Properties

Label 294.6.a.w.1.2
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{9601}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-48.4923\) of defining polynomial
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +75.4923 q^{5} +36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +75.4923 q^{5} +36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +301.969 q^{10} -149.462 q^{11} +144.000 q^{12} -349.416 q^{13} +679.431 q^{15} +256.000 q^{16} +1149.85 q^{17} +324.000 q^{18} +2795.20 q^{19} +1207.88 q^{20} -597.847 q^{22} +1813.97 q^{23} +576.000 q^{24} +2574.09 q^{25} -1397.66 q^{26} +729.000 q^{27} -759.033 q^{29} +2717.72 q^{30} -9031.74 q^{31} +1024.00 q^{32} -1345.16 q^{33} +4599.39 q^{34} +1296.00 q^{36} +7794.89 q^{37} +11180.8 q^{38} -3144.74 q^{39} +4831.51 q^{40} -7640.49 q^{41} +12188.8 q^{43} -2391.39 q^{44} +6114.88 q^{45} +7255.88 q^{46} -24598.8 q^{47} +2304.00 q^{48} +10296.4 q^{50} +10348.6 q^{51} -5590.65 q^{52} +13596.2 q^{53} +2916.00 q^{54} -11283.2 q^{55} +25156.8 q^{57} -3036.13 q^{58} +26358.8 q^{59} +10870.9 q^{60} -35321.8 q^{61} -36127.0 q^{62} +4096.00 q^{64} -26378.2 q^{65} -5380.62 q^{66} +54371.9 q^{67} +18397.6 q^{68} +16325.7 q^{69} -70145.7 q^{71} +5184.00 q^{72} +44468.8 q^{73} +31179.6 q^{74} +23166.8 q^{75} +44723.2 q^{76} -12579.0 q^{78} +61612.5 q^{79} +19326.0 q^{80} +6561.00 q^{81} -30562.0 q^{82} +87142.0 q^{83} +86804.6 q^{85} +48755.3 q^{86} -6831.30 q^{87} -9565.55 q^{88} -98569.4 q^{89} +24459.5 q^{90} +29023.5 q^{92} -81285.7 q^{93} -98395.2 q^{94} +211016. q^{95} +9216.00 q^{96} -32342.3 q^{97} -12106.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 18 q^{3} + 32 q^{4} + 53 q^{5} + 72 q^{6} + 128 q^{8} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} + 18 q^{3} + 32 q^{4} + 53 q^{5} + 72 q^{6} + 128 q^{8} + 162 q^{9} + 212 q^{10} + 191 q^{11} + 288 q^{12} + 379 q^{13} + 477 q^{15} + 512 q^{16} + 340 q^{17} + 648 q^{18} + 1769 q^{19} + 848 q^{20} + 764 q^{22} + 3236 q^{23} + 1152 q^{24} - 45 q^{25} + 1516 q^{26} + 1458 q^{27} + 4459 q^{29} + 1908 q^{30} - 1994 q^{31} + 2048 q^{32} + 1719 q^{33} + 1360 q^{34} + 2592 q^{36} + 20587 q^{37} + 7076 q^{38} + 3411 q^{39} + 3392 q^{40} - 8814 q^{41} + 15853 q^{43} + 3056 q^{44} + 4293 q^{45} + 12944 q^{46} - 33912 q^{47} + 4608 q^{48} - 180 q^{50} + 3060 q^{51} + 6064 q^{52} + 49239 q^{53} + 5832 q^{54} - 18941 q^{55} + 15921 q^{57} + 17836 q^{58} + 56735 q^{59} + 7632 q^{60} - 67508 q^{61} - 7976 q^{62} + 8192 q^{64} - 42762 q^{65} + 6876 q^{66} + 75723 q^{67} + 5440 q^{68} + 29124 q^{69} - 8992 q^{71} + 10368 q^{72} + 3201 q^{73} + 82348 q^{74} - 405 q^{75} + 28304 q^{76} + 13644 q^{78} + 26612 q^{79} + 13568 q^{80} + 13122 q^{81} - 35256 q^{82} + 949 q^{83} + 105020 q^{85} + 63412 q^{86} + 40131 q^{87} + 12224 q^{88} - 176562 q^{89} + 17172 q^{90} + 51776 q^{92} - 17946 q^{93} - 135648 q^{94} + 234098 q^{95} + 18432 q^{96} + 129423 q^{97} + 15471 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) 75.4923 1.35045 0.675224 0.737613i \(-0.264047\pi\)
0.675224 + 0.737613i \(0.264047\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) 301.969 0.954911
\(11\) −149.462 −0.372433 −0.186217 0.982509i \(-0.559623\pi\)
−0.186217 + 0.982509i \(0.559623\pi\)
\(12\) 144.000 0.288675
\(13\) −349.416 −0.573435 −0.286717 0.958015i \(-0.592564\pi\)
−0.286717 + 0.958015i \(0.592564\pi\)
\(14\) 0 0
\(15\) 679.431 0.779682
\(16\) 256.000 0.250000
\(17\) 1149.85 0.964979 0.482489 0.875902i \(-0.339733\pi\)
0.482489 + 0.875902i \(0.339733\pi\)
\(18\) 324.000 0.235702
\(19\) 2795.20 1.77635 0.888176 0.459503i \(-0.151972\pi\)
0.888176 + 0.459503i \(0.151972\pi\)
\(20\) 1207.88 0.675224
\(21\) 0 0
\(22\) −597.847 −0.263350
\(23\) 1813.97 0.715007 0.357504 0.933912i \(-0.383628\pi\)
0.357504 + 0.933912i \(0.383628\pi\)
\(24\) 576.000 0.204124
\(25\) 2574.09 0.823710
\(26\) −1397.66 −0.405480
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −759.033 −0.167597 −0.0837984 0.996483i \(-0.526705\pi\)
−0.0837984 + 0.996483i \(0.526705\pi\)
\(30\) 2717.72 0.551318
\(31\) −9031.74 −1.68798 −0.843990 0.536359i \(-0.819799\pi\)
−0.843990 + 0.536359i \(0.819799\pi\)
\(32\) 1024.00 0.176777
\(33\) −1345.16 −0.215024
\(34\) 4599.39 0.682343
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 7794.89 0.936064 0.468032 0.883711i \(-0.344963\pi\)
0.468032 + 0.883711i \(0.344963\pi\)
\(38\) 11180.8 1.25607
\(39\) −3144.74 −0.331073
\(40\) 4831.51 0.477456
\(41\) −7640.49 −0.709842 −0.354921 0.934896i \(-0.615492\pi\)
−0.354921 + 0.934896i \(0.615492\pi\)
\(42\) 0 0
\(43\) 12188.8 1.00529 0.502645 0.864493i \(-0.332360\pi\)
0.502645 + 0.864493i \(0.332360\pi\)
\(44\) −2391.39 −0.186217
\(45\) 6114.88 0.450149
\(46\) 7255.88 0.505586
\(47\) −24598.8 −1.62431 −0.812156 0.583441i \(-0.801706\pi\)
−0.812156 + 0.583441i \(0.801706\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 10296.4 0.582451
\(51\) 10348.6 0.557131
\(52\) −5590.65 −0.286717
\(53\) 13596.2 0.664858 0.332429 0.943128i \(-0.392132\pi\)
0.332429 + 0.943128i \(0.392132\pi\)
\(54\) 2916.00 0.136083
\(55\) −11283.2 −0.502952
\(56\) 0 0
\(57\) 25156.8 1.02558
