(315\) 0 0
\(316\) −1.36173e6 −0.767137
\(317\) −923145. 1.59893e6i −0.515967 0.893681i −0.999828 0.0185361i \(-0.994099\pi\)
0.483861 0.875145i \(-0.339234\pi\)
\(318\) −584820. + 1.01294e6i −0.324306 + 0.561714i
\(319\) 82170.0 142323.i 0.0452102 0.0783064i
\(320\) −49152.0 85133.8i −0.0268328 0.0464758i
\(321\) −859086. −0.465344
\(322\) 0 0
\(323\) 73440.0 0.0391675
\(324\) −52488.0 90911.9i −0.0277778 0.0481125i
\(325\) 124901. 216335.i 0.0655930 0.113610i
\(326\) −209632. + 363093.i −0.109248 + 0.189223i
\(327\) −954999. 1.65411e6i −0.493894 0.855449i
\(328\) 413952. 0.212454
\(329\) 0 0
\(330\) 57024.0 0.0288252
\(331\) 1.66619e6 + 2.88593e6i 0.835900 + 1.44782i 0.893295 + 0.449470i \(0.148387\pi\)
−0.0573948 + 0.998352i \(0.518279\pi\)
\(332\) 854112. 1.47937e6i 0.425275 0.736598i
\(333\) 495639. 858472.i 0.244937 0.424244i
\(334\) 853944. + 1.47907e6i 0.418855 + 0.725477i
\(335\) 304320. 0.148156
\(336\) 0 0
\(337\) −1.63481e6 −0.784136 −0.392068 0.919936i \(-0.628240\pi\)
−0.392068 + 0.919936i \(0.628240\pi\)
\(338\) 723378. + 1.25293e6i 0.344408 + 0.596533i
\(339\) −279477. + 484068.i −0.132083 + 0.228774i
\(340\) 41472.0 71831.6i 0.0194562 0.0336991i
\(341\) 232584. + 402847.i 0.108316 + 0.187609i
\(342\) −110160. −0.0509282
\(343\) 0 0
\(344\) −986368. −0.449410
\(345\) 112104. + 194170.i 0.0507076 + 0.0878282i
\(346\) −662136. + 1.14685e6i −0.297342 + 0.515012i
\(347\) 420765. 728786.i 0.187593 0.324920i −0.756854 0.653583i \(-0.773265\pi\)
0.944447 + 0.328663i \(0.106598\pi\)
\(348\) 179280. + 310522.i 0.0793567 + 0.137450i
\(349\) −977242. −0.429476 −0.214738 0.976672i \(-0.568890\pi\)
−0.214738 + 0.976672i \(0.568890\pi\)
\(350\) 0 0
\(351\) 71442.0 0.0309518
\(352\) −33792.0 58529.5i −0.0145364 0.0251778i
\(353\) −1.72928e6 + 2.99521e6i −0.738634 + 1.27935i 0.214476 + 0.976729i \(0.431196\pi\)
−0.953110 + 0.302623i \(0.902138\pi\)
\(354\) −616032. + 1.06700e6i −0.261273 + 0.452539i
\(355\) 511704. + 886297.i 0.215500 + 0.373258i
\(356\) 558144. 0.233411
\(357\) 0 0
\(358\) −1.60078e6 −0.660120
\(359\) 1.73651e6 + 3.00771e6i 0.711115 + 1.23169i 0.964439 + 0.264306i \(0.0851429\pi\)
−0.253324 + 0.967382i \(0.581524\pi\)
\(360\) −62208.0 + 107747.i −0.0252982 + 0.0438178i
\(361\) 1.18025e6 2.04425e6i 0.476657 0.825594i
\(362\) −1.17620e6 2.03723e6i −0.471746 0.817088i
\(363\) −1.41026e6 −0.561734
\(364\) 0 0
\(365\) 809616. 0.318088
\(366\) −641772. 1.11158e6i −0.250425 0.433749i
\(367\) −1.55997e6 + 2.70194e6i −0.604575 + 1.04716i 0.387543 + 0.921852i \(0.373324\pi\)
−0.992118 + 0.125304i \(0.960009\pi\)
\(368\) 132864. 230127.i 0.0511432 0.0885826i
\(369\) −261954. 453718.i −0.100152 0.173468i
\(370\) −1.17485e6 −0.446146
\(371\) 0 0
\(372\) −1.01491e6 −0.380252
\(373\) 1.00836e6 + 1.74654e6i 0.375272 + 0.649989i 0.990368 0.138463i \(-0.0442161\pi\)
