Properties

Label 294.6.a.u.1.2
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -46.9289 q^{5} +36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -46.9289 q^{5} +36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} -187.716 q^{10} -87.4558 q^{11} +144.000 q^{12} -754.566 q^{13} -422.360 q^{15} +256.000 q^{16} +1449.04 q^{17} +324.000 q^{18} -2540.24 q^{19} -750.863 q^{20} -349.823 q^{22} -912.248 q^{23} +576.000 q^{24} -922.675 q^{25} -3018.26 q^{26} +729.000 q^{27} +173.217 q^{29} -1689.44 q^{30} -4531.13 q^{31} +1024.00 q^{32} -787.103 q^{33} +5796.16 q^{34} +1296.00 q^{36} +6829.96 q^{37} -10161.0 q^{38} -6791.09 q^{39} -3003.45 q^{40} -13069.3 q^{41} -12277.7 q^{43} -1399.29 q^{44} -3801.24 q^{45} -3648.99 q^{46} -13492.8 q^{47} +2304.00 q^{48} -3690.70 q^{50} +13041.4 q^{51} -12073.0 q^{52} -9677.70 q^{53} +2916.00 q^{54} +4104.21 q^{55} -22862.1 q^{57} +692.868 q^{58} -30369.2 q^{59} -6757.77 q^{60} -732.473 q^{61} -18124.5 q^{62} +4096.00 q^{64} +35411.0 q^{65} -3148.41 q^{66} +46399.9 q^{67} +23184.6 q^{68} -8210.23 q^{69} -3295.39 q^{71} +5184.00 q^{72} -10238.2 q^{73} +27319.8 q^{74} -8304.08 q^{75} -40643.8 q^{76} -27164.4 q^{78} +98584.0 q^{79} -12013.8 q^{80} +6561.00 q^{81} -52277.1 q^{82} -87792.7 q^{83} -68001.9 q^{85} -49110.8 q^{86} +1558.95 q^{87} -5597.17 q^{88} +69099.8 q^{89} -15205.0 q^{90} -14596.0 q^{92} -40780.2 q^{93} -53971.2 q^{94} +119211. q^{95} +9216.00 q^{96} +42181.4 q^{97} -7083.92 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} + 128 q^{8} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} + 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} + 128 q^{8} + 162 q^{9} - 432 q^{10} - 124 q^{11} + 288 q^{12} - 720 q^{13} - 972 q^{15} + 512 q^{16} - 612 q^{17} + 648 q^{18} - 2088 q^{19} - 1728 q^{20} - 496 q^{22} + 772 q^{23} + 1152 q^{24} - 318 q^{25} - 2880 q^{26} + 1458 q^{27} - 4592 q^{29} - 3888 q^{30} - 9792 q^{31} + 2048 q^{32} - 1116 q^{33} - 2448 q^{34} + 2592 q^{36} - 5992 q^{37} - 8352 q^{38} - 6480 q^{39} - 6912 q^{40} - 20196 q^{41} - 1136 q^{43} - 1984 q^{44} - 8748 q^{45} + 3088 q^{46} - 36936 q^{47} + 4608 q^{48} - 1272 q^{50} - 5508 q^{51} - 11520 q^{52} - 16708 q^{53} + 5832 q^{54} + 6336 q^{55} - 18792 q^{57} - 18368 q^{58} - 74592 q^{59} - 15552 q^{60} + 18648 q^{61} - 39168 q^{62} + 8192 q^{64} + 33300 q^{65} - 4464 q^{66} + 67344 q^{67} - 9792 q^{68} + 6948 q^{69} + 76548 q^{71} + 10368 q^{72} - 47304 q^{73} - 23968 q^{74} - 2862 q^{75} - 33408 q^{76} - 25920 q^{78} + 140656 q^{79} - 27648 q^{80} + 13122 q^{81} - 80784 q^{82} - 94104 q^{83} + 57868 q^{85} - 4544 q^{86} - 41328 q^{87} - 7936 q^{88} + 17604 q^{89} - 34992 q^{90} + 12352 q^{92} - 88128 q^{93} - 147744 q^{94} + 91592 q^{95} + 18432 q^{96} - 85176 q^{97} - 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) −46.9289 −0.839490 −0.419745 0.907642i \(-0.637881\pi\)
−0.419745 + 0.907642i \(0.637881\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) −187.716 −0.593609
\(11\) −87.4558 −0.217925 −0.108963 0.994046i \(-0.534753\pi\)
−0.108963 + 0.994046i \(0.534753\pi\)
\(12\) 144.000 0.288675
\(13\) −754.566 −1.23834 −0.619168 0.785258i \(-0.712530\pi\)
−0.619168 + 0.785258i \(0.712530\pi\)
\(14\) 0 0
\(15\) −422.360 −0.484680
\(16\) 256.000 0.250000
\(17\) 1449.04 1.21607 0.608034 0.793911i \(-0.291958\pi\)
0.608034 + 0.793911i \(0.291958\pi\)
\(18\) 324.000 0.235702
\(19\) −2540.24 −1.61432 −0.807161 0.590331i \(-0.798997\pi\)
−0.807161 + 0.590331i \(0.798997\pi\)
\(20\) −750.863 −0.419745
\(21\) 0 0
\(22\) −349.823 −0.154096
\(23\) −912.248 −0.359578 −0.179789 0.983705i \(-0.557542\pi\)
−0.179789 + 0.983705i \(0.557542\pi\)
\(24\) 576.000 0.204124
\(25\) −922.675 −0.295256
\(26\) −3018.26 −0.875636
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 173.217 0.0382468 0.0191234 0.999817i \(-0.493912\pi\)
0.0191234 + 0.999817i \(0.493912\pi\)
\(30\) −1689.44 −0.342720
\(31\) −4531.13 −0.846842 −0.423421 0.905933i \(-0.639171\pi\)
−0.423421 + 0.905933i \(0.639171\pi\)
\(32\) 1024.00 0.176777
\(33\) −787.103 −0.125819
\(34\) 5796.16 0.859890
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 6829.96 0.820188 0.410094 0.912043i \(-0.365496\pi\)
0.410094 + 0.912043i \(0.365496\pi\)
\(38\) −10161.0 −1.14150
\(39\) −6791.09 −0.714954
\(40\) −3003.45 −0.296805
\(41\) −13069.3 −1.21420 −0.607102 0.794624i \(-0.707668\pi\)
−0.607102 + 0.794624i \(0.707668\pi\)
\(42\) 0 0
\(43\) −12277.7 −1.01262 −0.506309 0.862352i \(-0.668990\pi\)
−0.506309 + 0.862352i \(0.668990\pi\)
\(44\) −1399.29 −0.108963
\(45\) −3801.24 −0.279830
\(46\) −3648.99 −0.254260
\(47\) −13492.8 −0.890958 −0.445479 0.895292i \(-0.646967\pi\)
−0.445479 + 0.895292i \(0.646967\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) −3690.70 −0.208778
\(51\) 13041.4 0.702097
\(52\) −12073.0 −0.619168
\(53\) −9677.70 −0.473241 −0.236621 0.971602i \(-0.576040\pi\)
−0.236621 + 0.971602i \(0.576040\pi\)
\(54\) 2916.00 0.136083
\(55\) 4104.21 0.182946
\(56\) 0 0
\(57\) −22862.1 −0.932030
\(58\) 692.868 0.0270446
\(59\) −30369.2 −1.13580 −0.567902 0.823096i \(-0.692245\pi\)