\(58\) −3036.13 −0.118509
\(59\) 26358.8 0.985816 0.492908 0.870081i \(-0.335934\pi\)
0.492908 + 0.870081i \(0.335934\pi\)
\(60\) 10870.9 0.389841
\(61\) −35321.8 −1.21540 −0.607698 0.794168i \(-0.707907\pi\)
−0.607698 + 0.794168i \(0.707907\pi\)
\(62\) −36127.0 −1.19358
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −26378.2 −0.774394
\(66\) −5380.62 −0.152045
\(67\) 54371.9 1.47975 0.739874 0.672746i \(-0.234885\pi\)
0.739874 + 0.672746i \(0.234885\pi\)
\(68\) 18397.6 0.482489
\(69\) 16325.7 0.412810
\(70\) 0 0
\(71\) −70145.7 −1.65141 −0.825706 0.564101i \(-0.809223\pi\)
−0.825706 + 0.564101i \(0.809223\pi\)
\(72\) 5184.00 0.117851
\(73\) 44468.8 0.976671 0.488335 0.872656i \(-0.337604\pi\)
0.488335 + 0.872656i \(0.337604\pi\)
\(74\) 31179.6 0.661897
\(75\) 23166.8 0.475569
\(76\) 44723.2 0.888176
\(77\) 0 0
\(78\) −12579.0 −0.234104
\(79\) 61612.5 1.11071 0.555355 0.831613i \(-0.312582\pi\)
0.555355 + 0.831613i \(0.312582\pi\)
\(80\) 19326.0 0.337612
\(81\) 6561.00 0.111111
\(82\) −30562.0 −0.501934
\(83\) 87142.0 1.38846 0.694228 0.719755i \(-0.255746\pi\)
0.694228 + 0.719755i \(0.255746\pi\)
\(84\) 0 0
\(85\) 86804.6 1.30315
\(86\) 48755.3 0.710847
\(87\) −6831.30 −0.0967621
\(88\) −9565.55 −0.131675
\(89\) −98569.4 −1.31907 −0.659534 0.751675i \(-0.729246\pi\)
−0.659534 + 0.751675i \(0.729246\pi\)
\(90\) 24459.5 0.318304
\(91\) 0 0
\(92\) 29023.5 0.357504
\(93\) −81285.7 −0.974556
\(94\) −98395.2 −1.14856
\(95\) 211016. 2.39887
\(96\) 9216.00 0.102062
\(97\) −32342.3 −0.349013 −0.174507 0.984656i \(-0.555833\pi\)
−0.174507 + 0.984656i \(0.555833\pi\)
\(98\) 0 0
\(99\) −12106.4 −0.124144
\(100\) 41185.5 0.411855
\(101\) −31346.4 −0.305763 −0.152881 0.988245i \(-0.548855\pi\)
−0.152881 + 0.988245i \(0.548855\pi\)
\(102\) 41394.5 0.393951
\(103\) −99332.9 −0.922572 −0.461286 0.887252i \(-0.652612\pi\)
−0.461286 + 0.887252i \(0.652612\pi\)
\(104\) −22362.6 −0.202740
\(105\) 0 0
\(106\) 54384.9 0.470125
\(107\) −145268. −1.22662 −0.613310 0.789842i \(-0.710163\pi\)
−0.613310 + 0.789842i \(0.710163\pi\)
\(108\) 11664.0 0.0962250
\(109\) −180851. −1.45799 −0.728994 0.684520i \(-0.760012\pi\)
−0.728994 + 0.684520i \(0.760012\pi\)
\(110\) −45132.9 −0.355640
\(111\) 70154.0 0.540437
\(112\) 0 0
\(113\) 197832. 1.45748 0.728738 0.684793i \(-0.240107\pi\)
0.728738 + 0.684793i \(0.240107\pi\)
\(114\) 100627. 0.725193
\(115\) 136941. 0.965580
\(116\) −12144.5 −0.0837984
\(117\) −28302.7 −0.191145
\(118\) 105435. 0.697077
\(119\) 0 0
\(120\) 43483.6 0.275659
\(121\) −138712. −0.861294
\(122\) −141287. −0.859415
\(123\) −68764.5 −0.409828
\(124\) −144508. −0.843990
\(125\) −41589.2 −0.238070
\(126\) 0 0
\(127\) −33517.2 −0.184399 −0.0921996 0.995741i \(-0.529390\pi\)
−0.0921996 + 0.995741i \(0.529390\pi\)
\(128\) 16384.0 0.0883883
\(129\) 109700. 0.580404
\(130\) −105513. −0.547579
\(131\) 10808.9 0.0550305 0.0275153 0.999621i \(-0.491241\pi\)
0.0275153 + 0.999621i \(0.491241\pi\)
\(132\) −21522.5 −0.107512
\(133\) 0 0
\(134\) 217488. 1.04634
\(135\) 55033.9 0.259894
\(136\) 73590.2 0.341171
\(137\) −18932.0 −0.0861778 −0.0430889 0.999071i \(-0.513720\pi\)
−0.0430889 + 0.999071i \(0.513720\pi\)
\(138\) 65302.9 0.291900
\(139\) 168897. 0.741457 0.370729 0.928741i \(-0.379108\pi\)
0.370729 + 0.928741i \(0.379108\pi\)
\(140\) 0 0
\(141\) −221389. −0.937797
\(142\) −280583. −1.16772
\(143\) 52224.3 0.213566
\(144\) 20736.0 0.0833333
\(145\) −57301.2 −0.226331
\(146\) 177875. 0.690611
\(147\) 0 0
\(148\) 124718. 0.468032
\(149\) 264002. 0.974186 0.487093 0.873350i \(-0.338057\pi\)
0.487093 + 0.873350i \(0.338057\pi\)
\(150\) 92667.4 0.336278
\(151\) 279175. 0.996400 0.498200 0.867062i \(-0.333994\pi\)
0.498200 + 0.867062i \(0.333994\pi\)
\(152\) 178893. 0.628035
\(153\) 93137.6 0.321660
\(154\) 0 0
\(155\) −681828. −2.27953
\(156\) −50315.9 −0.165536
\(157\) −188602. −0.610658 −0.305329 0.952247i \(-0.598766\pi\)
−0.305329 + 0.952247i \(0.598766\pi\)
\(158\) 246450. 0.785391
\(159\) 122366. 0.383856
\(160\) 77304.2 0.238728
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 89717.4 0.264489 0.132244 0.991217i \(-0.457782\pi\)
0.132244 + 0.991217i \(0.457782\pi\)
\(164\) −122248. −0.354921
\(165\) −101549. −0.290379
\(166\) 348568. 0.981787
\(167\) −529411. −1.46893 −0.734467 0.678645i \(-0.762568\pi\)
−0.734467 + 0.678645i \(0.762568\pi\)
\(168\) 0 0
\(169\) −249202. −0.671172
\(170\) 347219. 0.921469
\(171\) 226411. 0.592117
\(172\) 195021. 0.502645
\(173\) −33838.3 −0.0859594 −0.0429797 0.999076i \(-0.513685\pi\)
−0.0429797 + 0.999076i \(0.513685\pi\)
\(174\) −27325.2 −0.0684211
\(175\) 0 0
\(176\) −38262.2 −0.0931083
\(177\) 237229. 0.569161
\(178\) −394278. −0.932722
\(179\) −247744. −0.577923 −0.288962 0.957341i \(-0.593310\pi\)
−0.288962 + 0.957341i \(0.593310\pi\)
\(180\) 97838.1 0.225075
\(181\) −369470. −0.838268 −0.419134 0.907924i \(-0.637666\pi\)
−0.419134 + 0.907924i \(0.637666\pi\)
\(182\) 0 0
\(183\) −317896. −0.701709
\(184\) 116094. 0.252793
\(185\) 588455. 1.26411
\(186\) −325143. −0.689115
\(187\) −171858. −0.359390
\(188\) −393581. −0.812156
\(189\) 0 0
\(190\) 844065. 1.69626
