Properties

Label 294.6.a.u
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + 9 q^{3} + 16 q^{4} + (5 \beta - 54) q^{5} + 36 q^{6} + 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} + 9 q^{3} + 16 q^{4} + (5 \beta - 54) q^{5} + 36 q^{6} + 64 q^{8} + 81 q^{9} + (20 \beta - 216) q^{10} + ( - 18 \beta - 62) q^{11} + 144 q^{12} + ( - 279 \beta - 360) q^{13} + (45 \beta - 486) q^{15} + 256 q^{16} + (1241 \beta - 306) q^{17} + 324 q^{18} + ( - 1058 \beta - 1044) q^{19} + (80 \beta - 864) q^{20} + ( - 72 \beta - 248) q^{22} + ( - 918 \beta + 386) q^{23} + 576 q^{24} + ( - 540 \beta - 159) q^{25} + ( - 1116 \beta - 1440) q^{26} + 729 q^{27} + (1746 \beta - 2296) q^{29} + (180 \beta - 1944) q^{30} + (258 \beta - 4896) q^{31} + 1024 q^{32} + ( - 162 \beta - 558) q^{33} + (4964 \beta - 1224) q^{34} + 1296 q^{36} + (6948 \beta - 2996) q^{37} + ( - 4232 \beta - 4176) q^{38} + ( - 2511 \beta - 3240) q^{39} + (320 \beta - 3456) q^{40} + ( - 2101 \beta - 10098) q^{41} + ( - 8280 \beta - 568) q^{43} + ( - 288 \beta - 992) q^{44} + (405 \beta - 4374) q^{45} + ( - 3672 \beta + 1544) q^{46} + (3518 \beta - 18468) q^{47} + 2304 q^{48} + ( - 2160 \beta - 636) q^{50} + (11169 \beta - 2754) q^{51} + ( - 4464 \beta - 5760) q^{52} + ( - 936 \beta - 8354) q^{53} + 2916 q^{54} + (662 \beta + 3168) q^{55} + ( - 9522 \beta - 9396) q^{57} + (6984 \beta - 9184) q^{58} + (4898 \beta - 37296) q^{59} + (720 \beta - 7776) q^{60} + ( - 7111 \beta + 9324) q^{61} + (1032 \beta - 19584) q^{62} + 4096 q^{64} + (13266 \beta + 16650) q^{65} + ( - 648 \beta - 2232) q^{66} + (9000 \beta + 33672) q^{67} + (19856 \beta - 4896) q^{68} + ( - 8262 \beta + 3474) q^{69} + ( - 29394 \beta + 38274) q^{71} + 5184 q^{72} + (9485 \beta - 23652) q^{73} + (27792 \beta - 11984) q^{74} + ( - 4860 \beta - 1431) q^{75} + ( - 16928 \beta - 16704) q^{76} + ( - 10044 \beta - 12960) q^{78} + (19980 \beta + 70328) q^{79} + (1280 \beta - 13824) q^{80} + 6561 q^{81} + ( - 8404 \beta - 40392) q^{82} + ( - 28808 \beta - 47052) q^{83} + ( - 68544 \beta + 28934) q^{85} + ( - 33120 \beta - 2272) q^{86} + (15714 \beta - 20664) q^{87} + ( - 1152 \beta - 3968) q^{88} + (42637 \beta + 8802) q^{89} + (1620 \beta - 17496) q^{90} + ( - 14688 \beta + 6176) q^{92} + (2322 \beta - 44064) q^{93} + (14072 \beta - 73872) q^{94} + (51912 \beta + 45796) q^{95} + 9216 q^{96} + (59941 \beta - 42588) q^{97} + ( - 1458 \beta - 5022) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} + 128 q^{8} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} + 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} + 128 q^{8} + 162 q^{9} - 432 q^{10} - 124 q^{11} + 288 q^{12} - 720 q^{13} - 972 q^{15} + 512 q^{16} - 612 q^{17} + 648 q^{18} - 2088 q^{19} - 1728 q^{20} - 496 q^{22} + 772 q^{23} + 1152 q^{24} - 318 q^{25} - 2880 q^{26} + 1458 q^{27} - 4592 q^{29} - 3888 q^{30} - 9792 q^{31} + 2048 q^{32} - 1116 q^{33} - 2448 q^{34} + 2592 q^{36} - 5992 q^{37} - 8352 q^{38} - 6480 q^{39} - 6912 q^{40} - 20196 q^{41} - 