−0.567902 + 0.823096i \(0.692245\pi\)
\(60\) −6757.77 −0.242340
\(61\) −732.473 −0.0252038 −0.0126019 0.999921i \(-0.504011\pi\)
−0.0126019 + 0.999921i \(0.504011\pi\)
\(62\) −18124.5 −0.598808
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 35411.0 1.03957
\(66\) −3148.41 −0.0889675
\(67\) 46399.9 1.26279 0.631394 0.775462i \(-0.282483\pi\)
0.631394 + 0.775462i \(0.282483\pi\)
\(68\) 23184.6 0.608034
\(69\) −8210.23 −0.207603
\(70\) 0 0
\(71\) −3295.39 −0.0775821 −0.0387910 0.999247i \(-0.512351\pi\)
−0.0387910 + 0.999247i \(0.512351\pi\)
\(72\) 5184.00 0.117851
\(73\) −10238.2 −0.224862 −0.112431 0.993660i \(-0.535864\pi\)
−0.112431 + 0.993660i \(0.535864\pi\)
\(74\) 27319.8 0.579961
\(75\) −8304.08 −0.170466
\(76\) −40643.8 −0.807161
\(77\) 0 0
\(78\) −27164.4 −0.505549
\(79\) 98584.0 1.77721 0.888605 0.458674i \(-0.151675\pi\)
0.888605 + 0.458674i \(0.151675\pi\)
\(80\) −12013.8 −0.209873
\(81\) 6561.00 0.111111
\(82\) −52277.1 −0.858571
\(83\) −87792.7 −1.39882 −0.699412 0.714719i \(-0.746555\pi\)
−0.699412 + 0.714719i \(0.746555\pi\)
\(84\) 0 0
\(85\) −68001.9 −1.02088
\(86\) −49110.8 −0.716029
\(87\) 1558.95 0.0220818
\(88\) −5597.17 −0.0770481
\(89\) 69099.8 0.924702 0.462351 0.886697i \(-0.347006\pi\)
0.462351 + 0.886697i \(0.347006\pi\)
\(90\) −15205.0 −0.197870
\(91\) 0 0
\(92\) −14596.0 −0.179789
\(93\) −40780.2 −0.488925
\(94\) −53971.2 −0.630003
\(95\) 119211. 1.35521
\(96\) 9216.00 0.102062
\(97\) 42181.4 0.455189 0.227594 0.973756i \(-0.426914\pi\)
0.227594 + 0.973756i \(0.426914\pi\)
\(98\) 0 0
\(99\) −7083.92 −0.0726417
\(100\) −14762.8 −0.147628
\(101\) −178474. −1.74089 −0.870445 0.492266i \(-0.836169\pi\)
−0.870445 + 0.492266i \(0.836169\pi\)
\(102\) 52165.4 0.496458
\(103\) −35226.2 −0.327169 −0.163585 0.986529i \(-0.552306\pi\)
−0.163585 + 0.986529i \(0.552306\pi\)
\(104\) −48292.2 −0.437818
\(105\) 0 0
\(106\) −38710.8 −0.334632
\(107\) 89960.9 0.759616 0.379808 0.925065i \(-0.375990\pi\)
0.379808 + 0.925065i \(0.375990\pi\)
\(108\) 11664.0 0.0962250
\(109\) 185002. 1.49146 0.745729 0.666249i \(-0.232101\pi\)
0.745729 + 0.666249i \(0.232101\pi\)
\(110\) 16416.8 0.129362
\(111\) 61469.6 0.473536
\(112\) 0 0
\(113\) −228275. −1.68175 −0.840877 0.541227i \(-0.817960\pi\)
−0.840877 + 0.541227i \(0.817960\pi\)
\(114\) −91448.6 −0.659045
\(115\) 42810.8 0.301862
\(116\) 2771.47 0.0191234
\(117\) −61119.8 −0.412779
\(118\) −121477. −0.803134
\(119\) 0 0
\(120\) −27031.1 −0.171360
\(121\) −153402. −0.952509
\(122\) −2929.89 −0.0178218
\(123\) −117623. −0.701021
\(124\) −72498.1 −0.423421
\(125\) 189953. 1.08735
\(126\) 0 0
\(127\) −343515. −1.88989 −0.944944 0.327232i \(-0.893884\pi\)
−0.944944 + 0.327232i \(0.893884\pi\)
\(128\) 16384.0 0.0883883
\(129\) −110499. −0.584635
\(130\) 141644. 0.735088
\(131\) 361272. 1.83931 0.919657 0.392722i \(-0.128467\pi\)
0.919657 + 0.392722i \(0.128467\pi\)
\(132\) −12593.6 −0.0629095
\(133\) 0 0
\(134\) 185600. 0.892926
\(135\) −34211.2 −0.161560
\(136\) 92738.5 0.429945
\(137\) −304627. −1.38665 −0.693325 0.720625i \(-0.743855\pi\)
−0.693325 + 0.720625i \(0.743855\pi\)
\(138\) −32840.9 −0.146797
\(139\) −129737. −0.569543 −0.284772 0.958595i \(-0.591918\pi\)
−0.284772 + 0.958595i \(0.591918\pi\)
\(140\) 0 0
\(141\) −121435. −0.514395
\(142\) −13181.6 −0.0548588
\(143\) 65991.2 0.269864
\(144\) 20736.0 0.0833333
\(145\) −8128.88 −0.0321078
\(146\) −40952.7 −0.159001
\(147\) 0 0
\(148\) 109279. 0.410094
\(149\) 373908. 1.37975 0.689873 0.723931i \(-0.257667\pi\)
0.689873 + 0.723931i \(0.257667\pi\)
\(150\) −33216.3 −0.120538
\(151\) −86639.8 −0.309225 −0.154613 0.987975i \(-0.549413\pi\)
−0.154613 + 0.987975i \(0.549413\pi\)
\(152\) −162575. −0.570749
\(153\) 117372. 0.405356
\(154\) 0 0
\(155\) 212641. 0.710916
\(156\) −108657. −0.357477
\(157\) 462173. 1.49643 0.748214 0.663458i \(-0.230912\pi\)
0.748214 + 0.663458i \(0.230912\pi\)
\(158\) 394336. 1.25668
\(159\) −87099.3 −0.273226
\(160\) −48055.2 −0.148402
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 609032. 1.79544 0.897721 0.440565i \(-0.145222\pi\)
0.897721 + 0.440565i \(0.145222\pi\)
\(164\) −209108. −0.607102
\(165\) 36937.9 0.105624
\(166\) −351171. −0.989118
\(167\) 127786. 0.354562 0.177281 0.984160i \(-0.443270\pi\)
0.177281 + 0.984160i \(0.443270\pi\)
\(168\) 0 0
\(169\) 198076. 0.533477
\(170\) −272007. −0.721869
\(171\) −205759. −0.538108
\(172\) −196443. −0.506309
\(173\) 142539. 0.362092 0.181046 0.983475i \(-0.442052\pi\)
0.181046 + 0.983475i \(0.442052\pi\)
\(174\) 6235.81 0.0156142
\(175\) 0 0
\(176\) −22388.7 −0.0544813
\(177\) −273323. −0.655756
\(178\) 276399. 0.653863
\(179\) −296634. −0.691973 −0.345986 0.938240i \(-0.612456\pi\)
−0.345986 + 0.938240i \(0.612456\pi\)
\(180\) −60819.9 −0.139915
\(181\) 277654. 0.629952 0.314976 0.949100i \(-0.398004\pi\)
0.314976 + 0.949100i \(0.398004\pi\)
\(182\) 0 0
\(183\) −6592.25 −0.0145514
\(184\) −58383.9 −0.127130
\(185\) −320523. −0.688540
\(186\) −163121. −0.345722
\(187\) −126727. −0.265012
\(188\) −215885. −0.445479
\(189\) 0 0
\(190\) 476843. 0.958277