\(191\) −485225. −0.962408 −0.481204 0.876609i \(-0.659800\pi\)
−0.481204 + 0.876609i \(0.659800\pi\)
\(192\) 36864.0 0.0721688
\(193\) −330817. −0.639285 −0.319643 0.947538i \(-0.603563\pi\)
−0.319643 + 0.947538i \(0.603563\pi\)
\(194\) −129369. −0.246790
\(195\) −237404. −0.447097
\(196\) 0 0
\(197\) −161963. −0.297337 −0.148669 0.988887i \(-0.547499\pi\)
−0.148669 + 0.988887i \(0.547499\pi\)
\(198\) −48425.6 −0.0877833
\(199\) −55396.2 −0.0991625 −0.0495813 0.998770i \(-0.515789\pi\)
−0.0495813 + 0.998770i \(0.515789\pi\)
\(200\) 164742. 0.291226
\(201\) 489347. 0.854333
\(202\) −125386. −0.216207
\(203\) 0 0
\(204\) 165578. 0.278565
\(205\) −576799. −0.958605
\(206\) −397332. −0.652357
\(207\) 146932. 0.238336
\(208\) −89450.4 −0.143359
\(209\) −417776. −0.661572
\(210\) 0 0
\(211\) 481748. 0.744926 0.372463 0.928047i \(-0.378513\pi\)
0.372463 + 0.928047i \(0.378513\pi\)
\(212\) 217540. 0.332429
\(213\) −631312. −0.953443
\(214\) −581072. −0.867352
\(215\) 920164. 1.35759
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) −723403. −1.03095
\(219\) 400219. 0.563881
\(220\) −180531. −0.251476
\(221\) −401775. −0.553353
\(222\) 280616. 0.382147
\(223\) −638779. −0.860178 −0.430089 0.902787i \(-0.641518\pi\)
−0.430089 + 0.902787i \(0.641518\pi\)
\(224\) 0 0
\(225\) 208502. 0.274570
\(226\) 791330. 1.03059
\(227\) 525682. 0.677109 0.338554 0.940947i \(-0.390062\pi\)
0.338554 + 0.940947i \(0.390062\pi\)
\(228\) 402509. 0.512789
\(229\) −932686. −1.17529 −0.587647 0.809117i \(-0.699946\pi\)
−0.587647 + 0.809117i \(0.699946\pi\)
\(230\) 547763. 0.682768
\(231\) 0 0
\(232\) −48578.1 −0.0592544
\(233\) −707793. −0.854115 −0.427058 0.904224i \(-0.640450\pi\)
−0.427058 + 0.904224i \(0.640450\pi\)
\(234\) −113211. −0.135160
\(235\) −1.85702e6 −2.19355
\(236\) 421741. 0.492908
\(237\) 554512. 0.641269
\(238\) 0 0
\(239\) −500614. −0.566902 −0.283451 0.958987i \(-0.591479\pi\)
−0.283451 + 0.958987i \(0.591479\pi\)
\(240\) 173934. 0.194920
\(241\) −1.20822e6 −1.33999 −0.669997 0.742364i \(-0.733705\pi\)
−0.669997 + 0.742364i \(0.733705\pi\)
\(242\) −554849. −0.609027
\(243\) 59049.0 0.0641500
\(244\) −565148. −0.607698
\(245\) 0 0
\(246\) −275058. −0.289792
\(247\) −976688. −1.01862
\(248\) −578032. −0.596791
\(249\) 784278. 0.801625
\(250\) −166357. −0.168341
\(251\) −97826.7 −0.0980106 −0.0490053 0.998799i \(-0.515605\pi\)
−0.0490053 + 0.998799i \(0.515605\pi\)
\(252\) 0 0
\(253\) −271119. −0.266292
\(254\) −134069. −0.130390
\(255\) 781242. 0.752376
\(256\) 65536.0 0.0625000
\(257\) 1.10791e6 1.04634 0.523170 0.852228i \(-0.324749\pi\)
0.523170 + 0.852228i \(0.324749\pi\)
\(258\) 438798. 0.410408
\(259\) 0 0
\(260\) −422052. −0.387197
\(261\) −61481.7 −0.0558656
\(262\) 43235.6 0.0389125
\(263\) 1.50685e6 1.34333 0.671663 0.740856i \(-0.265580\pi\)
0.671663 + 0.740856i \(0.265580\pi\)
\(264\) −86090.0 −0.0760226
\(265\) 1.02641e6 0.897856
\(266\) 0 0
\(267\) −887125. −0.761564
\(268\) 869951. 0.739874
\(269\) 2.13502e6 1.79896 0.899481 0.436960i \(-0.143945\pi\)
0.899481 + 0.436960i \(0.143945\pi\)
\(270\) 220136. 0.183773
\(271\) −1.22860e6 −1.01622 −0.508108 0.861293i \(-0.669655\pi\)
−0.508108 + 0.861293i \(0.669655\pi\)
\(272\) 294361. 0.241245
\(273\) 0 0
\(274\) −75728.1 −0.0609369
\(275\) −384729. −0.306777
\(276\) 261212. 0.206405
\(277\) −1.84682e6 −1.44619 −0.723097 0.690747i \(-0.757282\pi\)
−0.723097 + 0.690747i \(0.757282\pi\)
\(278\) 675590. 0.524289
\(279\) −731571. −0.562660
\(280\) 0 0
\(281\) −2.28326e6 −1.72500 −0.862500 0.506056i \(-0.831103\pi\)
−0.862500 + 0.506056i \(0.831103\pi\)
\(282\) −885557. −0.663122
\(283\) −1.33693e6 −0.992296 −0.496148 0.868238i \(-0.665253\pi\)
−0.496148 + 0.868238i \(0.665253\pi\)
\(284\) −1.12233e6 −0.825706
\(285\) 1.89915e6 1.38499
\(286\) 208897. 0.151014
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) −97709.0 −0.0688161
\(290\) −229205. −0.160040
\(291\) −291081. −0.201503
\(292\) 711501. 0.488335
\(293\) 2.23033e6 1.51775 0.758875 0.651236i \(-0.225749\pi\)
0.758875 + 0.651236i \(0.225749\pi\)
\(294\) 0 0
\(295\) 1.98989e6 1.33129
\(296\) 498873. 0.330949
\(297\) −108958. −0.0716748
\(298\) 1.05601e6 0.688853
\(299\) −633830. −0.410010
\(300\) 370670. 0.237785
\(301\) 0 0
\(302\) 1.11670e6 0.704561
\(303\) −282118. −0.176532
\(304\) 715572. 0.444088
\(305\) −2.66652e6 −1.64133
\(306\) 372550. 0.227448
\(307\) −1.77782e6 −1.07657 −0.538284 0.842763i \(-0.680927\pi\)
−0.538284 + 0.842763i \(0.680927\pi\)
\(308\) 0 0
\(309\) −893996. −0.532647
\(310\) −2.72731e6 −1.61187
\(311\) −1.40272e6 −0.822373 −0.411187 0.911551i \(-0.634886\pi\)
−0.411187 + 0.911551i \(0.634886\pi\)
\(312\) −201264. −0.117052
\(313\) −1.21894e6 −0.703271 −0.351636 0.936137i \(-0.614374\pi\)
−0.351636 + 0.936137i \(0.614374\pi\)
\(314\) −754409. −0.431800
\(315\) 0 0
\(316\) 985799. 0.555355
\(317\) 2.68001e6 1.49792 0.748961 0.662615i \(-0.230553\pi\)
0.748961 + 0.662615i \(0.230553\pi\)
\(318\) 489464. 0.271427
\(319\) 113446. 0.0624186
\(320\) 309217. 0.168806
\(321\) −1.30741e6 −0.708190
\(322\) 0 0
\(323\) 3.21405e6 1.71414
\(324\) 104976. 0.0555556
\(325\) −899429. −0.472344