−0.615096 + 0.788452i \(0.710883\pi\)
\(374\) 28512.0 49384.2i 0.0105402 0.0182562i
\(375\) 612792. 1.06139e6i 0.225027 0.389758i
\(376\) −659328. 1.14199e6i −0.240509 0.416574i
\(377\) −244020. −0.0884244
\(378\) 0 0
\(379\) −5.38083e6 −1.92420 −0.962102 0.272690i \(-0.912087\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(380\) 65280.0 + 113068.i 0.0231911 + 0.0401681i
\(381\) 238698. 413437.i 0.0842435 0.145914i
\(382\) −1.87868e6 + 3.25398e6i −0.658712 + 1.14092i
\(383\) −403716. 699257.i −0.140630 0.243579i 0.787104 0.616821i \(-0.211580\pi\)
−0.927734 + 0.373242i \(0.878246\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 1.35356e6 0.462391
\(387\) 624186. + 1.08112e6i 0.211854 + 0.366942i
\(388\) −149296. + 258588.i −0.0503465 + 0.0872026i
\(389\) −445695. + 771966.i −0.149336 + 0.258657i −0.930982 0.365065i \(-0.881047\pi\)
0.781646 + 0.623722i \(0.214380\pi\)
\(390\) −42336.0 73328.1i −0.0140945 0.0244123i
\(391\) 224208. 0.0741667
\(392\) 0 0
\(393\) 623916. 0.203772
\(394\) 475884. + 824255.i 0.154440 + 0.267498i
\(395\) 1.02130e6 1.76894e6i 0.329351 0.570453i
\(396\) −42768.0 + 74076.3i −0.0137051 + 0.0237379i
\(397\) −561727. 972940.i −0.178875 0.309820i 0.762621 0.646846i \(-0.223912\pi\)
−0.941495 + 0.337026i \(0.890579\pi\)
\(398\) 817856. 0.258803
\(399\) 0 0
\(400\) −652544. −0.203920
\(401\) −860187. 1.48989e6i −0.267136 0.462693i 0.700985 0.713176i \(-0.252744\pi\)
−0.968121 + 0.250483i \(0.919411\pi\)
\(402\) −228240. + 395323.i −0.0704412 + 0.122008i
\(403\) 345352. 598167.i 0.105925 0.183468i
\(404\) −1.22467e6 2.12119e6i −0.373307 0.646587i
\(405\) 157464. 0.0477028
\(406\) 0 0
\(407\) −807708. −0.241695
\(408\) 62208.0 + 107747.i 0.0185010 + 0.0320447i
\(409\) −38623.0 + 66897.0i −0.0114166 + 0.0197742i −0.871677 0.490080i \(-0.836967\pi\)
0.860261 + 0.509855i \(0.170301\pi\)
\(410\) −310464. + 537739.i −0.0912119 + 0.157984i
\(411\) −584307. 1.01205e6i −0.170623 0.295527i
\(412\) 573824. 0.166547
\(413\) 0 0
\(414\) −336312. −0.0964365
\(415\) 1.28117e6 + 2.21905e6i 0.365162 + 0.632480i
\(416\) −50176.0 + 86907.4i −0.0142155 + 0.0246220i
\(417\) 469602. 813375.i 0.132248 0.229061i
\(418\) 44880.0 + 77734.4i 0.0125635 + 0.0217607i
\(419\) −5.20615e6 −1.44871 −0.724356 0.689427i \(-0.757863\pi\)
−0.724356 + 0.689427i \(0.757863\pi\)
\(420\) 0 0
\(421\) 1.71847e6 0.472539 0.236270 0.971688i \(-0.424075\pi\)
0.236270 + 0.971688i \(0.424075\pi\)
\(422\) 697448. + 1.20802e6i 0.190647 + 0.330211i
\(423\) −834462. + 1.44533e6i −0.226754 + 0.392750i
\(424\) −1.03968e6 + 1.80078e6i −0.280857 + 0.486458i
\(425\) −275292. 476820.i −0.0739301 0.128051i
\(426\) −1.53511e6 −0.409842
\(427\) 0 0
\(428\) −1.52726e6 −0.403000
\(429\) −29106.0 50413.1i −0.00763553 0.0132251i
\(430\) 739776. 1.28133e6i 0.192943 0.334187i