\(191\) −242584. −0.481149 −0.240574 0.970631i \(-0.577336\pi\)
−0.240574 + 0.970631i \(0.577336\pi\)
\(192\) 36864.0 0.0721688
\(193\) −581525. −1.12376 −0.561882 0.827218i \(-0.689922\pi\)
−0.561882 + 0.827218i \(0.689922\pi\)
\(194\) 168726. 0.321867
\(195\) 318699. 0.600197
\(196\) 0 0
\(197\) 748916. 1.37489 0.687444 0.726237i \(-0.258733\pi\)
0.687444 + 0.726237i \(0.258733\pi\)
\(198\) −28335.7 −0.0513654
\(199\) 725693. 1.29903 0.649516 0.760348i \(-0.274971\pi\)
0.649516 + 0.760348i \(0.274971\pi\)
\(200\) −59051.2 −0.104389
\(201\) 417599. 0.729071
\(202\) −713896. −1.23100
\(203\) 0 0
\(204\) 208662. 0.351049
\(205\) 613327. 1.01931
\(206\) −140905. −0.231343
\(207\) −73892.1 −0.119859
\(208\) −193169. −0.309584
\(209\) 222159. 0.351801
\(210\) 0 0
\(211\) 814718. 1.25980 0.629899 0.776677i \(-0.283096\pi\)
0.629899 + 0.776677i \(0.283096\pi\)
\(212\) −154843. −0.236621
\(213\) −29658.5 −0.0447920
\(214\) 359843. 0.537130
\(215\) 576179. 0.850083
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) 740010. 1.05462
\(219\) −92143.7 −0.129824
\(220\) 65667.4 0.0914730
\(221\) −1.09339e6 −1.50590
\(222\) 245878. 0.334840
\(223\) 335874. 0.452288 0.226144 0.974094i \(-0.427388\pi\)
0.226144 + 0.974094i \(0.427388\pi\)
\(224\) 0 0
\(225\) −74736.7 −0.0984187
\(226\) −913100. −1.18918
\(227\) 64721.2 0.0833647 0.0416823 0.999131i \(-0.486728\pi\)
0.0416823 + 0.999131i \(0.486728\pi\)
\(228\) −365794. −0.466015
\(229\) −750789. −0.946083 −0.473041 0.881040i \(-0.656844\pi\)
−0.473041 + 0.881040i \(0.656844\pi\)
\(230\) 171243. 0.213449
\(231\) 0 0
\(232\) 11085.9 0.0135223
\(233\) −1.38718e6 −1.67395 −0.836974 0.547242i \(-0.815678\pi\)
−0.836974 + 0.547242i \(0.815678\pi\)
\(234\) −244479. −0.291879
\(235\) 633203. 0.747951
\(236\) −485907. −0.567902
\(237\) 887256. 1.02607
\(238\) 0 0
\(239\) −160907. −0.182213 −0.0911064 0.995841i \(-0.529040\pi\)
−0.0911064 + 0.995841i \(0.529040\pi\)
\(240\) −108124. −0.121170
\(241\) 1.28482e6 1.42495 0.712473 0.701699i \(-0.247575\pi\)
0.712473 + 0.701699i \(0.247575\pi\)
\(242\) −613610. −0.673525
\(243\) 59049.0 0.0641500
\(244\) −11719.6 −0.0126019
\(245\) 0 0
\(246\) −470493. −0.495696
\(247\) 1.91678e6 1.99907
\(248\) −289993. −0.299404
\(249\) −790134. −0.807611
\(250\) 759812. 0.768876
\(251\) 481311. 0.482216 0.241108 0.970498i \(-0.422489\pi\)
0.241108 + 0.970498i \(0.422489\pi\)
\(252\) 0 0
\(253\) 79781.4 0.0783611
\(254\) −1.37406e6 −1.33635
\(255\) −612017. −0.589404
\(256\) 65536.0 0.0625000
\(257\) −33088.7 −0.0312497 −0.0156249 0.999878i \(-0.504974\pi\)
−0.0156249 + 0.999878i \(0.504974\pi\)
\(258\) −441997. −0.413399
\(259\) 0 0
\(260\) 566575. 0.519786
\(261\) 14030.6 0.0127489
\(262\) 1.44509e6 1.30059
\(263\) 446200. 0.397778 0.198889 0.980022i \(-0.436267\pi\)
0.198889 + 0.980022i \(0.436267\pi\)
\(264\) −50374.6 −0.0444838
\(265\) 454164. 0.397281
\(266\) 0 0
\(267\) 621898. 0.533877
\(268\) 742399. 0.631394
\(269\) 1.94854e6 1.64183 0.820915 0.571051i \(-0.193464\pi\)
0.820915 + 0.571051i \(0.193464\pi\)
\(270\) −136845. −0.114240
\(271\) 96873.0 0.0801271 0.0400636 0.999197i \(-0.487244\pi\)
0.0400636 + 0.999197i \(0.487244\pi\)
\(272\) 370954. 0.304017
\(273\) 0 0
\(274\) −1.21851e6 −0.980510
\(275\) 80693.3 0.0643437
\(276\) −131364. −0.103801
\(277\) 1.63679e6 1.28172 0.640859 0.767658i \(-0.278578\pi\)
0.640859 + 0.767658i \(0.278578\pi\)
\(278\) −518948. −0.402728
\(279\) −367022. −0.282281
\(280\) 0 0
\(281\) −1.79558e6 −1.35656 −0.678281 0.734803i \(-0.737275\pi\)
−0.678281 + 0.734803i \(0.737275\pi\)
\(282\) −485741. −0.363732
\(283\) 1.28048e6 0.950397 0.475199 0.879879i \(-0.342376\pi\)
0.475199 + 0.879879i \(0.342376\pi\)
\(284\) −52726.3 −0.0387910
\(285\) 1.07290e6 0.782430
\(286\) 263965. 0.190823
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) 679857. 0.478821
\(290\) −32515.5 −0.0227037
\(291\) 379632. 0.262803
\(292\) −163811. −0.112431
\(293\) 330814. 0.225120 0.112560 0.993645i \(-0.464095\pi\)
0.112560 + 0.993645i \(0.464095\pi\)
\(294\) 0 0
\(295\) 1.42519e6 0.953496
\(296\) 437117. 0.289980
\(297\) −63755.3 −0.0419397
\(298\) 1.49563e6 0.975627
\(299\) 688351. 0.445279
\(300\) −132865. −0.0852331
\(301\) 0 0
\(302\) −346559. −0.218655
\(303\) −1.60627e6 −1.00510
\(304\) −650301. −0.403581
\(305\) 34374.2 0.0211584
\(306\) 469489. 0.286630
\(307\) −554088. −0.335531 −0.167766 0.985827i \(-0.553655\pi\)
−0.167766 + 0.985827i \(0.553655\pi\)
\(308\) 0 0
\(309\) −317035. −0.188891
\(310\) 850565. 0.502693
\(311\) −1.75926e6 −1.03140 −0.515701 0.856769i \(-0.672469\pi\)
−0.515701 + 0.856769i \(0.672469\pi\)
\(312\) −434630. −0.252774
\(313\) −2.33819e6 −1.34902 −0.674512 0.738264i \(-0.735646\pi\)
−0.674512 + 0.738264i \(0.735646\pi\)
\(314\) 1.84869e6 1.05813
\(315\) 0 0
\(316\) 1.57734e6 0.888605
\(317\) −967392. −0.540697 −0.270349 0.962762i \(-0.587139\pi\)
−0.270349 + 0.962762i \(0.587139\pi\)
\(318\) −348397. −0.193200
\(319\) −15148.8 −0.00833494
\(320\) −192221. −0.104936
\(321\) 809648. 0.438565
\(322\) 0 0
\(323\) −3.68090e6 −1.96313
\(324\) 104976. 0.0555556