\(326\) 358869. 0.187022
\(327\) −1.62766e6 −0.841770
\(328\) −488992. −0.250967
\(329\) 0 0
\(330\) −406196. −0.205329
\(331\) 142560. 0.0715202 0.0357601 0.999360i \(-0.488615\pi\)
0.0357601 + 0.999360i \(0.488615\pi\)
\(332\) 1.39427e6 0.694228
\(333\) 631386. 0.312021
\(334\) −2.11765e6 −1.03869
\(335\) 4.10466e6 1.99832
\(336\) 0 0
\(337\) −1.21206e6 −0.581367 −0.290683 0.956819i \(-0.593883\pi\)
−0.290683 + 0.956819i \(0.593883\pi\)
\(338\) −996806. −0.474591
\(339\) 1.78049e6 0.841474
\(340\) 1.38887e6 0.651577
\(341\) 1.34990e6 0.628660
\(342\) 905645. 0.418690
\(343\) 0 0
\(344\) 780085. 0.355423
\(345\) 1.23247e6 0.557478
\(346\) −135353. −0.0607825
\(347\) 3.46853e6 1.54640 0.773199 0.634163i \(-0.218655\pi\)
0.773199 + 0.634163i \(0.218655\pi\)
\(348\) −109301. −0.0483810
\(349\) −1.01692e6 −0.446911 −0.223456 0.974714i \(-0.571734\pi\)
−0.223456 + 0.974714i \(0.571734\pi\)
\(350\) 0 0
\(351\) −254724. −0.110358
\(352\) −153049. −0.0658375
\(353\) −1.56385e6 −0.667974 −0.333987 0.942578i \(-0.608394\pi\)
−0.333987 + 0.942578i \(0.608394\pi\)
\(354\) 948917. 0.402458
\(355\) −5.29547e6 −2.23015
\(356\) −1.57711e6 −0.659534
\(357\) 0 0
\(358\) −990975. −0.408653
\(359\) 49553.1 0.0202925 0.0101462 0.999949i \(-0.496770\pi\)
0.0101462 + 0.999949i \(0.496770\pi\)
\(360\) 391352. 0.159152
\(361\) 5.33705e6 2.15543
\(362\) −1.47788e6 −0.592745
\(363\) −1.24841e6 −0.497268
\(364\) 0 0
\(365\) 3.35705e6 1.31894
\(366\) −1.27158e6 −0.496183
\(367\) −3.54831e6 −1.37517 −0.687585 0.726104i \(-0.741329\pi\)
−0.687585 + 0.726104i \(0.741329\pi\)
\(368\) 464376. 0.178752
\(369\) −618880. −0.236614
\(370\) 2.35382e6 0.893858
\(371\) 0 0
\(372\) −1.30057e6 −0.487278
\(373\) −2.25573e6 −0.839490 −0.419745 0.907642i \(-0.637880\pi\)
−0.419745 + 0.907642i \(0.637880\pi\)
\(374\) −687432. −0.254127
\(375\) −374302. −0.137450
\(376\) −1.57432e6 −0.574281
\(377\) 265218. 0.0961059
\(378\) 0 0
\(379\) 4.39503e6 1.57168 0.785840 0.618430i \(-0.212231\pi\)
0.785840 + 0.618430i \(0.212231\pi\)
\(380\) 3.37626e6 1.19944
\(381\) −301655. −0.106463
\(382\) −1.94090e6 −0.680525
\(383\) 1.22781e6 0.427694 0.213847 0.976867i \(-0.431401\pi\)
0.213847 + 0.976867i \(0.431401\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) −1.32327e6 −0.452043
\(387\) 987296. 0.335096
\(388\) −517477. −0.174507
\(389\) 2.05424e6 0.688300 0.344150 0.938915i \(-0.388167\pi\)
0.344150 + 0.938915i \(0.388167\pi\)
\(390\) −949616. −0.316145
\(391\) 2.08579e6 0.689967
\(392\) 0 0
\(393\) 97280.2 0.0317719
\(394\) −647851. −0.210249
\(395\) 4.65127e6 1.49996
\(396\) −193702. −0.0620722
\(397\) 3.80367e6 1.21123 0.605615 0.795758i \(-0.292927\pi\)
0.605615 + 0.795758i \(0.292927\pi\)
\(398\) −221585. −0.0701185
\(399\) 0 0
\(400\) 658968. 0.205928
\(401\) 1.18524e6 0.368084 0.184042 0.982918i \(-0.441082\pi\)
0.184042 + 0.982918i \(0.441082\pi\)
\(402\) 1.95739e6 0.604104
\(403\) 3.15583e6 0.967947
\(404\) −501543. −0.152881
\(405\) 495305. 0.150050
\(406\) 0 0
\(407\) −1.16504e6 −0.348621
\(408\) 662312. 0.196975
\(409\) 4.30393e6 1.27220 0.636102 0.771605i \(-0.280546\pi\)
0.636102 + 0.771605i \(0.280546\pi\)
\(410\) −2.30720e6 −0.677836
\(411\) −170388. −0.0497548
\(412\) −1.58933e6 −0.461286
\(413\) 0 0
\(414\) 587726. 0.168529
\(415\) 6.57855e6 1.87504
\(416\) −357802. −0.101370
\(417\) 1.52008e6 0.428080
\(418\) −1.67110e6 −0.467802
\(419\) 113725. 0.0316461 0.0158230 0.999875i \(-0.494963\pi\)
0.0158230 + 0.999875i \(0.494963\pi\)
\(420\) 0 0
\(421\) 443417. 0.121929 0.0609645 0.998140i \(-0.480582\pi\)
0.0609645 + 0.998140i \(0.480582\pi\)
\(422\) 1.92699e6 0.526743
\(423\) −1.99250e6 −0.541437
\(424\) 870158. 0.235063
\(425\) 2.95981e6 0.794863
\(426\) −2.52525e6 −0.674186
\(427\) 0 0
\(428\) −2.32429e6 −0.613310
\(429\) 470019. 0.123302
\(430\) 3.68065e6 0.959962
\(431\) 4.63310e6 1.20138 0.600688 0.799484i \(-0.294893\pi\)
0.600688 + 0.799484i \(0.294893\pi\)
\(432\) 186624. 0.0481125
\(433\) −6.57955e6 −1.68646 −0.843231 0.537552i \(-0.819349\pi\)
−0.843231 + 0.537552i \(0.819349\pi\)
\(434\) 0 0
\(435\) −515711. −0.130672
\(436\) −2.89361e6 −0.728994
\(437\) 5.07041e6 1.27010
\(438\) 1.60088e6 0.398724
\(439\) 1.82070e6 0.450896 0.225448 0.974255i \(-0.427615\pi\)
0.225448 + 0.974255i \(0.427615\pi\)
\(440\) −722126. −0.177820
\(441\) 0 0
\(442\) −1.60710e6 −0.391279
\(443\) −2.06990e6 −0.501119 −0.250559 0.968101i \(-0.580615\pi\)
−0.250559 + 0.968101i \(0.580615\pi\)
\(444\) 1.12246e6 0.270218
\(445\) −7.44123e6 −1.78133
\(446\) −2.55511e6 −0.608238
\(447\) 2.37602e6 0.562447
\(448\) 0 0
\(449\) 5.72581e6 1.34036 0.670180 0.742199i \(-0.266217\pi\)
0.670180 + 0.742199i \(0.266217\pi\)
\(450\) 834007. 0.194150
\(451\) 1.14196e6 0.264369
\(452\) 3.16532e6 0.728738
\(453\) 2.51257e6 0.575272
\(454\) 2.10273e6 0.478788
\(455\) 0 0
\(456\) 1.61004e6 0.362596
\(457\) 318676. 0.0713771 0.0356886 0.999363i \(-0.488638\pi\)
0.0356886 + 0.999363i \(0.488638\pi\)
\(458\) −3.73074e6 −0.831059
\(459\) 838238. 0.185710
\(460\) 2.19105e6 0.482790
\(461\) 3.42470e6 0.750535 0.375267 0.926917i \(-0.377551\pi\)
0.375267 + 0.926917i \(0.377551\pi\)