1136 q^{43} - 1984 q^{44} - 8748 q^{45} + 3088 q^{46} - 36936 q^{47} + 4608 q^{48} - 1272 q^{50} - 5508 q^{51} - 11520 q^{52} - 16708 q^{53} + 5832 q^{54} + 6336 q^{55} - 18792 q^{57} - 18368 q^{58} - 74592 q^{59} - 15552 q^{60} + 18648 q^{61} - 39168 q^{62} + 8192 q^{64} + 33300 q^{65} - 4464 q^{66} + 67344 q^{67} - 9792 q^{68} + 6948 q^{69} + 76548 q^{71} + 10368 q^{72} - 47304 q^{73} - 23968 q^{74} - 2862 q^{75} - 33408 q^{76} - 25920 q^{78} + 140656 q^{79} - 27648 q^{80} + 13122 q^{81} - 80784 q^{82} - 94104 q^{83} + 57868 q^{85} - 4544 q^{86} - 41328 q^{87} - 7936 q^{88} + 17604 q^{89} - 34992 q^{90} + 12352 q^{92} - 88128 q^{93} - 147744 q^{94} + 91592 q^{95} + 18432 q^{96} - 85176 q^{97} - 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
4.00000 9.00000 16.0000 −61.0711 36.0000 0 64.0000 81.0000 −244.284
1.2 4.00000 9.00000 16.0000 −46.9289 36.0000 0 64.0000 81.0000 −187.716
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.u yes 2
3.b odd 2 1 882.6.a.bj 2
7.b odd 2 1 294.6.a.t 2
7.c even 3 2 294.6.e.u 4
7.d odd 6 2 294.6.e.v 4
21.c even 2 1 882.6.a.z 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.t 2 7.b odd 2 1
294.6.a.u yes 2 1.a even 1 1 trivial
294.6.e.u 4 7.c even 3 2
294.6.e.v 4 7.d odd 6 2
882.6.a.z 2 21.c even 2 1
882.6.a.bj 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5}^{2} + 108T_{5} + 2866 \) Copy content Toggle raw display
\( T_{11}^{2} + 124T_{11} + 3196 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 108T + 2866 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 124T + 3196 \) Copy content Toggle raw display
$13$ \( T^{2} + 720T - 26082 \) Copy content Toggle raw display
$17$ \( T^{2} + 612 T - 2986526 \) Copy content Toggle raw display
$19$ \( T^{2} + 2088 T - 1148792 \) Copy content Toggle raw display
$23$ \( T^{2} - 772 T - 1536452 \) Copy content Toggle raw display
$29$ \( T^{2} + 4592 T - 825416 \) Copy content Toggle raw display
$31$ \( T^{2} + 9792 T + 23837688 \) Copy content Toggle raw display
$37$ \( T^{2} + 5992 T - 87573392 \) Copy content Toggle raw display
$41$ \( T^{2} + 20196 T + 93141202 \) Copy content Toggle raw display
$43$ \( T^{2} + 1136 T - 136794176 \) Copy content Toggle raw display
$47$ \( T^{2} + 36936 T + 316314376 \) Copy content Toggle raw display
$53$ \( T^{2} + 16708 T + 68037124 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1343010808 \) Copy content Toggle raw display
$61$ \( T^{2} - 18648 T - 14195666 \) Copy content Toggle raw display
$67$ \( T^{2} - 67344 T + 971803584 \) Copy content Toggle raw display
$71$ \( T^{2} - 76548 T - 263115396 \) Copy content Toggle raw display
$73$ \( T^{2} + 47304 T + 379486654 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4147626784 \) Copy content Toggle raw display
$83$ \( T^{2} + 94104 T + 554088976 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 3558352334 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 5372109218 \) Copy content Toggle raw display
show more
show less