\(325\) 696219. 0.365626
\(326\) 2.43613e6 1.26957
\(327\) 1.66502e6 0.861094
\(328\) −836433. −0.429286
\(329\) 0 0
\(330\) 147752. 0.0746874
\(331\) −327808. −0.164456 −0.0822281 0.996614i \(-0.526204\pi\)
−0.0822281 + 0.996614i \(0.526204\pi\)
\(332\) −1.40468e6 −0.699412
\(333\) 553226. 0.273396
\(334\) 511144. 0.250713
\(335\) −2.17750e6 −1.06010
\(336\) 0 0
\(337\) 1.34052e6 0.642983 0.321491 0.946913i \(-0.395816\pi\)
0.321491 + 0.946913i \(0.395816\pi\)
\(338\) 792305. 0.377225
\(339\) −2.05447e6 −0.970961
\(340\) −1.08803e6 −0.510439
\(341\) 396274. 0.184548
\(342\) −823037. −0.380500
\(343\) 0 0
\(344\) −785772. −0.358014
\(345\) 385297. 0.174280
\(346\) 570157. 0.256038
\(347\) −3.53374e6 −1.57547 −0.787736 0.616013i \(-0.788747\pi\)
−0.787736 + 0.616013i \(0.788747\pi\)
\(348\) 24943.2 0.0110409
\(349\) −3.98108e6 −1.74959 −0.874796 0.484491i \(-0.839005\pi\)
−0.874796 + 0.484491i \(0.839005\pi\)
\(350\) 0 0
\(351\) −550078. −0.238318
\(352\) −89554.8 −0.0385241
\(353\) 44279.1 0.0189131 0.00945654 0.999955i \(-0.496990\pi\)
0.00945654 + 0.999955i \(0.496990\pi\)
\(354\) −1.09329e6 −0.463690
\(355\) 154649. 0.0651294
\(356\) 1.10560e6 0.462351
\(357\) 0 0
\(358\) −1.18654e6 −0.489299
\(359\) −1.75114e6 −0.717108 −0.358554 0.933509i \(-0.616730\pi\)
−0.358554 + 0.933509i \(0.616730\pi\)
\(360\) −243280. −0.0989349
\(361\) 3.97671e6 1.60604
\(362\) 1.11062e6 0.445443
\(363\) −1.38062e6 −0.549931
\(364\) 0 0
\(365\) 480467. 0.188769
\(366\) −26369.0 −0.0102894
\(367\) −3.97114e6 −1.53904 −0.769521 0.638621i \(-0.779505\pi\)
−0.769521 + 0.638621i \(0.779505\pi\)
\(368\) −233536. −0.0898945
\(369\) −1.05861e6 −0.404734
\(370\) −1.28209e6 −0.486871
\(371\) 0 0
\(372\) −652483. −0.244462
\(373\) 2.23960e6 0.833486 0.416743 0.909024i \(-0.363172\pi\)
0.416743 + 0.909024i \(0.363172\pi\)
\(374\) −506908. −0.187392
\(375\) 1.70958e6 0.627785
\(376\) −863539. −0.315001
\(377\) −130703. −0.0473624
\(378\) 0 0
\(379\) −4.25421e6 −1.52132 −0.760661 0.649149i \(-0.775125\pi\)
−0.760661 + 0.649149i \(0.775125\pi\)
\(380\) 1.90737e6 0.677604
\(381\) −3.09163e6 −1.09113
\(382\) −970338. −0.340224
\(383\) −1.61883e6 −0.563904 −0.281952 0.959429i \(-0.590982\pi\)
−0.281952 + 0.959429i \(0.590982\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) −2.32610e6 −0.794621
\(387\) −994493. −0.337539
\(388\) 674902. 0.227594
\(389\) −1.35315e6 −0.453391 −0.226696 0.973966i \(-0.572792\pi\)
−0.226696 + 0.973966i \(0.572792\pi\)
\(390\) 1.27479e6 0.424403
\(391\) −1.32188e6 −0.437271
\(392\) 0 0
\(393\) 3.25145e6 1.06193
\(394\) 2.99566e6 0.972193
\(395\) −4.62644e6 −1.49195
\(396\) −113343. −0.0363208
\(397\) 428056. 0.136309 0.0681545 0.997675i \(-0.478289\pi\)
0.0681545 + 0.997675i \(0.478289\pi\)
\(398\) 2.90277e6 0.918555
\(399\) 0 0
\(400\) −236205. −0.0738140
\(401\) −118228. −0.0367164 −0.0183582 0.999831i \(-0.505844\pi\)
−0.0183582 + 0.999831i \(0.505844\pi\)
\(402\) 1.67040e6 0.515531
\(403\) 3.41904e6 1.04868
\(404\) −2.85558e6 −0.870445
\(405\) −307901. −0.0932767
\(406\) 0 0
\(407\) −597320. −0.178740
\(408\) 834646. 0.248229
\(409\) −1.20974e6 −0.357589 −0.178795 0.983886i \(-0.557220\pi\)
−0.178795 + 0.983886i \(0.557220\pi\)
\(410\) 2.45331e6 0.720762
\(411\) −2.74164e6 −0.800583
\(412\) −563619. −0.163585
\(413\) 0 0
\(414\) −295568. −0.0847534
\(415\) 4.12002e6 1.17430
\(416\) −772675. −0.218909
\(417\) −1.16763e6 −0.328826
\(418\) 888635. 0.248761
\(419\) −4.12593e6 −1.14812 −0.574059 0.818814i \(-0.694632\pi\)
−0.574059 + 0.818814i \(0.694632\pi\)
\(420\) 0 0
\(421\) 3.12374e6 0.858953 0.429477 0.903078i \(-0.358698\pi\)
0.429477 + 0.903078i \(0.358698\pi\)
\(422\) 3.25887e6 0.890812
\(423\) −1.09292e6 −0.296986
\(424\) −619373. −0.167316
\(425\) −1.33699e6 −0.359051
\(426\) −118634. −0.0316728
\(427\) 0 0
\(428\) 1.43937e6 0.379808
\(429\) 593921. 0.155806
\(430\) 2.30472e6 0.601099
\(431\) 1.11459e6 0.289015 0.144507 0.989504i \(-0.453840\pi\)
0.144507 + 0.989504i \(0.453840\pi\)
\(432\) 186624. 0.0481125
\(433\) −266138. −0.0682161 −0.0341080 0.999418i \(-0.510859\pi\)
−0.0341080 + 0.999418i \(0.510859\pi\)
\(434\) 0 0
\(435\) −73159.9 −0.0185375
\(436\) 2.96004e6 0.745729
\(437\) 2.31733e6 0.580475
\(438\) −368575. −0.0917995
\(439\) −2.46047e6 −0.609336 −0.304668 0.952459i \(-0.598545\pi\)
−0.304668 + 0.952459i \(0.598545\pi\)
\(440\) 262669. 0.0646812
\(441\) 0 0
\(442\) −4.37358e6 −1.06483
\(443\) −1.21081e6 −0.293134 −0.146567 0.989201i \(-0.546822\pi\)
−0.146567 + 0.989201i \(0.546822\pi\)
\(444\) 983514. 0.236768
\(445\) −3.24278e6 −0.776279
\(446\) 1.34350e6 0.319816
\(447\) 3.36517e6 0.796596
\(448\) 0 0
\(449\) −3.66337e6 −0.857561 −0.428781 0.903409i \(-0.641057\pi\)
−0.428781 + 0.903409i \(0.641057\pi\)
\(450\) −298947. −0.0695925
\(451\) 1.14298e6 0.264605
\(452\) −3.65240e6 −0.840877
\(453\) −779758. −0.178531
\(454\) 258885. 0.0589477
\(455\) 0 0
\(456\) −1.46318e6 −0.329522
\(457\) −8.73868e6 −1.95729 −0.978645 0.205556i \(-0.934100\pi\)
−0.978645 + 0.205556i \(0.934100\pi\)
\(458\) −3.00316e6 −0.668982
\(459\) 1.05635e6 0.234032