\(462\) 0 0
\(463\) 3.82945e6 0.830201 0.415101 0.909775i \(-0.363746\pi\)
0.415101 + 0.909775i \(0.363746\pi\)
\(464\) −194312. −0.0418992
\(465\) −6.13645e6 −1.31609
\(466\) −2.83117e6 −0.603951
\(467\) −2.84462e6 −0.603576 −0.301788 0.953375i \(-0.597583\pi\)
−0.301788 + 0.953375i \(0.597583\pi\)
\(468\) −452843. −0.0955725
\(469\) 0 0
\(470\) −7.42809e6 −1.55107
\(471\) −1.69742e6 −0.352563
\(472\) 1.68696e6 0.348539
\(473\) −1.82176e6 −0.374403
\(474\) 2.21805e6 0.453446
\(475\) 7.19511e6 1.46320
\(476\) 0 0
\(477\) 1.10129e6 0.221619
\(478\) −2.00246e6 −0.400860
\(479\) −1.30365e6 −0.259611 −0.129806 0.991539i \(-0.541435\pi\)
−0.129806 + 0.991539i \(0.541435\pi\)
\(480\) 695737. 0.137830
\(481\) −2.72366e6 −0.536772
\(482\) −4.83287e6 −0.947519
\(483\) 0 0
\(484\) −2.21940e6 −0.430647
\(485\) −2.44160e6 −0.471324
\(486\) 236196. 0.0453609
\(487\) 6.23624e6 1.19152 0.595759 0.803164i \(-0.296852\pi\)
0.595759 + 0.803164i \(0.296852\pi\)
\(488\) −2.26059e6 −0.429707
\(489\) 807456. 0.152703
\(490\) 0 0
\(491\) −3.93928e6 −0.737417 −0.368709 0.929545i \(-0.620200\pi\)
−0.368709 + 0.929545i \(0.620200\pi\)
\(492\) −1.10023e6 −0.204914
\(493\) −872772. −0.161727
\(494\) −3.90675e6 −0.720275
\(495\) −913941. −0.167651
\(496\) −2.31213e6 −0.421995
\(497\) 0 0
\(498\) 3.13711e6 0.566835
\(499\) 7.97571e6 1.43390 0.716948 0.697126i \(-0.245538\pi\)
0.716948 + 0.697126i \(0.245538\pi\)
\(500\) −665427. −0.119035
\(501\) −4.76470e6 −0.848089
\(502\) −391307. −0.0693040
\(503\) 2.70777e6 0.477190 0.238595 0.971119i \(-0.423313\pi\)
0.238595 + 0.971119i \(0.423313\pi\)
\(504\) 0 0
\(505\) −2.36641e6 −0.412917
\(506\) −1.08448e6 −0.188297
\(507\) −2.24281e6 −0.387502
\(508\) −536276. −0.0921996
\(509\) −3.90049e6 −0.667306 −0.333653 0.942696i \(-0.608281\pi\)
−0.333653 + 0.942696i \(0.608281\pi\)
\(510\) 3.12497e6 0.532010
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 2.03770e6 0.341859
\(514\) 4.43165e6 0.739874
\(515\) −7.49887e6 −1.24589
\(516\) 1.75519e6 0.290202
\(517\) 3.67658e6 0.604947
\(518\) 0 0
\(519\) −304545. −0.0496287
\(520\) −1.68821e6 −0.273790
\(521\) −7.00063e6 −1.12991 −0.564954 0.825122i \(-0.691106\pi\)
−0.564954 + 0.825122i \(0.691106\pi\)
\(522\) −245927. −0.0395029
\(523\) 2.11208e6 0.337641 0.168821 0.985647i \(-0.446004\pi\)
0.168821 + 0.985647i \(0.446004\pi\)
\(524\) 172943. 0.0275153
\(525\) 0 0
\(526\) 6.02741e6 0.949875
\(527\) −1.03851e7 −1.62887
\(528\) −344360. −0.0537561
\(529\) −3.14586e6 −0.488765
\(530\) 4.10564e6 0.634880
\(531\) 2.13506e6 0.328605
\(532\) 0 0
\(533\) 2.66971e6 0.407048
\(534\) −3.54850e6 −0.538507
\(535\) −1.09666e7 −1.65649
\(536\) 3.47980e6 0.523170
\(537\) −2.22969e6 −0.333664
\(538\) 8.54009e6 1.27206
\(539\) 0 0
\(540\) 880543. 0.129947
\(541\) 5.70567e6 0.838134 0.419067 0.907955i \(-0.362357\pi\)
0.419067 + 0.907955i \(0.362357\pi\)
\(542\) −4.91439e6 −0.718574
\(543\) −3.32523e6 −0.483974
\(544\) 1.17744e6 0.170586
\(545\) −1.36528e7 −1.96894
\(546\) 0 0
\(547\) 2.28054e6 0.325888 0.162944 0.986635i \(-0.447901\pi\)
0.162944 + 0.986635i \(0.447901\pi\)
\(548\) −302912. −0.0430889
\(549\) −2.86106e6 −0.405132
\(550\) −1.53891e6 −0.216924
\(551\) −2.12165e6 −0.297711
\(552\) 1.04485e6 0.145950
\(553\) 0 0
\(554\) −7.38730e6 −1.02261
\(555\) 5.29609e6 0.729832
\(556\) 2.70236e6 0.370729
\(557\) −6.73941e6 −0.920415 −0.460208 0.887811i \(-0.652225\pi\)
−0.460208 + 0.887811i \(0.652225\pi\)
\(558\) −2.92629e6 −0.397861
\(559\) −4.25897e6 −0.576468
\(560\) 0 0
\(561\) −1.54672e6 −0.207494
\(562\) −9.13304e6 −1.21976
\(563\) 9.66820e6 1.28551 0.642754 0.766073i \(-0.277792\pi\)
0.642754 + 0.766073i \(0.277792\pi\)
\(564\) −3.54223e6 −0.468898
\(565\) 1.49348e7 1.96825
\(566\) −5.34770e6 −0.701659
\(567\) 0 0
\(568\) −4.48933e6 −0.583862
\(569\) −1.39587e7 −1.80744 −0.903719 0.428125i \(-0.859174\pi\)
−0.903719 + 0.428125i \(0.859174\pi\)
\(570\) 7.59659e6 0.979335
\(571\) −2.35841e6 −0.302711 −0.151355 0.988479i \(-0.548364\pi\)
−0.151355 + 0.988479i \(0.548364\pi\)
\(572\) 835589. 0.106783
\(573\) −4.36702e6 −0.555647
\(574\) 0 0
\(575\) 4.66933e6 0.588959
\(576\) 331776. 0.0416667
\(577\) −5.01098e6 −0.626589 −0.313295 0.949656i \(-0.601433\pi\)
−0.313295 + 0.949656i \(0.601433\pi\)
\(578\) −390836. −0.0486603
\(579\) −2.97735e6 −0.369091
\(580\) −916819. −0.113165
\(581\) 0 0
\(582\) −1.16432e6 −0.142484
\(583\) −2.03211e6 −0.247615
\(584\) 2.84600e6 0.345305
\(585\) −2.13664e6 −0.258131
\(586\) 8.92132e6 1.07321
\(587\) −3.95106e6 −0.473280 −0.236640 0.971597i \(-0.576046\pi\)
−0.236640 + 0.971597i \(0.576046\pi\)
\(588\) 0 0
\(589\) −2.52455e7 −2.99845
\(590\) 7.95955e6 0.941367
\(591\) −1.45766e6 −0.171668
\(592\) 1.99549e6 0.234016
\(593\) 2.53680e6 0.296244 0.148122 0.988969i \(-0.452677\pi\)
0.148122 + 0.988969i \(0.452677\pi\)
\(594\) −435830. −0.0506817
\(595\) 0 0
\(596\) 4.22403e6 0.487093
\(597\) −498566. −0.0572515
\(598\) −2.53532e6 −0.289921
\(599\) 7.17714e6 0.817305 0.408652 0.912690i \(-0.365999\pi\)
0.408652 + 0.912690i \(0.365999\pi\)
\(600\) 1.48268e6 0.168139
\(601\) −1.12527e7 −1.27078 −0.635392 0.772190i \(-0.719162\pi\)