\(431\) 290313. 502837.i 0.0752789 0.130387i −0.825929 0.563775i \(-0.809349\pi\)
0.901208 + 0.433388i \(0.142682\pi\)
\(432\) −93312.0 161621.i −0.0240563 0.0416667i
\(433\) 4.15087e6 1.06395 0.531973 0.846761i \(-0.321451\pi\)
0.531973 + 0.846761i \(0.321451\pi\)
\(434\) 0 0
\(435\) −537840. −0.136279
\(436\) −1.69778e6 2.94063e6i −0.427725 0.740841i
\(437\) −176460. + 305638.i −0.0442021 + 0.0765602i
\(438\) −607212. + 1.05172e6i −0.151236 + 0.261948i
\(439\) −1.94204e6 3.36371e6i −0.480946 0.833022i 0.518815 0.854886i \(-0.326373\pi\)
−0.999761 + 0.0218641i \(0.993040\pi\)
\(440\) 101376. 0.0249634
\(441\) 0 0
\(442\) −84672.0 −0.0206150
\(443\) 1.15749e6 + 2.00484e6i 0.280226 + 0.485366i 0.971440 0.237284i \(-0.0762571\pi\)
−0.691214 + 0.722650i \(0.742924\pi\)
\(444\) 881136. 1.52617e6i 0.212122 0.367406i
\(445\) −418608. + 725050.i −0.100209 + 0.173567i
\(446\) −2.94011e6 5.09242e6i −0.699885 1.21224i
\(447\) 1.95475e6 0.462723
\(448\) 0 0
\(449\) −1.92281e6 −0.450113 −0.225056 0.974346i \(-0.572257\pi\)
−0.225056 + 0.974346i \(0.572257\pi\)
\(450\) 412938. + 715230.i 0.0961288 + 0.166500i
\(451\) −213444. + 369696.i −0.0494132 + 0.0855861i
\(452\) −496848. + 860566.i −0.114387 + 0.198124i
\(453\) −994500. 1.72252e6i −0.227698 0.394385i
\(454\) −2.35824e6 −0.536968
\(455\) 0 0
\(456\) −195840. −0.0441051
\(457\) −3.43108e6 5.94280e6i −0.768493 1.33107i −0.938380 0.345605i \(-0.887674\pi\)
0.169887 0.985464i \(-0.445660\pi\)
\(458\) 2.09068e6 3.62117e6i 0.465720 0.806650i
\(459\) 78732.0 136368.i 0.0174429 0.0302121i
\(460\) 199296. + 345191.i 0.0439141 + 0.0760615i
\(461\) 2.97167e6 0.651250 0.325625 0.945499i \(-0.394425\pi\)
0.325625 + 0.945499i \(0.394425\pi\)
\(462\) 0 0
\(463\) 4.87423e6 1.05670 0.528352 0.849025i \(-0.322810\pi\)
0.528352 + 0.849025i \(0.322810\pi\)
\(464\) 318720. + 552039.i 0.0687249 + 0.119035i
\(465\) 761184. 1.31841e6i 0.163252 0.282760i
\(466\) −1.30244e6 + 2.25590e6i −0.277840 + 0.481232i
\(467\) 4.08650e6 + 7.07803e6i 0.867081 + 1.50183i 0.864966 + 0.501831i \(0.167340\pi\)
0.00211530 + 0.999998i \(0.499327\pi\)
\(468\) 127008. 0.0268050
\(469\) 0 0
\(470\) 1.97798e6 0.413027
\(471\) 1.70266e6 + 2.94910e6i 0.353653 + 0.612544i
\(472\) −1.09517e6 + 1.89689e6i −0.226269 + 0.391910i
\(473\) 508596. 880914.i 0.104525 0.181043i
\(474\) 1.53194e6 + 2.65340e6i 0.313182 + 0.542447i
\(475\) 866660. 0.176244
\(476\) 0 0
\(477\) 2.63169e6 0.529589
\(478\) 1.02692e6 + 1.77868e6i 0.205574 + 0.356065i
\(479\) −1.17199e6 + 2.02994e6i −0.233391 + 0.404245i −0.958804 0.284069i \(-0.908315\pi\)
0.725413 + 0.688314i \(0.241649\pi\)
\(480\) −110592. + 191551.i −0.0219089 + 0.0379473i
\(481\) 599662. + 1.03865e6i 0.118180 + 0.204694i
\(482\) −2.77886e6 −0.544814
\(483\) 0 0
\(484\) −2.50712e6 −0.486476
\(485\) −223944. 387882.i −0.0432300 0.0748765i
