Properties

Label 294.6.a.t.1.2
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +61.0711 q^{5} -36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +61.0711 q^{5} -36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +244.284 q^{10} -36.5442 q^{11} -144.000 q^{12} -34.5656 q^{13} -549.640 q^{15} +256.000 q^{16} +2061.04 q^{17} +324.000 q^{18} -452.238 q^{19} +977.137 q^{20} -146.177 q^{22} +1684.25 q^{23} -576.000 q^{24} +604.675 q^{25} -138.262 q^{26} -729.000 q^{27} -4765.22 q^{29} -2198.56 q^{30} +5260.87 q^{31} +1024.00 q^{32} +328.897 q^{33} +8244.16 q^{34} +1296.00 q^{36} -12822.0 q^{37} -1808.95 q^{38} +311.090 q^{39} +3908.55 q^{40} +7126.74 q^{41} +11141.7 q^{43} -584.706 q^{44} +4946.76 q^{45} +6736.99 q^{46} +23443.2 q^{47} -2304.00 q^{48} +2418.70 q^{50} -18549.4 q^{51} -553.049 q^{52} -7030.30 q^{53} -2916.00 q^{54} -2231.79 q^{55} +4070.14 q^{57} -19060.9 q^{58} +44222.8 q^{59} -8794.23 q^{60} -19380.5 q^{61} +21043.5 q^{62} +4096.00 q^{64} -2110.96 q^{65} +1315.59 q^{66} +20944.1 q^{67} +32976.6 q^{68} -15158.2 q^{69} +79843.4 q^{71} +5184.00 q^{72} +37065.8 q^{73} -51287.8 q^{74} -5442.08 q^{75} -7235.81 q^{76} +1244.36 q^{78} +42072.0 q^{79} +15634.2 q^{80} +6561.00 q^{81} +28506.9 q^{82} +6311.34 q^{83} +125870. q^{85} +44566.8 q^{86} +42887.0 q^{87} -2338.83 q^{88} +51495.8 q^{89} +19787.0 q^{90} +26948.0 q^{92} -47347.8 q^{93} +93772.8 q^{94} -27618.7 q^{95} -9216.00 q^{96} +127357. q^{97} -2960.08 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} + 108 q^{5} - 72 q^{6} + 128 q^{8} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} + 108 q^{5} - 72 q^{6} + 128 q^{8} + 162 q^{9} + 432 q^{10} - 124 q^{11} - 288 q^{12} + 720 q^{13} - 972 q^{15} + 512 q^{16} + 612 q^{17} + 648 q^{18} + 2088 q^{19} + 1728 q^{20} - 496 q^{22} + 772 q^{23} - 1152 q^{24} - 318 q^{25} + 2880 q^{26} - 1458 q^{27} - 4592 q^{29} - 3888 q^{30} + 9792 q^{31} + 2048 q^{32} + 1116 q^{33} + 2448 q^{34} + 2592 q^{36} - 5992 q^{37} + 8352 q^{38} - 6480 q^{39} + 6912 q^{40} + 20196 q^{41} - 1136 q^{43} - 1984 q^{44} + 8748 q^{45} + 3088 q^{46} + 36936 q^{47} - 4608 q^{48} - 1272 q^{50} - 5508 q^{51} + 11520 q^{52} - 16708 q^{53} - 5832 q^{54} - 6336 q^{55} - 18792 q^{57} - 18368 q^{58} + 74592 q^{59} - 15552 q^{60} - 18648 q^{61} + 39168 q^{62} + 8192 q^{64} + 33300 q^{65} + 4464 q^{66} + 67344 q^{67} + 9792 q^{68} - 6948 q^{69} + 76548 q^{71} + 10368 q^{72} + 47304 q^{73} - 23968 q^{74} + 2862 q^{75} + 33408 q^{76} - 25920 q^{78} + 140656 q^{79} + 27648 q^{80} + 13122 q^{81} + 80784 q^{82} + 94104 q^{83} + 57868 q^{85} - 4544 q^{86} + 41328 q^{87} - 7936 q^{88} - 17604 q^{89} + 34992 q^{90} + 12352 q^{92} - 88128 q^{93} + 147744 q^{94} + 91592 q^{95} - 18432 q^{96} + 85176 q^{97} - 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −9.00000 −0.577350
\(4\) 16.0000 0.500000
\(5\) 61.0711 1.09247 0.546236 0.837631i \(-0.316060\pi\)
0.546236 + 0.837631i \(0.316060\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) 244.284 0.772495
\(11\) −36.5442 −0.0910618 −0.0455309 0.998963i \(-0.514498\pi\)