\(460\) 684973. 0.150931
\(461\) −1.23476e6 −0.270602 −0.135301 0.990805i \(-0.543200\pi\)
−0.135301 + 0.990805i \(0.543200\pi\)
\(462\) 0 0
\(463\) −4.07764e6 −0.884008 −0.442004 0.897013i \(-0.645732\pi\)
−0.442004 + 0.897013i \(0.645732\pi\)
\(464\) 44343.5 0.00956170
\(465\) 1.91377e6 0.410447
\(466\) −5.54871e6 −1.18366
\(467\) −5.25021e6 −1.11400 −0.556999 0.830513i \(-0.688047\pi\)
−0.556999 + 0.830513i \(0.688047\pi\)
\(468\) −977917. −0.206389
\(469\) 0 0
\(470\) 2.53281e6 0.528881
\(471\) 4.15956e6 0.863963
\(472\) −1.94363e6 −0.401567
\(473\) 1.07376e6 0.220675
\(474\) 3.54902e6 0.725543
\(475\) 2.34381e6 0.476639
\(476\) 0 0
\(477\) −783894. −0.157747
\(478\) −643626. −0.128844
\(479\) −1.68707e6 −0.335965 −0.167982 0.985790i \(-0.553725\pi\)
−0.167982 + 0.985790i \(0.553725\pi\)
\(480\) −432497. −0.0856801
\(481\) −5.15365e6 −1.01567
\(482\) 5.13927e6 1.00759
\(483\) 0 0
\(484\) −2.45444e6 −0.476254
\(485\) −1.97953e6 −0.382126
\(486\) 236196. 0.0453609
\(487\) 4.39520e6 0.839762 0.419881 0.907579i \(-0.362072\pi\)
0.419881 + 0.907579i \(0.362072\pi\)
\(488\) −46878.2 −0.00891091
\(489\) 5.48129e6 1.03660
\(490\) 0 0
\(491\) 2.13582e6 0.399817 0.199909 0.979815i \(-0.435935\pi\)
0.199909 + 0.979815i \(0.435935\pi\)
\(492\) −1.88197e6 −0.350510
\(493\) 250998. 0.0465107
\(494\) 7.66710e6 1.41356
\(495\) 332441. 0.0609820
\(496\) −1.15997e6 −0.211711
\(497\) 0 0
\(498\) −3.16054e6 −0.571067
\(499\) −1.93439e6 −0.347771 −0.173885 0.984766i \(-0.555632\pi\)
−0.173885 + 0.984766i \(0.555632\pi\)
\(500\) 3.03925e6 0.543677
\(501\) 1.15007e6 0.204706
\(502\) 1.92524e6 0.340978
\(503\) −9.47334e6 −1.66949 −0.834744 0.550639i \(-0.814384\pi\)
−0.834744 + 0.550639i \(0.814384\pi\)
\(504\) 0 0
\(505\) 8.37559e6 1.46146
\(506\) 319126. 0.0554097
\(507\) 1.78269e6 0.308003
\(508\) −5.49624e6 −0.944944
\(509\) 1.05589e7 1.80645 0.903225 0.429167i \(-0.141193\pi\)
0.903225 + 0.429167i \(0.141193\pi\)
\(510\) −2.44807e6 −0.416771
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −1.85183e6 −0.310677
\(514\) −132355. −0.0220969
\(515\) 1.65313e6 0.274655
\(516\) −1.76799e6 −0.292318
\(517\) 1.18002e6 0.194162
\(518\) 0 0
\(519\) 1.28285e6 0.209054
\(520\) 2.26630e6 0.367544
\(521\) 7.53190e6 1.21565 0.607827 0.794069i \(-0.292041\pi\)
0.607827 + 0.794069i \(0.292041\pi\)
\(522\) 56122.3 0.00901486
\(523\) 7.33316e6 1.17230 0.586148 0.810204i \(-0.300644\pi\)
0.586148 + 0.810204i \(0.300644\pi\)
\(524\) 5.78035e6 0.919657
\(525\) 0 0
\(526\) 1.78480e6 0.281271
\(527\) −6.56579e6 −1.02982
\(528\) −201498. −0.0314548
\(529\) −5.60415e6 −0.870704
\(530\) 1.81666e6 0.280920
\(531\) −2.45990e6 −0.378601
\(532\) 0 0
\(533\) 9.86162e6 1.50359
\(534\) 2.48759e6 0.377508
\(535\) −4.22177e6 −0.637690
\(536\) 2.96960e6 0.446463
\(537\) −2.66971e6 −0.399511
\(538\) 7.79415e6 1.16095
\(539\) 0 0
\(540\) −547379. −0.0807800
\(541\) −1.25979e7 −1.85056 −0.925281 0.379282i \(-0.876171\pi\)
−0.925281 + 0.379282i \(0.876171\pi\)
\(542\) 387492. 0.0566584
\(543\) 2.49888e6 0.363703
\(544\) 1.48382e6 0.214972
\(545\) −8.68197e6 −1.25206
\(546\) 0 0
\(547\) −4.21767e6 −0.602704 −0.301352 0.953513i \(-0.597438\pi\)
−0.301352 + 0.953513i \(0.597438\pi\)
\(548\) −4.87403e6 −0.693325
\(549\) −59330.3 −0.00840128
\(550\) 322773. 0.0454979
\(551\) −440012. −0.0617427
\(552\) −525455. −0.0733986
\(553\) 0 0
\(554\) 6.54715e6 0.906312
\(555\) −2.88470e6 −0.397529
\(556\) −2.07579e6 −0.284772
\(557\) −9.56529e6 −1.30635 −0.653176 0.757206i \(-0.726564\pi\)
−0.653176 + 0.757206i \(0.726564\pi\)
\(558\) −1.46809e6 −0.199603
\(559\) 9.26432e6 1.25396
\(560\) 0 0
\(561\) −1.14054e6 −0.153005
\(562\) −7.18233e6 −0.959234
\(563\) 9.39186e6 1.24876 0.624382 0.781119i \(-0.285351\pi\)
0.624382 + 0.781119i \(0.285351\pi\)
\(564\) −1.94296e6 −0.257197
\(565\) 1.07127e7 1.41182
\(566\) 5.12190e6 0.672032
\(567\) 0 0
\(568\) −210905. −0.0274294
\(569\) 1.03867e7 1.34493 0.672463 0.740131i \(-0.265237\pi\)
0.672463 + 0.740131i \(0.265237\pi\)
\(570\) 4.29158e6 0.553261
\(571\) 4.42960e6 0.568557 0.284279 0.958742i \(-0.408246\pi\)
0.284279 + 0.958742i \(0.408246\pi\)
\(572\) 1.05586e6 0.134932
\(573\) −2.18326e6 −0.277791
\(574\) 0 0
\(575\) 841709. 0.106168
\(576\) 331776. 0.0416667
\(577\) 1.20182e7 1.50280 0.751398 0.659849i \(-0.229380\pi\)
0.751398 + 0.659849i \(0.229380\pi\)
\(578\) 2.71943e6 0.338577
\(579\) −5.23372e6 −0.648805
\(580\) −130062. −0.0160539
\(581\) 0 0
\(582\) 1.51853e6 0.185830
\(583\) 846372. 0.103131
\(584\) −655244. −0.0795007
\(585\) 2.86829e6 0.346524
\(586\) 1.32326e6 0.159184
\(587\) −6.97624e6 −0.835653 −0.417826 0.908527i \(-0.637208\pi\)
−0.417826 + 0.908527i \(0.637208\pi\)
\(588\) 0 0
\(589\) 1.15102e7 1.36708
\(590\) 5.70077e6 0.674223
\(591\) 6.74024e6 0.793792
\(592\) 1.74847e6 0.205047
\(593\) 1.78148e6 0.208038 0.104019 0.994575i \(-0.466830\pi\)
0.104019 + 0.994575i \(0.466830\pi\)
\(594\) −255021. −0.0296558
\(595\) 0 0
\(596\) 5.98253e6 0.689873
\(597\) 6.53124e6 0.749997
\(598\) 2.75340e6 0.314860
\(599\) 1.60365e6 0.182617 0.0913085 0.995823i \(-0.470895\pi\)