\(486\) −118098. + 204552.i −0.0226805 + 0.0392837i
\(487\) −158464. + 274468.i −0.0302767 + 0.0524407i −0.880767 0.473550i \(-0.842972\pi\)
0.850490 + 0.525991i \(0.176306\pi\)
\(488\) −1.14093e6 1.97615e6i −0.216875 0.375638i
\(489\) 943344. 0.178401
\(490\) 0 0
\(491\) −5.20041e6 −0.973495 −0.486748 0.873543i \(-0.661817\pi\)
−0.486748 + 0.873543i \(0.661817\pi\)
\(492\) −465696. 806609.i −0.0867341 0.150228i
\(493\) −268920. + 465783.i −0.0498317 + 0.0863111i
\(494\) 66640.0 115424.i 0.0122862 0.0212803i
\(495\) −64152.0 111115.i −0.0117679 0.0203825i
\(496\) −1.80429e6 −0.329308
\(497\) 0 0
\(498\) −3.84350e6 −0.694471
\(499\) 2.43387e6 + 4.21558e6i 0.437568 + 0.757890i 0.997501 0.0706479i \(-0.0225067\pi\)
−0.559934 + 0.828538i \(0.689173\pi\)
\(500\) 1.08941e6 1.88691e6i 0.194879 0.337541i
\(501\) 1.92137e6 3.32792e6i 0.341993 0.592350i
\(502\) 2.79216e6 + 4.83616e6i 0.494517 + 0.856528i
\(503\) 426888. 0.0752305 0.0376153 0.999292i \(-0.488024\pi\)
0.0376153 + 0.999292i \(0.488024\pi\)
\(504\) 0 0
\(505\) 3.67402e6 0.641081
\(506\) 137016. + 237319.i 0.0237900 + 0.0412055i
\(507\) 1.62760e6 2.81909e6i 0.281208 0.487067i
\(508\) 424352. 734999.i 0.0729570 0.126365i
\(509\) 4.70810e6 + 8.15468e6i 0.805474 + 1.39512i 0.915971 + 0.401246i \(0.131423\pi\)
−0.110496 + 0.993877i \(0.535244\pi\)
\(510\) −186624. −0.0317718
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 123930. + 214653.i 0.0207914 + 0.0360117i
\(514\) 2.01041e6 3.48213e6i 0.335642 0.581349i
\(515\) −430368. + 745419.i −0.0715026 + 0.123846i
\(516\) 1.10966e6 + 1.92199e6i 0.183471 + 0.317781i
\(517\) 1.35986e6 0.223753
\(518\) 0 0
\(519\) 2.97961e6 0.485558
\(520\) −75264.0 130361.i −0.0122062 0.0211417i
\(521\) −920196. + 1.59383e6i −0.148520 + 0.257245i −0.930681 0.365832i \(-0.880784\pi\)
0.782160 + 0.623077i \(0.214118\pi\)
\(522\) 403380. 698675.i 0.0647945 0.112227i
\(523\) 489554. + 847932.i 0.0782612 + 0.135552i 0.902500 0.430690i \(-0.141730\pi\)
−0.824239 + 0.566243i \(0.808397\pi\)
\(524\) 1.10918e6 0.176472
\(525\) 0 0
\(526\) 5.01204e6 0.789860
\(527\) −761184. 1.31841e6i −0.119389 0.206787i
\(528\) −76032.0 + 131691.i −0.0118689 + 0.0205576i
\(529\) 2.67945e6 4.64094e6i 0.416300 0.721053i
\(530\) −1.55952e6 2.70117e6i −0.241158 0.417698i
\(531\) 2.77214e6 0.426658
\(532\) 0 0
\(533\) 633864. 0.0966447
\(534\) −627912. 1.08758e6i −0.0952896 0.165046i
\(535\) 1.14545e6 1.98397e6i 0.173018 0.299676i
\(536\) −405760. + 702797.i −0.0610039 + 0.105662i
\(537\) 1.80087e6 + 3.11920e6i 0.269493 + 0.466775i
\(538\) −7.04275e6 −1.04903
\(539\) 0 0
\(540\) 279936. 0.0413118
\(541\) −2.98058e6 5.16252e6i −0.437833 0.758349i 0.559689 0.828703i \(-0.310921\pi\)
−0.997522 + 0.0703538i \(0.977587\pi\)
\(542\) −1.54106e6 + 2.66919e6i −0.225331 + 0.390284i
\(543\) −2.64644e6 + 4.58377e6i −0.385179 + 0.667150i