−0.635392 + 0.772190i \(0.719162\pi\)
\(602\) 0 0
\(603\) 4.40413e6 0.493249
\(604\) 4.46680e6 0.498200
\(605\) −1.04717e7 −1.16313
\(606\) −1.12847e6 −0.124827
\(607\) 1.40370e7 1.54633 0.773167 0.634202i \(-0.218671\pi\)
0.773167 + 0.634202i \(0.218671\pi\)
\(608\) 2.86229e6 0.314018
\(609\) 0 0
\(610\) −1.06661e7 −1.16059
\(611\) 8.59521e6 0.931437
\(612\) 1.49020e6 0.160830
\(613\) −7.62872e6 −0.819975 −0.409988 0.912091i \(-0.634467\pi\)
−0.409988 + 0.912091i \(0.634467\pi\)
\(614\) −7.11128e6 −0.761249
\(615\) −5.19119e6 −0.553451
\(616\) 0 0
\(617\) −4.41080e6 −0.466450 −0.233225 0.972423i \(-0.574928\pi\)
−0.233225 + 0.972423i \(0.574928\pi\)
\(618\) −3.57598e6 −0.376638
\(619\) 9.04355e6 0.948664 0.474332 0.880346i \(-0.342690\pi\)
0.474332 + 0.880346i \(0.342690\pi\)
\(620\) −1.09092e7 −1.13977
\(621\) 1.32238e6 0.137603
\(622\) −5.61087e6 −0.581506
\(623\) 0 0
\(624\) −805054. −0.0827682
\(625\) −1.11837e7 −1.14521
\(626\) −4.87578e6 −0.497288
\(627\) −3.75998e6 −0.381959
\(628\) −3.01764e6 −0.305329
\(629\) 8.96293e6 0.903282
\(630\) 0 0
\(631\) −7.33039e6 −0.732916 −0.366458 0.930435i \(-0.619430\pi\)
−0.366458 + 0.930435i \(0.619430\pi\)
\(632\) 3.94320e6 0.392695
\(633\) 4.33573e6 0.430083
\(634\) 1.07201e7 1.05919
\(635\) −2.53030e6 −0.249022
\(636\) 1.95786e6 0.191928
\(637\) 0 0
\(638\) 453786. 0.0441366
\(639\) −5.68181e6 −0.550471
\(640\) 1.23687e6 0.119364
\(641\) 3.68824e6 0.354547 0.177273 0.984162i \(-0.443272\pi\)
0.177273 + 0.984162i \(0.443272\pi\)
\(642\) −5.22965e6 −0.500766
\(643\) 1.17584e7 1.12155 0.560776 0.827968i \(-0.310503\pi\)
0.560776 + 0.827968i \(0.310503\pi\)
\(644\) 0 0
\(645\) 8.28147e6 0.783806
\(646\) 1.28562e7 1.21208
\(647\) 9.94050e6 0.933572 0.466786 0.884370i \(-0.345412\pi\)
0.466786 + 0.884370i \(0.345412\pi\)
\(648\) 419904. 0.0392837
\(649\) −3.93963e6 −0.367151
\(650\) −3.59772e6 −0.333998
\(651\) 0 0
\(652\) 1.43548e6 0.132244
\(653\) −1.02620e6 −0.0941778 −0.0470889 0.998891i \(-0.514994\pi\)
−0.0470889 + 0.998891i \(0.514994\pi\)
\(654\) −6.51063e6 −0.595221
\(655\) 815990. 0.0743159
\(656\) −1.95597e6 −0.177461
\(657\) 3.60197e6 0.325557
\(658\) 0 0
\(659\) 1.00207e7 0.898846 0.449423 0.893319i \(-0.351630\pi\)
0.449423 + 0.893319i \(0.351630\pi\)
\(660\) −1.62478e6 −0.145190
\(661\) −2.62826e6 −0.233972 −0.116986 0.993134i \(-0.537323\pi\)
−0.116986 + 0.993134i \(0.537323\pi\)
\(662\) 570241. 0.0505724
\(663\) −3.61597e6 −0.319478
\(664\) 5.57709e6 0.490893
\(665\) 0 0
\(666\) 2.52554e6 0.220632
\(667\) −1.37686e6 −0.119833
\(668\) −8.47058e6 −0.734467
\(669\) −5.74901e6 −0.496624
\(670\) 1.64187e7 1.41303
\(671\) 5.27925e6 0.452654
\(672\) 0 0
\(673\) −1.50220e7 −1.27847 −0.639233 0.769013i \(-0.720748\pi\)
−0.639233 + 0.769013i \(0.720748\pi\)
\(674\) −4.84825e6 −0.411088
\(675\) 1.87651e6 0.158523
\(676\) −3.98723e6 −0.335586
\(677\) 6.03310e6 0.505905 0.252953 0.967479i \(-0.418598\pi\)
0.252953 + 0.967479i \(0.418598\pi\)
\(678\) 7.12197e6 0.595012
\(679\) 0 0
\(680\) 5.55550e6 0.460734
\(681\) 4.73114e6 0.390929
\(682\) 5.39960e6 0.444530
\(683\) 1.10720e7 0.908187 0.454093 0.890954i \(-0.349963\pi\)
0.454093 + 0.890954i \(0.349963\pi\)
\(684\) 3.62258e6 0.296059
\(685\) −1.42922e6 −0.116379
\(686\) 0 0
\(687\) −8.39417e6 −0.678557
\(688\) 3.12034e6 0.251322
\(689\) −4.75073e6 −0.381253
\(690\) 4.92987e6 0.394196
\(691\) 1.05548e7 0.840919 0.420460 0.907311i \(-0.361869\pi\)
0.420460 + 0.907311i \(0.361869\pi\)
\(692\) −541413. −0.0429797
\(693\) 0 0
\(694\) 1.38741e7 1.09347
\(695\) 1.27505e7 1.00130
\(696\) −437203. −0.0342106
\(697\) −8.78540e6 −0.684983
\(698\) −4.06766e6 −0.316014
\(699\) −6.37014e6 −0.493124
\(700\) 0 0
\(701\) −7.20675e6 −0.553917 −0.276958 0.960882i \(-0.589326\pi\)
−0.276958 + 0.960882i \(0.589326\pi\)
\(702\) −1.01890e6 −0.0780346
\(703\) 2.17883e7 1.66278
\(704\) −612195. −0.0465541
\(705\) −1.67132e7 −1.26645
\(706\) −6.25542e6 −0.472329
\(707\) 0 0
\(708\) 3.79567e6 0.284581
\(709\) 2.69373e6 0.201252 0.100626 0.994924i \(-0.467916\pi\)
0.100626 + 0.994924i \(0.467916\pi\)
\(710\) −2.11819e7 −1.57695
\(711\) 4.99061e6 0.370237
\(712\) −6.30844e6 −0.466361
\(713\) −1.63833e7 −1.20692
\(714\) 0 0
\(715\) 3.94253e6 0.288410
\(716\) −3.96390e6 −0.288962
\(717\) −4.50552e6 −0.327301
\(718\) 198213. 0.0143489
\(719\) −6.92550e6 −0.499608 −0.249804 0.968296i \(-0.580366\pi\)
−0.249804 + 0.968296i \(0.580366\pi\)
\(720\) 1.56541e6 0.112537
\(721\) 0 0
\(722\) 2.13482e7 1.52412
\(723\) −1.08740e7 −0.773646
\(724\) −5.91152e6 −0.419134
\(725\) −1.95382e6 −0.138051
\(726\) −4.99364e6 −0.351622
\(727\) −4.11366e6 −0.288664 −0.144332 0.989529i \(-0.546103\pi\)
−0.144332 + 0.989529i \(0.546103\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.34282e7 0.932634
\(731\) 1.40153e7 0.970083
\(732\) −5.08633e6 −0.350855
\(733\) −7.92038e6 −0.544485 −0.272243 0.962229i \(-0.587765\pi\)
−0.272243 + 0.962229i \(0.587765\pi\)
\(734\) −1.41932e7 −0.972392
\(735\) 0 0
\(736\) 1.85750e6 0.126397
\(737\) −8.12652e6 −0.551107
\(738\) −2.47552e6 −0.167311
\(739\) 1.60410e7 1.08049 0.540245 0.841508i \(-0.318332\pi\)