−0.0455309 + 0.998963i \(0.514498\pi\)
\(12\) −144.000 −0.288675
\(13\) −34.5656 −0.0567264 −0.0283632 0.999598i \(-0.509030\pi\)
−0.0283632 + 0.999598i \(0.509030\pi\)
\(14\) 0 0
\(15\) −549.640 −0.630739
\(16\) 256.000 0.250000
\(17\) 2061.04 1.72967 0.864836 0.502054i \(-0.167422\pi\)
0.864836 + 0.502054i \(0.167422\pi\)
\(18\) 324.000 0.235702
\(19\) −452.238 −0.287398 −0.143699 0.989621i \(-0.545900\pi\)
−0.143699 + 0.989621i \(0.545900\pi\)
\(20\) 977.137 0.546236
\(21\) 0 0
\(22\) −146.177 −0.0643904
\(23\) 1684.25 0.663875 0.331938 0.943301i \(-0.392298\pi\)
0.331938 + 0.943301i \(0.392298\pi\)
\(24\) −576.000 −0.204124
\(25\) 604.675 0.193496
\(26\) −138.262 −0.0401116
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −4765.22 −1.05217 −0.526087 0.850431i \(-0.676341\pi\)
−0.526087 + 0.850431i \(0.676341\pi\)
\(30\) −2198.56 −0.446000
\(31\) 5260.87 0.983225 0.491613 0.870814i \(-0.336408\pi\)
0.491613 + 0.870814i \(0.336408\pi\)
\(32\) 1024.00 0.176777
\(33\) 328.897 0.0525746
\(34\) 8244.16 1.22306
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −12822.0 −1.53975 −0.769875 0.638195i \(-0.779681\pi\)
−0.769875 + 0.638195i \(0.779681\pi\)
\(38\) −1808.95 −0.203221
\(39\) 311.090 0.0327510
\(40\) 3908.55 0.386247
\(41\) 7126.74 0.662111 0.331056 0.943611i \(-0.392595\pi\)
0.331056 + 0.943611i \(0.392595\pi\)
\(42\) 0 0
\(43\) 11141.7 0.918925 0.459462 0.888197i \(-0.348042\pi\)
0.459462 + 0.888197i \(0.348042\pi\)
\(44\) −584.706 −0.0455309
\(45\) 4946.76 0.364157
\(46\) 6736.99 0.469431
\(47\) 23443.2 1.54800 0.774002 0.633183i \(-0.218252\pi\)
0.774002 + 0.633183i \(0.218252\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) 2418.70 0.136822
\(51\) −18549.4 −0.998627
\(52\) −553.049 −0.0283632
\(53\) −7030.30 −0.343783 −0.171891 0.985116i \(-0.554988\pi\)
−0.171891 + 0.985116i \(0.554988\pi\)
\(54\) −2916.00 −0.136083
\(55\) −2231.79 −0.0994825
\(56\) 0 0
\(57\) 4070.14 0.165929
\(58\) −19060.9 −0.744000
\(59\) 44222.8 1.65393 0.826964 0.562255i \(-0.190066\pi\)
0.826964 + 0.562255i \(0.190066\pi\)
\(60\) −8794.23 −0.315370
\(61\) −19380.5 −0.666868 −0.333434 0.942773i \(-0.608207\pi\)
−0.333434 + 0.942773i \(0.608207\pi\)
\(62\) 21043.5 0.695245
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −2110.96 −0.0619721
\(66\) 1315.59 0.0371758
\(67\) 20944.1 0.569999 0.285000 0.958528i \(-0.408007\pi\)
0.285000 + 0.958528i \(0.408007\pi\)
\(68\) 32976.6 0.864836
\(69\) −15158.2 −0.383289
\(70\) 0 0
\(71\) 79843.4 1.87972 0.939860 0.341560i \(-0.110955\pi\)
0.939860 + 0.341560i \(0.110955\pi\)
\(72\) 5184.00 0.117851
\(73\) 37065.8 0.814079 0.407039 0.913411i \(-0.366561\pi\)
0.407039 + 0.913411i \(0.366561\pi\)
\(74\) −51287.8 −1.08877
\(75\) −5442.08 −0.111715
\(76\) −7235.81 −0.143699
\(77\) 0 0
\(78\) 1244.36 0.0231585
\(79\) 42072.0 0.758448 0.379224 0.925305i \(-0.376191\pi\)
0.379224 + 0.925305i \(0.376191\pi\)
\(80\) 15634.2 0.273118
\(81\) 6561.00 0.111111
\(82\) 28506.9 0.468184