\(544\) 110592. + 191551.i 0.0160224 + 0.0277515i
\(545\) 5.09333e6 0.734531
\(546\) 0 0
\(547\) 8.73025e6 1.24755 0.623775 0.781604i \(-0.285598\pi\)
0.623775 + 0.781604i \(0.285598\pi\)
\(548\) −1.03877e6 1.79920e6i −0.147763 0.255934i
\(549\) −1.44399e6 + 2.50106e6i −0.204471 + 0.354155i
\(550\) 336468. 582780.i 0.0474282 0.0821481i
\(551\) −423300. 733177.i −0.0593977 0.102880i
\(552\) −597888. −0.0835165
\(553\) 0 0
\(554\) 2.83095e6 0.391885
\(555\) 1.32170e6 + 2.28926e6i 0.182138 + 0.315473i
\(556\) 834848. 1.44600e6i 0.114530 0.198372i
\(557\) 1.50533e6 2.60731e6i 0.205586 0.356086i −0.744733 0.667362i \(-0.767423\pi\)
0.950319 + 0.311277i \(0.100757\pi\)
\(558\) 1.14178e6 + 1.97761e6i 0.155237 + 0.268878i
\(559\) −1.51038e6 −0.204435
\(560\) 0 0
\(561\) −128304. −0.0172121
\(562\) −4.60864e6 7.98239e6i −0.615505 1.06609i
\(563\) −5.87863e6 + 1.01821e7i −0.781637 + 1.35384i 0.149350 + 0.988784i \(0.452282\pi\)
−0.930987 + 0.365051i \(0.881051\pi\)
\(564\) −1.48349e6 + 2.56948e6i −0.196375 + 0.340132i
\(565\) −745272. 1.29085e6i −0.0982186 0.170120i
\(566\) 6.43611e6 0.844467
\(567\) 0 0
\(568\) −2.72909e6 −0.354933
\(569\) −6.57891e6 1.13950e7i −0.851870 1.47548i −0.879519 0.475864i \(-0.842136\pi\)
0.0276496 0.999618i \(-0.491198\pi\)
\(570\) 146880. 254404.i 0.0189354 0.0327972i
\(571\) 5.16722e6 8.94989e6i 0.663234 1.14875i −0.316527 0.948583i \(-0.602517\pi\)
0.979761 0.200171i \(-0.0641499\pi\)
\(572\) −51744.0 89623.2i −0.00661256 0.0114533i
\(573\) 8.45408e6 1.07567
\(574\) 0 0
\(575\) 2.64586e6 0.333732
\(576\) −165888. 287326.i −0.0208333 0.0360844i
\(577\) 3.94067e6 6.82544e6i 0.492754 0.853475i −0.507211 0.861822i \(-0.669324\pi\)
0.999965 + 0.00834679i \(0.00265690\pi\)
\(578\) 2.74640e6 4.75691e6i 0.341936 0.592250i
\(579\) −1.52276e6 2.63749e6i −0.188770 0.326960i
\(580\) −956160. −0.118021
\(581\) 0 0
\(582\) 671832. 0.0822154
\(583\) −1.07217e6 1.85705e6i −0.130645 0.226284i
\(584\) −1.07949e6 + 1.86973e6i −0.130974 + 0.226854i
\(585\) −95256.0 + 164988.i −0.0115081 + 0.0199326i
\(586\) −1.03404e6 1.79101e6i −0.124392 0.215454i
\(587\) −554568. −0.0664293 −0.0332146 0.999448i \(-0.510574\pi\)
−0.0332146 + 0.999448i \(0.510574\pi\)
\(588\) 0 0
\(589\) 2.39632e6 0.284614
\(590\) −1.64275e6 2.84533e6i −0.194286 0.336514i
\(591\) 1.07074e6 1.85457e6i 0.126100 0.218412i
\(592\) 1.56646e6 2.71320e6i 0.183703 0.318183i
\(593\) 4.60184e6 + 7.97063e6i 0.537397 + 0.930799i 0.999043 + 0.0437346i \(0.0139256\pi\)
−0.461646 + 0.887064i \(0.652741\pi\)
\(594\) 192456. 0.0223803
\(595\) 0 0
\(596\) 3.47510e6 0.400730
\(597\) −920088. 1.59364e6i −0.105656 0.183001i
\(598\) 203448. 352382.i 0.0232649 0.0402959i
\(599\) −4.27148e6 + 7.39841e6i −0.486419 + 0.842503i −0.999878 0.0156113i \(-0.995031\pi\)
0.513459 + 0.858114i \(0.328364\pi\)