0.0913085 + 0.995823i \(0.470895\pi\)
\(600\) −531461. −0.0602689
\(601\) 1.51165e7 1.70712 0.853562 0.520991i \(-0.174438\pi\)
0.853562 + 0.520991i \(0.174438\pi\)
\(602\) 0 0
\(603\) 3.75839e6 0.420929
\(604\) −1.38624e6 −0.154613
\(605\) 7.19901e6 0.799622
\(606\) −6.42506e6 −0.710715
\(607\) −1.05167e7 −1.15853 −0.579263 0.815141i \(-0.696660\pi\)
−0.579263 + 0.815141i \(0.696660\pi\)
\(608\) −2.60120e6 −0.285375
\(609\) 0 0
\(610\) 137497. 0.0149612
\(611\) 1.01812e7 1.10331
\(612\) 1.87795e6 0.202678
\(613\) 2.71298e6 0.291605 0.145802 0.989314i \(-0.453424\pi\)
0.145802 + 0.989314i \(0.453424\pi\)
\(614\) −2.21635e6 −0.237256
\(615\) 5.51994e6 0.588500
\(616\) 0 0
\(617\) 1.14961e7 1.21573 0.607864 0.794041i \(-0.292026\pi\)
0.607864 + 0.794041i \(0.292026\pi\)
\(618\) −1.26814e6 −0.133566
\(619\) −1.09950e7 −1.15337 −0.576684 0.816967i \(-0.695654\pi\)
−0.576684 + 0.816967i \(0.695654\pi\)
\(620\) 3.40226e6 0.355458
\(621\) −665029. −0.0692009
\(622\) −7.03702e6 −0.729312
\(623\) 0 0
\(624\) −1.73852e6 −0.178738
\(625\) −6.03093e6 −0.617568
\(626\) −9.35277e6 −0.953904
\(627\) 1.99943e6 0.203113
\(628\) 7.39477e6 0.748214
\(629\) 9.89687e6 0.997405
\(630\) 0 0
\(631\) −4.19503e6 −0.419432 −0.209716 0.977762i \(-0.567254\pi\)
−0.209716 + 0.977762i \(0.567254\pi\)
\(632\) 6.30938e6 0.628338
\(633\) 7.33246e6 0.727345
\(634\) −3.86957e6 −0.382331
\(635\) 1.61208e7 1.58654
\(636\) −1.39359e6 −0.136613
\(637\) 0 0
\(638\) −60595.3 −0.00589369
\(639\) −266927. −0.0258607
\(640\) −768884. −0.0742012
\(641\) −1.06270e7 −1.02157 −0.510784 0.859709i \(-0.670645\pi\)
−0.510784 + 0.859709i \(0.670645\pi\)
\(642\) 3.23859e6 0.310112
\(643\) −1.54228e6 −0.147108 −0.0735538 0.997291i \(-0.523434\pi\)
−0.0735538 + 0.997291i \(0.523434\pi\)
\(644\) 0 0
\(645\) 5.18561e6 0.490795
\(646\) −1.47236e7 −1.38814
\(647\) 1.28170e7 1.20372 0.601861 0.798601i \(-0.294426\pi\)
0.601861 + 0.798601i \(0.294426\pi\)
\(648\) 419904. 0.0392837
\(649\) 2.65596e6 0.247520
\(650\) 2.78488e6 0.258537
\(651\) 0 0
\(652\) 9.74452e6 0.897721
\(653\) −2.84549e6 −0.261141 −0.130570 0.991439i \(-0.541681\pi\)
−0.130570 + 0.991439i \(0.541681\pi\)
\(654\) 6.66009e6 0.608885
\(655\) −1.69541e7 −1.54409
\(656\) −3.34573e6 −0.303551
\(657\) −829293. −0.0749540
\(658\) 0 0
\(659\) −2.04185e7 −1.83151 −0.915755 0.401736i \(-0.868407\pi\)
−0.915755 + 0.401736i \(0.868407\pi\)
\(660\) 591006. 0.0528119
\(661\) −2.18928e7 −1.94893 −0.974467 0.224529i \(-0.927916\pi\)
−0.974467 + 0.224529i \(0.927916\pi\)
\(662\) −1.31123e6 −0.116288
\(663\) −9.84055e6 −0.869432
\(664\) −5.61873e6 −0.494559
\(665\) 0 0
\(666\) 2.21291e6 0.193320
\(667\) −158017. −0.0137527
\(668\) 2.04458e6 0.177281
\(669\) 3.02287e6 0.261128
\(670\) −8.71000e6 −0.749602
\(671\) 64059.0 0.00549255
\(672\) 0 0
\(673\) −992084. −0.0844327 −0.0422164 0.999108i \(-0.513442\pi\)
−0.0422164 + 0.999108i \(0.513442\pi\)
\(674\) 5.36209e6 0.454657
\(675\) −672630. −0.0568221
\(676\) 3.16922e6 0.266738
\(677\) 7.83497e6 0.657000 0.328500 0.944504i \(-0.393457\pi\)
0.328500 + 0.944504i \(0.393457\pi\)
\(678\) −8.21790e6 −0.686573
\(679\) 0 0
\(680\) −4.35212e6 −0.360935
\(681\) 582491. 0.0481306
\(682\) 1.58510e6 0.130495
\(683\) −7.41182e6 −0.607957 −0.303979 0.952679i \(-0.598315\pi\)
−0.303979 + 0.952679i \(0.598315\pi\)
\(684\) −3.29215e6 −0.269054
\(685\) 1.42958e7 1.16408
\(686\) 0 0
\(687\) −6.75710e6 −0.546221
\(688\) −3.14309e6 −0.253154
\(689\) 7.30246e6 0.586032
\(690\) 1.54119e6 0.123235
\(691\) −1.00517e7 −0.800836 −0.400418 0.916333i \(-0.631135\pi\)
−0.400418 + 0.916333i \(0.631135\pi\)
\(692\) 2.28063e6 0.181046
\(693\) 0 0
\(694\) −1.41350e7 −1.11403
\(695\) 6.08841e6 0.478126
\(696\) 99772.9 0.00780710
\(697\) −1.89379e7 −1.47655
\(698\) −1.59243e7 −1.23715
\(699\) −1.24846e7 −0.966455
\(700\) 0 0
\(701\) 1.59518e7 1.22607 0.613034 0.790057i \(-0.289949\pi\)
0.613034 + 0.790057i \(0.289949\pi\)
\(702\) −2.20031e6 −0.168516
\(703\) −1.73497e7 −1.32405
\(704\) −358219. −0.0272406
\(705\) 5.69882e6 0.431830
\(706\) 177116. 0.0133736
\(707\) 0 0
\(708\) −4.37316e6 −0.327878
\(709\) −3.82623e6 −0.285862 −0.142931 0.989733i \(-0.545653\pi\)
−0.142931 + 0.989733i \(0.545653\pi\)
\(710\) 618597. 0.0460534
\(711\) 7.98530e6 0.592403
\(712\) 4.42239e6 0.326932
\(713\) 4.13352e6 0.304506
\(714\) 0 0
\(715\) −3.09690e6 −0.226549
\(716\) −4.74615e6 −0.345986
\(717\) −1.44816e6 −0.105201
\(718\) −7.00456e6 −0.507072
\(719\) −7.92731e6 −0.571878 −0.285939 0.958248i \(-0.592306\pi\)
−0.285939 + 0.958248i \(0.592306\pi\)
\(720\) −973118. −0.0699575
\(721\) 0 0
\(722\) 1.59068e7 1.13564
\(723\) 1.15633e7 0.822693
\(724\) 4.44246e6 0.314976
\(725\) −159823. −0.0112926
\(726\) −5.52249e6 −0.388860
\(727\) 3.24519e6 0.227722 0.113861 0.993497i \(-0.463678\pi\)
0.113861 + 0.993497i \(0.463678\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.92187e6 0.133480
\(731\) −1.77908e7 −1.23141
\(732\) −105476. −0.00727572
\(733\) 5.97679e6 0.410874 0.205437 0.978670i \(-0.434138\pi\)
0.205437 + 0.978670i \(0.434138\pi\)
\(734\) −1.58846e7 −1.08827
\(735\) 0 0