0.540245 + 0.841508i \(0.318332\pi\)
\(740\) 9.41527e6 0.632053
\(741\) −8.79019e6 −0.588102
\(742\) 0 0
\(743\) 1.53453e7 1.01977 0.509887 0.860241i \(-0.329687\pi\)
0.509887 + 0.860241i \(0.329687\pi\)
\(744\) −5.20229e6 −0.344558
\(745\) 1.99301e7 1.31559
\(746\) −9.02293e6 −0.593609
\(747\) 7.05850e6 0.462819
\(748\) −2.74973e6 −0.179695
\(749\) 0 0
\(750\) −1.49721e6 −0.0971918
\(751\) 2.24976e7 1.45558 0.727790 0.685800i \(-0.240547\pi\)
0.727790 + 0.685800i \(0.240547\pi\)
\(752\) −6.29729e6 −0.406078
\(753\) −880440. −0.0565864
\(754\) 1.06087e6 0.0679571
\(755\) 2.10756e7 1.34559
\(756\) 0 0
\(757\) 2.30349e7 1.46099 0.730494 0.682919i \(-0.239290\pi\)
0.730494 + 0.682919i \(0.239290\pi\)
\(758\) 1.75801e7 1.11135
\(759\) −2.44007e6 −0.153744
\(760\) 1.35050e7 0.848129
\(761\) −5.40735e6 −0.338472 −0.169236 0.985576i \(-0.554130\pi\)
−0.169236 + 0.985576i \(0.554130\pi\)
\(762\) −1.20662e6 −0.0752806
\(763\) 0 0
\(764\) −7.76359e6 −0.481204
\(765\) 7.03118e6 0.434385
\(766\) 4.91123e6 0.302426
\(767\) −9.21019e6 −0.565301
\(768\) 589824. 0.0360844
\(769\) 7.93100e6 0.483629 0.241814 0.970323i \(-0.422258\pi\)
0.241814 + 0.970323i \(0.422258\pi\)
\(770\) 0 0
\(771\) 9.97122e6 0.604105
\(772\) −5.29307e6 −0.319643
\(773\) −269579. −0.0162270 −0.00811349 0.999967i \(-0.502583\pi\)
−0.00811349 + 0.999967i \(0.502583\pi\)
\(774\) 3.94918e6 0.236949
\(775\) −2.32486e7 −1.39041
\(776\) −2.06991e6 −0.123395
\(777\) 0 0
\(778\) 8.21698e6 0.486702
\(779\) −2.13567e7 −1.26093
\(780\) −3.79846e6 −0.223548
\(781\) 1.04841e7 0.615041
\(782\) 8.34315e6 0.487880
\(783\) −553335. −0.0322540
\(784\) 0 0
\(785\) −1.42380e7 −0.824662
\(786\) 389121. 0.0224661
\(787\) 8.98621e6 0.517177 0.258589 0.965988i \(-0.416743\pi\)
0.258589 + 0.965988i \(0.416743\pi\)
\(788\) −2.59140e6 −0.148669
\(789\) 1.35617e7 0.775570
\(790\) 1.86051e7 1.06063
\(791\) 0 0
\(792\) −774810. −0.0438917
\(793\) 1.23420e7 0.696950
\(794\) 1.52147e7 0.856469
\(795\) 9.23770e6 0.518377
\(796\) −886340. −0.0495813
\(797\) 2.65558e7 1.48086 0.740429 0.672135i \(-0.234622\pi\)
0.740429 + 0.672135i \(0.234622\pi\)
\(798\) 0 0
\(799\) −2.82849e7 −1.56743
\(800\) 2.63587e6 0.145613
\(801\) −7.98412e6 −0.439689
\(802\) 4.74098e6 0.260275
\(803\) −6.64638e6 −0.363745
\(804\) 7.82956e6 0.427166
\(805\) 0 0
\(806\) 1.26233e7 0.684442
\(807\) 1.92152e7 1.03863
\(808\) −2.00617e6 −0.108103
\(809\) 2.52557e7 1.35671 0.678356 0.734733i \(-0.262693\pi\)
0.678356 + 0.734733i \(0.262693\pi\)
\(810\) 1.98122e6 0.106101
\(811\) 4.76866e6 0.254592 0.127296 0.991865i \(-0.459370\pi\)
0.127296 + 0.991865i \(0.459370\pi\)
\(812\) 0 0
\(813\) −1.10574e7 −0.586713
\(814\) −4.66015e6 −0.246513
\(815\) 6.77297e6 0.357179
\(816\) 2.64925e6 0.139283
\(817\) 3.40702e7 1.78575
\(818\) 1.72157e7 0.899585
\(819\) 0 0
\(820\) −9.22878e6 −0.479303
\(821\) −5.95534e6 −0.308353 −0.154177 0.988043i \(-0.549273\pi\)
−0.154177 + 0.988043i \(0.549273\pi\)
\(822\) −681553. −0.0351819
\(823\) 1.06659e7 0.548907 0.274453 0.961600i \(-0.411503\pi\)
0.274453 + 0.961600i \(0.411503\pi\)
\(824\) −6.35731e6 −0.326178
\(825\) −3.46256e6 −0.177118
\(826\) 0 0
\(827\) −8.52356e6 −0.433369 −0.216684 0.976242i \(-0.569524\pi\)
−0.216684 + 0.976242i \(0.569524\pi\)
\(828\) 2.35090e6 0.119168
\(829\) −3.87458e6 −0.195811 −0.0979057 0.995196i \(-0.531214\pi\)
−0.0979057 + 0.995196i \(0.531214\pi\)
\(830\) 2.63142e7 1.32585
\(831\) −1.66214e7 −0.834960
\(832\) −1.43121e6 −0.0716794
\(833\) 0 0
\(834\) 6.08031e6 0.302699
\(835\) −3.99665e7 −1.98372
\(836\) −6.68441e6 −0.330786
\(837\) −6.58414e6 −0.324852
\(838\) 454899. 0.0223772
\(839\) −2.13769e7 −1.04843 −0.524215 0.851586i \(-0.675641\pi\)
−0.524215 + 0.851586i \(0.675641\pi\)
\(840\) 0 0
\(841\) −1.99350e7 −0.971911
\(842\) 1.77367e6 0.0862168
\(843\) −2.05493e7 −0.995930
\(844\) 7.70796e6 0.372463
\(845\) −1.88128e7 −0.906383
\(846\) −7.97001e6 −0.382854
\(847\) 0 0
\(848\) 3.48063e6 0.166214
\(849\) −1.20323e7 −0.572902
\(850\) 1.18393e7 0.562053
\(851\) 1.41397e7 0.669293
\(852\) −1.01010e7 −0.476722
\(853\) 85930.0 0.00404364 0.00202182 0.999998i \(-0.499356\pi\)
0.00202182 + 0.999998i \(0.499356\pi\)
\(854\) 0 0
\(855\) 1.70923e7 0.799624
\(856\) −9.29715e6 −0.433676
\(857\) 1.85664e7 0.863528 0.431764 0.901987i \(-0.357891\pi\)
0.431764 + 0.901987i \(0.357891\pi\)
\(858\) 1.88007e6 0.0871880
\(859\) −3.92215e7 −1.81360 −0.906799 0.421564i \(-0.861481\pi\)
−0.906799 + 0.421564i \(0.861481\pi\)
\(860\) 1.47226e7 0.678795
\(861\) 0 0
\(862\) 1.85324e7 0.849501
\(863\) 1.83642e7 0.839352 0.419676 0.907674i \(-0.362144\pi\)
0.419676 + 0.907674i \(0.362144\pi\)
\(864\) 746496. 0.0340207
\(865\) −2.55453e6 −0.116084
\(866\) −2.63182e7 −1.19251
\(867\) −879381. −0.0397310
\(868\) 0 0
\(869\) −9.20870e6 −0.413665
\(870\) −2.06284e6 −0.0923992
\(871\) −1.89984e7 −0.848539
\(872\) −1.15744e7 −0.515477
\(873\) −2.61973e6 −0.116338
\(874\) 2.02816e7 0.898100
\(875\) 0 0
\(876\) 6.40351e6 0.281941
\(877\) −9.42578e6 −0.413826 −0.206913 0.978359i \(-0.566342\pi\)
−0.206913 + 0.978359i \(0.566342\pi\)
\(878\) 7.28278e6 0.318831
\(879\) 2.00730e7 0.876273