\(600\) 734112. + 1.27152e6i 0.0832500 + 0.144193i
\(601\) −9.61555e6 −1.08590 −0.542948 0.839767i \(-0.682692\pi\)
−0.542948 + 0.839767i \(0.682692\pi\)
\(602\) 0 0
\(603\) 1.02708e6 0.115030
\(604\) −1.76800e6 3.06227e6i −0.197192 0.341547i
\(605\) 1.88034e6 3.25684e6i 0.208856 0.361750i
\(606\) −2.75551e6 + 4.77269e6i −0.304804 + 0.527936i
\(607\) −1.10632e6 1.91620e6i −0.121873 0.211091i 0.798633 0.601818i \(-0.205557\pi\)
−0.920506 + 0.390727i \(0.872224\pi\)
\(608\) −348160. −0.0381962
\(609\) 0 0
\(610\) 3.42278e6 0.372439
\(611\) −1.00960e6 1.74867e6i −0.109407 0.189498i
\(612\) 139968. 242432.i 0.0151060 0.0261644i
\(613\) 3.98108e6 6.89543e6i 0.427907 0.741157i −0.568780 0.822490i \(-0.692584\pi\)
0.996687 + 0.0813331i \(0.0259177\pi\)
\(614\) −2.70004e6 4.67661e6i −0.289034 0.500622i
\(615\) 1.39709e6 0.148948
\(616\) 0 0
\(617\) −1.37397e7 −1.45299 −0.726497 0.687170i \(-0.758853\pi\)
−0.726497 + 0.687170i \(0.758853\pi\)
\(618\) −645552. 1.11813e6i −0.0679923 0.117766i
\(619\) 4.35057e6 7.53540e6i 0.456372 0.790460i −0.542394 0.840124i \(-0.682482\pi\)
0.998766 + 0.0496646i \(0.0158152\pi\)
\(620\) 1.35322e6 2.34384e6i 0.141380 0.244877i
\(621\) 378351. + 655323.i 0.0393700 + 0.0681909i
\(622\) 5.38152e6 0.557736
\(623\) 0 0
\(624\) 225792. 0.0232138
\(625\) −2.34870e6 4.06807e6i −0.240507 0.416570i
\(626\) −512308. + 887343.i −0.0522511 + 0.0905015i
\(627\) 100980. 174902.i 0.0102581 0.0177675i
\(628\) 3.02696e6 + 5.24285e6i 0.306272 + 0.530479i
\(629\) 2.64341e6 0.266402
\(630\) 0 0
\(631\) 445412. 0.0445337 0.0222668 0.999752i \(-0.492912\pi\)
0.0222668 + 0.999752i \(0.492912\pi\)
\(632\) 2.72346e6 + 4.71716e6i 0.271224 + 0.469773i
\(633\) 1.56926e6 2.71803e6i 0.155663 0.269616i
\(634\) −3.69258e6 + 6.39574e6i −0.364844 + 0.631928i
\(635\) 636528. + 1.10250e6i 0.0626445 + 0.108504i
\(636\) 4.67856e6 0.458637
\(637\) 0 0
\(638\) −657360. −0.0639369
\(639\) 1.72700e6 + 2.99125e6i 0.167317 + 0.289802i
\(640\) −196608. + 340535.i −0.0189737 + 0.0328634i
\(641\) 4.00059e6 6.92923e6i 0.384573 0.666101i −0.607136 0.794598i \(-0.707682\pi\)
0.991710 + 0.128497i \(0.0410152\pi\)
\(642\) 1.71817e6 + 2.97596e6i 0.164524 + 0.284964i
\(643\) −1.58402e7 −1.51090 −0.755448 0.655209i \(-0.772581\pi\)
−0.755448 + 0.655209i \(0.772581\pi\)
\(644\) 0 0
\(645\) −3.32899e6 −0.315075
\(646\) −146880. 254404.i −0.0138478 0.0239851i
\(647\) −650934. + 1.12745e6i −0.0611331 + 0.105886i −0.894972 0.446122i \(-0.852805\pi\)
0.833839 + 0.552008i \(0.186138\pi\)
\(648\) −209952. + 363648.i −0.0196419 + 0.0340207i
\(649\) −1.12939e6 1.95616e6i −0.105253 0.182303i
\(650\) −999208. −0.0927625
\(651\) 0 0
\(652\) 1.67706e6 0.154500
\(653\) −3.67074e6 6.35791e6i −0.336877 0.583488i 0.646967 0.762518i \(-0.276037\pi\)
−0.983844 + 0.179031i \(0.942704\pi\)
\(654\) −3.82000e6 + 6.61643e6i −0.349236 + 0.604894i