\(736\) −934142. −0.0635650
\(737\) −4.05794e6 −0.275193
\(738\) −4.23444e6 −0.286190
\(739\) −2.60064e6 −0.175174 −0.0875870 0.996157i \(-0.527916\pi\)
−0.0875870 + 0.996157i \(0.527916\pi\)
\(740\) −5.12836e6 −0.344270
\(741\) 1.72510e7 1.15417
\(742\) 0 0
\(743\) −2.29585e7 −1.52571 −0.762854 0.646571i \(-0.776203\pi\)
−0.762854 + 0.646571i \(0.776203\pi\)
\(744\) −2.60993e6 −0.172861
\(745\) −1.75471e7 −1.15828
\(746\) 8.95839e6 0.589363
\(747\) −7.11121e6 −0.466275
\(748\) −2.02763e6 −0.132506
\(749\) 0 0
\(750\) 6.83831e6 0.443911
\(751\) 4.60318e6 0.297823 0.148911 0.988851i \(-0.452423\pi\)
0.148911 + 0.988851i \(0.452423\pi\)
\(752\) −3.45416e6 −0.222740
\(753\) 4.33180e6 0.278407
\(754\) −522814. −0.0334903
\(755\) 4.06591e6 0.259592
\(756\) 0 0
\(757\) 4.78695e6 0.303612 0.151806 0.988410i \(-0.451491\pi\)
0.151806 + 0.988410i \(0.451491\pi\)
\(758\) −1.70169e7 −1.07574
\(759\) 718033. 0.0452418
\(760\) 7.62948e6 0.479138
\(761\) −2.28441e7 −1.42992 −0.714962 0.699164i \(-0.753556\pi\)
−0.714962 + 0.699164i \(0.753556\pi\)
\(762\) −1.23665e7 −0.771544
\(763\) 0 0
\(764\) −3.88135e6 −0.240574
\(765\) −5.50815e6 −0.340292
\(766\) −6.47533e6 −0.398740
\(767\) 2.29155e7 1.40651
\(768\) 589824. 0.0360844
\(769\) 1.02787e7 0.626793 0.313397 0.949622i \(-0.398533\pi\)
0.313397 + 0.949622i \(0.398533\pi\)
\(770\) 0 0
\(771\) −297798. −0.0180420
\(772\) −9.30439e6 −0.561882
\(773\) 1.38227e7 0.832038 0.416019 0.909356i \(-0.363425\pi\)
0.416019 + 0.909356i \(0.363425\pi\)
\(774\) −3.97797e6 −0.238676
\(775\) 4.18076e6 0.250035
\(776\) 2.69961e6 0.160933
\(777\) 0 0
\(778\) −5.41262e6 −0.320596
\(779\) 3.31990e7 1.96012
\(780\) 5.09918e6 0.300098
\(781\) 288201. 0.0169071
\(782\) −5.28753e6 −0.309198
\(783\) 126275. 0.00736060
\(784\) 0 0
\(785\) −2.16893e7 −1.25624
\(786\) 1.30058e7 0.750897
\(787\) 736248. 0.0423728 0.0211864 0.999776i \(-0.493256\pi\)
0.0211864 + 0.999776i \(0.493256\pi\)
\(788\) 1.19827e7 0.687444
\(789\) 4.01580e6 0.229657
\(790\) −1.85058e7 −1.05497
\(791\) 0 0
\(792\) −453371. −0.0256827
\(793\) 552699. 0.0312108
\(794\) 1.71222e6 0.0963850
\(795\) 4.08748e6 0.229371
\(796\) 1.16111e7 0.649516
\(797\) −3.29571e7 −1.83782 −0.918912 0.394464i \(-0.870930\pi\)
−0.918912 + 0.394464i \(0.870930\pi\)
\(798\) 0 0
\(799\) −1.95516e7 −1.08347
\(800\) −944820. −0.0521944
\(801\) 5.59709e6 0.308234
\(802\) −472913. −0.0259624
\(803\) 895389. 0.0490030
\(804\) 6.68159e6 0.364535
\(805\) 0 0
\(806\) 1.36761e7 0.741526
\(807\) 1.75368e7 0.947911
\(808\) −1.14223e7 −0.615498
\(809\) −1.09629e7 −0.588918 −0.294459 0.955664i \(-0.595139\pi\)
−0.294459 + 0.955664i \(0.595139\pi\)
\(810\) −1.23160e6 −0.0659566
\(811\) −2.77365e7 −1.48081 −0.740406 0.672160i \(-0.765367\pi\)
−0.740406 + 0.672160i \(0.765367\pi\)
\(812\) 0 0
\(813\) 871857. 0.0462614
\(814\) −2.38928e6 −0.126388
\(815\) −2.85812e7 −1.50726
\(816\) 3.33859e6 0.175524
\(817\) 3.11882e7 1.63469
\(818\) −4.83897e6 −0.252854
\(819\) 0 0
\(820\) 9.81322e6 0.509656
\(821\) 1.25487e7 0.649743 0.324872 0.945758i \(-0.394679\pi\)
0.324872 + 0.945758i \(0.394679\pi\)
\(822\) −1.09666e7 −0.566098
\(823\) 2.88571e7 1.48509 0.742545 0.669796i \(-0.233618\pi\)
0.742545 + 0.669796i \(0.233618\pi\)
\(824\) −2.25447e6 −0.115672
\(825\) 726240. 0.0371489
\(826\) 0 0
\(827\) −2.83888e7 −1.44339 −0.721694 0.692213i \(-0.756636\pi\)
−0.721694 + 0.692213i \(0.756636\pi\)
\(828\) −1.18227e6 −0.0599297
\(829\) 2.40584e7 1.21585 0.607926 0.793994i \(-0.292002\pi\)
0.607926 + 0.793994i \(0.292002\pi\)
\(830\) 1.64801e7 0.830355
\(831\) 1.47311e7 0.740001
\(832\) −3.09070e6 −0.154792
\(833\) 0 0
\(834\) −4.67053e6 −0.232515
\(835\) −5.99686e6 −0.297651
\(836\) 3.55454e6 0.175901
\(837\) −3.30320e6 −0.162975
\(838\) −1.65037e7 −0.811842
\(839\) −2.99511e6 −0.146895 −0.0734477 0.997299i \(-0.523400\pi\)
−0.0734477 + 0.997299i \(0.523400\pi\)
\(840\) 0 0
\(841\) −2.04811e7 −0.998537
\(842\) 1.24950e7 0.607372
\(843\) −1.61602e7 −0.783211
\(844\) 1.30355e7 0.629899
\(845\) −9.29551e6 −0.447849
\(846\) −4.37167e6 −0.210001
\(847\) 0 0
\(848\) −2.47749e6 −0.118310
\(849\) 1.15243e7 0.548712
\(850\) −5.34797e6 −0.253888
\(851\) −6.23061e6 −0.294922
\(852\) −474537. −0.0223960
\(853\) 1.46234e6 0.0688137 0.0344069 0.999408i \(-0.489046\pi\)
0.0344069 + 0.999408i \(0.489046\pi\)
\(854\) 0 0
\(855\) 9.65606e6 0.451736
\(856\) 5.75750e6 0.268565
\(857\) 1.66909e7 0.776295 0.388148 0.921597i \(-0.373115\pi\)
0.388148 + 0.921597i \(0.373115\pi\)
\(858\) 2.37568e6 0.110172
\(859\) 3.01647e7 1.39481 0.697406 0.716676i \(-0.254337\pi\)
0.697406 + 0.716676i \(0.254337\pi\)
\(860\) 9.21886e6 0.425041
\(861\) 0 0
\(862\) 4.45834e6 0.204364
\(863\) −2.88352e7 −1.31794 −0.658970 0.752169i \(-0.729008\pi\)
−0.658970 + 0.752169i \(0.729008\pi\)
\(864\) 746496. 0.0340207
\(865\) −6.68921e6 −0.303973
\(866\) −1.06455e6 −0.0482361
\(867\) 6.11871e6 0.276447
\(868\) 0 0
\(869\) −8.62175e6 −0.387298
\(870\) −292640. −0.0131080
\(871\) −3.50118e7 −1.56376
\(872\) 1.18402e7 0.527310
\(873\) 3.41669e6 0.151730
\(874\) 9.26931e6 0.410458
\(875\) 0 0