\(880\) −2.88850e6 −0.125738
\(881\) −1.32820e7 −0.576534 −0.288267 0.957550i \(-0.593079\pi\)
−0.288267 + 0.957550i \(0.593079\pi\)
\(882\) 0 0
\(883\) 1.88897e7 0.815309 0.407655 0.913136i \(-0.366347\pi\)
0.407655 + 0.913136i \(0.366347\pi\)
\(884\) −6.42840e6 −0.276676
\(885\) 1.79090e7 0.768623
\(886\) −8.27961e6 −0.354345
\(887\) −4.17083e7 −1.77997 −0.889987 0.455985i \(-0.849287\pi\)
−0.889987 + 0.455985i \(0.849287\pi\)
\(888\) 4.48986e6 0.191073
\(889\) 0 0
\(890\) −2.97649e7 −1.25959
\(891\) −980618. −0.0413815
\(892\) −1.02205e7 −0.430089
\(893\) −6.87586e7 −2.88535
\(894\) 9.50408e6 0.397710
\(895\) −1.87028e7 −0.780455
\(896\) 0 0
\(897\) −5.70447e6 −0.236719
\(898\) 2.29033e7 0.947777
\(899\) 6.85539e6 0.282900
\(900\) 3.33603e6 0.137285
\(901\) 1.56336e7 0.641573
\(902\) 4.56785e6 0.186937
\(903\) 0 0
\(904\) 1.26613e7 0.515295
\(905\) −2.78922e7 −1.13204
\(906\) 1.00503e7 0.406779
\(907\) 4.60801e7 1.85993 0.929963 0.367654i \(-0.119839\pi\)
0.929963 + 0.367654i \(0.119839\pi\)
\(908\) 8.41091e6 0.338554
\(909\) −2.53906e6 −0.101921
\(910\) 0 0
\(911\) 2.25527e7 0.900334 0.450167 0.892944i \(-0.351364\pi\)
0.450167 + 0.892944i \(0.351364\pi\)
\(912\) 6.44014e6 0.256394
\(913\) −1.30244e7 −0.517107
\(914\) 1.27470e6 0.0504712
\(915\) −2.39987e7 −0.947622
\(916\) −1.49230e7 −0.587647
\(917\) 0 0
\(918\) 3.35295e6 0.131317
\(919\) −3.25898e7 −1.27290 −0.636448 0.771319i \(-0.719597\pi\)
−0.636448 + 0.771319i \(0.719597\pi\)
\(920\) 8.76421e6 0.341384
\(921\) −1.60004e7 −0.621557
\(922\) 1.36988e7 0.530708
\(923\) 2.45100e7 0.946977
\(924\) 0 0
\(925\) 2.00648e7 0.771046
\(926\) 1.53178e7 0.587041
\(927\) −8.04597e6 −0.307524
\(928\) −777250. −0.0296272
\(929\) 4.56149e7 1.73407 0.867036 0.498246i \(-0.166022\pi\)
0.867036 + 0.498246i \(0.166022\pi\)
\(930\) −2.45458e7 −0.930614
\(931\) 0 0
\(932\) −1.13247e7 −0.427058
\(933\) −1.26244e7 −0.474797
\(934\) −1.13785e7 −0.426792
\(935\) −1.29740e7 −0.485338
\(936\) −1.81137e6 −0.0675800
\(937\) −3.60574e6 −0.134167 −0.0670835 0.997747i \(-0.521369\pi\)
−0.0670835 + 0.997747i \(0.521369\pi\)
\(938\) 0 0
\(939\) −1.09705e7 −0.406034
\(940\) −2.97123e7 −1.09677
\(941\) 4.40826e6 0.162290 0.0811452 0.996702i \(-0.474142\pi\)
0.0811452 + 0.996702i \(0.474142\pi\)
\(942\) −6.78968e6 −0.249300
\(943\) −1.38596e7 −0.507542
\(944\) 6.74786e6 0.246454
\(945\) 0 0
\(946\) −7.28706e6 −0.264743
\(947\) 7.36278e6 0.266788 0.133394 0.991063i \(-0.457412\pi\)
0.133394 + 0.991063i \(0.457412\pi\)
\(948\) 8.87219e6 0.320634
\(949\) −1.55381e7 −0.560057
\(950\) 2.87804e7 1.03464
\(951\) 2.41201e7 0.864825
\(952\) 0 0
\(953\) 3.73903e7 1.33360 0.666802 0.745235i \(-0.267663\pi\)
0.666802 + 0.745235i \(0.267663\pi\)
\(954\) 4.40518e6 0.156708
\(955\) −3.66307e7 −1.29968
\(956\) −8.00982e6 −0.283451
\(957\) 1.02102e6 0.0360374
\(958\) −5.21462e6 −0.183573
\(959\) 0 0
\(960\) 2.78295e6 0.0974602
\(961\) 5.29433e7 1.84928
\(962\) −1.08946e7 −0.379555
\(963\) −1.17667e7 −0.408874
\(964\) −1.93315e7 −0.669997
\(965\) −2.49742e7 −0.863322
\(966\) 0 0
\(967\) 1.30730e7 0.449582 0.224791 0.974407i \(-0.427830\pi\)
0.224791 + 0.974407i \(0.427830\pi\)
\(968\) −8.87758e6 −0.304513
\(969\) 2.89265e7 0.989660
\(970\) −9.76640e6 −0.333277
\(971\) 1.52454e7 0.518908 0.259454 0.965755i \(-0.416457\pi\)
0.259454 + 0.965755i \(0.416457\pi\)
\(972\) 944784. 0.0320750
\(973\) 0 0
\(974\) 2.49450e7 0.842530
\(975\) −8.09486e6 −0.272708
\(976\) −9.04237e6 −0.303849
\(977\) 3.08690e6 0.103463 0.0517316 0.998661i \(-0.483526\pi\)
0.0517316 + 0.998661i \(0.483526\pi\)
\(978\) 3.22983e6 0.107977
\(979\) 1.47324e7 0.491264
\(980\) 0 0
\(981\) −1.46489e7 −0.485996
\(982\) −1.57571e7 −0.521433
\(983\) −1.70201e7 −0.561796 −0.280898 0.959738i \(-0.590632\pi\)
−0.280898 + 0.959738i \(0.590632\pi\)
\(984\) −4.40093e6 −0.144896
\(985\) −1.22269e7 −0.401539
\(986\) −3.49109e6 −0.114359
\(987\) 0 0
\(988\) −1.56270e7 −0.509311
\(989\) 2.21102e7 0.718789
\(990\) −3.65576e6 −0.118547
\(991\) −4.34672e7 −1.40597 −0.702987 0.711203i \(-0.748151\pi\)
−0.702987 + 0.711203i \(0.748151\pi\)
\(992\) −9.24851e6 −0.298396
\(993\) 1.28304e6 0.0412922
\(994\) 0 0
\(995\) −4.18199e6 −0.133914
\(996\) 1.25484e7 0.400813
\(997\) 2.46672e7 0.785926 0.392963 0.919554i \(-0.371450\pi\)
0.392963 + 0.919554i \(0.371450\pi\)
\(998\) 3.19028e7 1.01392
\(999\) 5.68248e6 0.180146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.w.1.2 2
3.2 odd 2 882.6.a.bb.1.1 2
7.2 even 3 294.6.e.s.67.1 4
7.3 odd 6 42.6.e.c.37.2 yes 4
7.4 even 3 294.6.e.s.79.1 4
7.5 odd 6 42.6.e.c.25.2 4
7.6 odd 2 294.6.a.r.1.1 2
21.5 even 6 126.6.g.h.109.1 4
21.17 even 6 126.6.g.h.37.1 4
21.20 even 2 882.6.a.bh.1.2 2
28.3 even 6 336.6.q.f.289.2 4
28.19 even 6 336.6.q.f.193.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.e.c.25.2 4 7.5 odd 6
42.6.e.c.37.2 yes 4 7.3 odd 6
126.6.g.h.37.1 4 21.17 even 6
126.6.g.h.109.1 4 21.5 even 6
294.6.a.r.1.1 2 7.6 odd 2
294.6.a.w.1.2 2 1.1 even 1 trivial
294.6.e.s.67.1 4 7.2 even 3
294.6.e.s.79.1 4 7.4 even 3
336.6.q.f.193.2 4 28.19 even 6
336.6.q.f.289.2 4 28.3 even 6
882.6.a.bb.1.1 2 3.2 odd 2
882.6.a.bh.1.2 2 21.20 even 2