\(655\) −831888. + 1.44087e6i −0.0757638 + 0.131227i
\(656\) −827904. 1.43397e6i −0.0751139 0.130101i
\(657\) 2.73245e6 0.246967
\(658\) 0 0
\(659\) −6.18934e6 −0.555176 −0.277588 0.960700i \(-0.589535\pi\)
−0.277588 + 0.960700i \(0.589535\pi\)
\(660\) −114048. 197537.i −0.0101913 0.0176518i
\(661\) 9.83448e6 1.70338e7i 0.875484 1.51638i 0.0192367 0.999815i \(-0.493876\pi\)
0.856247 0.516567i \(-0.172790\pi\)
\(662\) 6.66476e6 1.15437e7i 0.591071 1.02376i
\(663\) 95256.0 + 164988.i 0.00841605 + 0.0145770i
\(664\) −6.83290e6 −0.601429
\(665\) 0 0
\(666\) −3.96511e6 −0.346394
\(667\) −1.29231e6 2.23835e6i −0.112474 0.194811i
\(668\) 3.41578e6 5.91630e6i 0.296175 0.512990i
\(669\) −6.61525e6 + 1.14580e7i −0.571454 + 0.989787i
\(670\) −608640. 1.05420e6i −0.0523810 0.0907265i
\(671\) 2.35316e6 0.201765
\(672\) 0 0
\(673\) 7.18259e6 0.611285 0.305642 0.952146i \(-0.401129\pi\)
0.305642 + 0.952146i \(0.401129\pi\)
\(674\) 3.26961e6 + 5.66313e6i 0.277234 + 0.480183i
\(675\) 929111. 1.60927e6i 0.0784888 0.135947i
\(676\) 2.89351e6 5.01171e6i 0.243533 0.421812i
\(677\) 9.45961e6 + 1.63845e7i 0.793234 + 1.37392i 0.923954 + 0.382502i \(0.124938\pi\)
−0.130720 + 0.991419i \(0.541729\pi\)
\(678\) 2.23582e6 0.186794
\(679\) 0 0
\(680\) −331776. −0.0275152
\(681\) 2.65302e6 + 4.59517e6i 0.219216 + 0.379694i
\(682\) 930336. 1.61139e6i 0.0765912 0.132660i
\(683\) −1.06102e7 + 1.83774e7i −0.870306 + 1.50741i −0.00862478 + 0.999963i \(0.502745\pi\)
−0.861681 + 0.507451i \(0.830588\pi\)
\(684\) 220320. + 381605.i 0.0180059 + 0.0311870i
\(685\) 3.11630e6 0.253754
\(686\) 0 0
\(687\) −9.40808e6 −0.760517
\(688\) 1.97274e6 + 3.41688e6i 0.158890 + 0.275206i
\(689\) −1.59201e6 + 2.75744e6i −0.127761 + 0.221288i
\(690\) 448416. 776679.i 0.0358557 0.0621039i
\(691\) −8.16379e6 1.41401e7i −0.650424 1.12657i −0.983020 0.183498i \(-0.941258\pi\)
0.332596 0.943069i \(-0.392076\pi\)
\(692\) 5.29709e6 0.420506
\(693\) 0 0
\(694\) −3.36612e6 −0.265296
\(695\) 1.25227e6 + 2.16900e6i 0.0983415 + 0.170332i
\(696\) 717120. 1.24209e6i 0.0561137 0.0971917i
\(697\) 698544. 1.20991e6i 0.0544643 0.0943349i
\(698\) 1.95448e6 + 3.38527e6i 0.151843 + 0.262999i
\(699\) 5.86100e6 0.453710
\(700\) 0 0
\(701\) −5.40470e6 −0.415409 −0.207705 0.978192i \(-0.566599\pi\)
−0.207705 + 0.978192i \(0.566599\pi\)
\(702\) −142884. 247482.i −0.0109431 0.0189540i
\(703\) −2.08046e6 + 3.60346e6i −0.158771 + 0.274999i
\(704\) −135168. + 234118.i −0.0102788 + 0.0178034i
\(705\) −2.22523e6 3.85421e6i −0.168617 0.292054i
\(706\) 1.38343e7 1.04459
\(707\) 0 0
\(708\) 4.92826e6 0.369496
\(709\) −1.10597e7 1.91560e7i −0.826284 1.43117i −0.900934 0.433957i \(-0.857117\pi\)
0.0746491 0.997210i \(-0.476216\pi\)
\(710\) 2.04682e6 3.54519e6i 0.152382 0.263933i
\(711\) 3.44687e6 5.97016e6i 0.255712 0.442906i