\(876\) −1.47430e6 −0.0649120
\(877\) 3.15732e7 1.38618 0.693090 0.720851i \(-0.256249\pi\)
0.693090 + 0.720851i \(0.256249\pi\)
\(878\) −9.84188e6 −0.430865
\(879\) 2.97733e6 0.129973
\(880\) 1.05068e6 0.0457365
\(881\) 1.42247e7 0.617452 0.308726 0.951151i \(-0.400097\pi\)
0.308726 + 0.951151i \(0.400097\pi\)
\(882\) 0 0
\(883\) −9.42179e6 −0.406660 −0.203330 0.979110i \(-0.565176\pi\)
−0.203330 + 0.979110i \(0.565176\pi\)
\(884\) −1.74943e7 −0.752950
\(885\) 1.28267e7 0.550501
\(886\) −4.84323e6 −0.207277
\(887\) 1.50474e7 0.642174 0.321087 0.947050i \(-0.395952\pi\)
0.321087 + 0.947050i \(0.395952\pi\)
\(888\) 3.93405e6 0.167420
\(889\) 0 0
\(890\) −1.29711e7 −0.548912
\(891\) −573798. −0.0242139
\(892\) 5.37399e6 0.226144
\(893\) 3.42749e7 1.43829
\(894\) 1.34607e7 0.563279
\(895\) 1.39207e7 0.580904
\(896\) 0 0
\(897\) 6.19516e6 0.257082
\(898\) −1.46535e7 −0.606388
\(899\) −784869. −0.0323890
\(900\) −1.19579e6 −0.0492094
\(901\) −1.40234e7 −0.575494
\(902\) 4.57193e6 0.187104
\(903\) 0 0
\(904\) −1.46096e7 −0.594589
\(905\) −1.30300e7 −0.528838
\(906\) −3.11903e6 −0.126241
\(907\) −1.87480e7 −0.756725 −0.378362 0.925658i \(-0.623513\pi\)
−0.378362 + 0.925658i \(0.623513\pi\)
\(908\) 1.03554e6 0.0416823
\(909\) −1.44564e7 −0.580297
\(910\) 0 0
\(911\) 1.49384e7 0.596358 0.298179 0.954510i \(-0.403621\pi\)
0.298179 + 0.954510i \(0.403621\pi\)
\(912\) −5.85271e6 −0.233007
\(913\) 7.67798e6 0.304839
\(914\) −3.49547e7 −1.38401
\(915\) 309367. 0.0122158
\(916\) −1.20126e7 −0.473041
\(917\) 0 0
\(918\) 4.22540e6 0.165486
\(919\) 4.21133e7 1.64487 0.822434 0.568861i \(-0.192616\pi\)
0.822434 + 0.568861i \(0.192616\pi\)
\(920\) 2.73989e6 0.106724
\(921\) −4.98679e6 −0.193719
\(922\) −4.93905e6 −0.191345
\(923\) 2.48659e6 0.0960727
\(924\) 0 0
\(925\) −6.30183e6 −0.242166
\(926\) −1.63106e7 −0.625088
\(927\) −2.85332e6 −0.109056
\(928\) 177374. 0.00676114
\(929\) −5.87883e6 −0.223487 −0.111743 0.993737i \(-0.535643\pi\)
−0.111743 + 0.993737i \(0.535643\pi\)
\(930\) 7.65508e6 0.290230
\(931\) 0 0
\(932\) −2.21948e7 −0.836974
\(933\) −1.58333e7 −0.595480
\(934\) −2.10008e7 −0.787715
\(935\) 5.94716e6 0.222475
\(936\) −3.91167e6 −0.145939
\(937\) −1.42337e7 −0.529625 −0.264813 0.964300i \(-0.585310\pi\)
−0.264813 + 0.964300i \(0.585310\pi\)
\(938\) 0 0
\(939\) −2.10437e7 −0.778859
\(940\) 1.01312e7 0.373975
\(941\) 3.24512e7 1.19469 0.597347 0.801983i \(-0.296222\pi\)
0.597347 + 0.801983i \(0.296222\pi\)
\(942\) 1.66382e7 0.610914
\(943\) 1.19224e7 0.436601
\(944\) −7.77451e6 −0.283951
\(945\) 0 0
\(946\) 4.29502e6 0.156041
\(947\) −2.60957e7 −0.945570 −0.472785 0.881178i \(-0.656751\pi\)
−0.472785 + 0.881178i \(0.656751\pi\)
\(948\) 1.41961e7 0.513036
\(949\) 7.72538e6 0.278455
\(950\) 9.37526e6 0.337034
\(951\) −8.70653e6 −0.312172
\(952\) 0 0
\(953\) 2.98631e7 1.06513 0.532565 0.846389i \(-0.321228\pi\)
0.532565 + 0.846389i \(0.321228\pi\)
\(954\) −3.13558e6 −0.111544
\(955\) 1.13842e7 0.403920
\(956\) −2.57451e6 −0.0911064
\(957\) −136339. −0.00481218
\(958\) −6.74827e6 −0.237563
\(959\) 0 0
\(960\) −1.72999e6 −0.0605850
\(961\) −8.09799e6 −0.282858
\(962\) −2.06146e7 −0.718186
\(963\) 7.28683e6 0.253205
\(964\) 2.05571e7 0.712473
\(965\) 2.72903e7 0.943388
\(966\) 0 0
\(967\) 6.83038e6 0.234898 0.117449 0.993079i \(-0.462528\pi\)
0.117449 + 0.993079i \(0.462528\pi\)
\(968\) −9.81776e6 −0.336763
\(969\) −3.31281e7 −1.13341
\(970\) −7.91811e6 −0.270204
\(971\) −8.99328e6 −0.306105 −0.153052 0.988218i \(-0.548910\pi\)
−0.153052 + 0.988218i \(0.548910\pi\)
\(972\) 944784. 0.0320750
\(973\) 0 0
\(974\) 1.75808e7 0.593801
\(975\) 6.26597e6 0.211094
\(976\) −187513. −0.00630096
\(977\) −2.94394e7 −0.986718 −0.493359 0.869826i \(-0.664231\pi\)
−0.493359 + 0.869826i \(0.664231\pi\)
\(978\) 2.19252e7 0.732986
\(979\) −6.04318e6 −0.201516
\(980\) 0 0
\(981\) 1.49852e7 0.497153
\(982\) 8.54329e6 0.282713
\(983\) −3.96261e7 −1.30797 −0.653984 0.756508i \(-0.726904\pi\)
−0.653984 + 0.756508i \(0.726904\pi\)
\(984\) −7.52790e6 −0.247848
\(985\) −3.51458e7 −1.15421
\(986\) 1.00399e6 0.0328880
\(987\) 0 0
\(988\) 3.06684e7 0.999537
\(989\) 1.12003e7 0.364115
\(990\) 1.32976e6 0.0431208
\(991\) 5.34988e7 1.73045 0.865226 0.501382i \(-0.167175\pi\)
0.865226 + 0.501382i \(0.167175\pi\)
\(992\) −4.63988e6 −0.149702
\(993\) −2.95028e6 −0.0949488
\(994\) 0 0
\(995\) −3.40560e7 −1.09053
\(996\) −1.26421e7 −0.403806
\(997\) 3.76239e7 1.19874 0.599371 0.800471i \(-0.295417\pi\)
0.599371 + 0.800471i \(0.295417\pi\)
\(998\) −7.73756e6 −0.245911
\(999\) 4.97904e6 0.157845
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.u.1.2 yes 2
3.2 odd 2 882.6.a.bj.1.1 2
7.2 even 3 294.6.e.u.67.1 4
7.3 odd 6 294.6.e.v.79.2 4
7.4 even 3 294.6.e.u.79.1 4
7.5 odd 6 294.6.e.v.67.2 4
7.6 odd 2 294.6.a.t.1.1 2
21.20 even 2 882.6.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.t.1.1 2 7.6 odd 2
294.6.a.u.1.2 yes 2 1.1 even 1 trivial
294.6.e.u.67.1 4 7.2 even 3
294.6.e.u.79.1 4 7.4 even 3
294.6.e.v.67.2 4 7.5 odd 6
294.6.e.v.79.2 4 7.3 odd 6
882.6.a.z.1.2 2 21.20 even 2
882.6.a.bj.1.1 2 3.2 odd 2