\(712\) −1.11629e6 1.93347e6i −0.0825232 0.142934i
\(713\) 7.31582e6 0.538939
\(714\) 0 0
\(715\) 155232. 0.0113558
\(716\) 3.20155e6 + 5.54525e6i 0.233388 + 0.404239i
\(717\) 2.31058e6 4.00204e6i 0.167851 0.290726i
\(718\) 6.94602e6 1.20309e7i 0.502834 0.870935i
\(719\) −1.27909e7 2.21546e7i −0.922742 1.59824i −0.795153 0.606409i \(-0.792609\pi\)
−0.127589 0.991827i \(-0.540724\pi\)
\(720\) 497664. 0.0357771
\(721\) 0 0
\(722\) −9.44200e6 −0.674095
\(723\) 3.12621e6 + 5.41476e6i 0.222419 + 0.385242i
\(724\) −4.70478e6 + 8.14892e6i −0.333575 + 0.577769i
\(725\) −3.17350e6 + 5.49667e6i −0.224230 + 0.388378i
\(726\) 2.82051e6 + 4.88527e6i 0.198603 + 0.343991i
\(727\) −9.29438e6 −0.652205 −0.326103 0.945334i \(-0.605735\pi\)
−0.326103 + 0.945334i \(0.605735\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −1.61923e6 2.80459e6i −0.112461 0.194788i
\(731\) −1.66450e6 + 2.88299e6i −0.115210 + 0.199549i
\(732\) −2.56709e6 + 4.44633e6i −0.177077 + 0.306707i
\(733\) −1.70350e6 2.95054e6i −0.117107 0.202835i 0.801513 0.597977i \(-0.204029\pi\)
−0.918620 + 0.395142i \(0.870695\pi\)
\(734\) 1.24797e7 0.854999
\(735\) 0 0
\(736\) −1.06291e6 −0.0723274
\(737\) −418440. 724759.i −0.0283769 0.0491502i
\(738\) −1.04782e6 + 1.81487e6i −0.0708181 + 0.122661i
\(739\) −1.09068e7 + 1.88911e7i −0.734658 + 1.27246i 0.220216 + 0.975451i \(0.429324\pi\)
−0.954873 + 0.297013i \(0.904009\pi\)
\(740\) 2.34970e6 + 4.06979e6i 0.157737 + 0.273208i
\(741\) −299880. −0.0200633
\(742\) 0 0
\(743\) 3.79246e6 0.252028 0.126014 0.992028i \(-0.459782\pi\)
0.126014 + 0.992028i \(0.459782\pi\)
\(744\) 2.02982e6 + 3.51576e6i 0.134439 + 0.232856i
\(745\) −2.60633e6 + 4.51429e6i −0.172044 + 0.297988i
\(746\) 4.03346e6 6.98616e6i 0.265357 0.459612i
\(747\) 4.32394e6 + 7.48929e6i 0.283517 + 0.491065i
\(748\) −228096. −0.0149061
\(749\) 0 0
\(750\) −4.90234e6 −0.318236
\(751\) 1.00741e7 + 1.74489e7i 0.651790 + 1.12893i 0.982688 + 0.185267i \(0.0593149\pi\)
−0.330898 + 0.943666i \(0.607352\pi\)
\(752\) −2.63731e6 + 4.56796e6i −0.170066 + 0.294563i
\(753\) 6.28236e6 1.08814e7i 0.403771 0.699352i
\(754\) 488040. + 845310.i 0.0312627 + 0.0541487i
\(755\) 5.30400e6 0.338638
\(756\) 0 0
\(757\) 1.18427e7 0.751126 0.375563 0.926797i \(-0.377449\pi\)
0.375563 + 0.926797i \(0.377449\pi\)
\(758\) 1.07617e7 + 1.86397e7i 0.680309 + 1.17833i
\(759\) 308286. 533967.i 0.0194245 0.0336442i
\(760\) 261120. 452273.i 0.0163986 0.0284032i
\(761\) −1.48895e6 2.57894e6i −0.0932008 0.161429i 0.815655 0.578538i \(-0.196377\pi\)
−0.908856 + 0.417109i \(0.863043\pi\)
\(762\) −1.90958e6 −0.119138
\(763\) 0 0
\(764\) 1.50295e7 0.931559
\(765\) 209952. + 363648.i 0.0129708 + 0.0224661i
\(766\) −1.61486e6 + 2.79703e6i −0.0994407 + 0.172236i
\(767\) −1.67698e6 + 2.90461e6i −0.102929 + 0.178279i
\(768\) −294912. 510803.i −0.0180422 0.0312500i
\(769\) −2.02441e7