\(83\) 6311.34 0.100560 0.0502801 0.998735i \(-0.483989\pi\)
0.0502801 + 0.998735i \(0.483989\pi\)
\(84\) 0 0
\(85\) 125870. 1.88962
\(86\) 44566.8 0.649778
\(87\) 42887.0 0.607473
\(88\) −2338.83 −0.0321952
\(89\) 51495.8 0.689123 0.344562 0.938764i \(-0.388028\pi\)
0.344562 + 0.938764i \(0.388028\pi\)
\(90\) 19787.0 0.257498
\(91\) 0 0
\(92\) 26948.0 0.331938
\(93\) −47347.8 −0.567665
\(94\) 93772.8 1.09460
\(95\) −27618.7 −0.313974
\(96\) −9216.00 −0.102062
\(97\) 127357. 1.37434 0.687171 0.726496i \(-0.258852\pi\)
0.687171 + 0.726496i \(0.258852\pi\)
\(98\) 0 0
\(99\) −2960.08 −0.0303539
\(100\) 9674.81 0.0967481
\(101\) −65757.9 −0.641423 −0.320712 0.947177i \(-0.603922\pi\)
−0.320712 + 0.947177i \(0.603922\pi\)
\(102\) −74197.4 −0.706136
\(103\) −170010. −1.57900 −0.789499 0.613751i \(-0.789660\pi\)
−0.789499 + 0.613751i \(0.789660\pi\)
\(104\) −2212.20 −0.0200558
\(105\) 0 0
\(106\) −28121.2 −0.243091
\(107\) −107933. −0.911369 −0.455685 0.890141i \(-0.650605\pi\)
−0.455685 + 0.890141i \(0.650605\pi\)
\(108\) −11664.0 −0.0962250
\(109\) −222698. −1.79536 −0.897679 0.440651i \(-0.854748\pi\)
−0.897679 + 0.440651i \(0.854748\pi\)
\(110\) −8927.16 −0.0703448
\(111\) 115398. 0.888975
\(112\) 0 0
\(113\) 181055. 1.33387 0.666936 0.745115i \(-0.267605\pi\)
0.666936 + 0.745115i \(0.267605\pi\)
\(114\) 16280.6 0.117330
\(115\) 102859. 0.725265
\(116\) −76243.5 −0.526087
\(117\) −2799.81 −0.0189088
\(118\) 176891. 1.16950
\(119\) 0 0
\(120\) −35176.9 −0.223000
\(121\) −159716. −0.991708
\(122\) −77521.9 −0.471547
\(123\) −64140.6 −0.382270
\(124\) 84173.9 0.491613
\(125\) −153919. −0.881083
\(126\) 0 0
\(127\) 91474.7 0.503259 0.251630 0.967824i \(-0.419034\pi\)
0.251630 + 0.967824i \(0.419034\pi\)
\(128\) 16384.0 0.0883883
\(129\) −100275. −0.530541
\(130\) −8443.83 −0.0438209
\(131\) 19343.9 0.0984840 0.0492420 0.998787i \(-0.484319\pi\)
0.0492420 + 0.998787i \(0.484319\pi\)
\(132\) 5262.36 0.0262873
\(133\) 0 0
\(134\) 83776.3 0.403050
\(135\) −44520.8 −0.210246
\(136\) 131906. 0.611532
\(137\) −3077.04 −0.0140065 −0.00700327 0.999975i \(-0.502229\pi\)
−0.00700327 + 0.999975i \(0.502229\pi\)
\(138\) −60632.9 −0.271026
\(139\) −370001. −1.62430 −0.812149 0.583450i \(-0.801702\pi\)
−0.812149 + 0.583450i \(0.801702\pi\)
\(140\) 0 0
\(141\) −210989. −0.893741
\(142\) 319374. 1.32916
\(143\) 1263.17 0.00516561
\(144\) 20736.0 0.0833333
\(145\) −291017. −1.14947
\(146\) 148263. 0.575641
\(147\) 0 0
\(148\) −205151. −0.769875
\(149\) −454120. −1.67573 −0.837866 0.545875i \(-0.816197\pi\)
−0.837866 + 0.545875i \(0.816197\pi\)
\(150\) −21768.3 −0.0789945
\(151\) 177592. 0.633841 0.316921 0.948452i \(-0.397351\pi\)
0.316921 + 0.948452i \(0.397351\pi\)
\(152\) −28943.2 −0.101610
\(153\) 166944. 0.576558
\(154\) 0 0
\(155\) 321287. 1.07415
\(156\) 4977.44 0.0163755
\(157\) 248981. 0.806153 0.403076 0.915166i \(-0.367941\pi\)
0.403076 + 0.915166i \(0.367941\pi\)
\(158\) 168288. 0.536303
\(159\) 63272.7 0.198483
\(160\) 62536.8 0.193124
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 202248. 0.596231 0.298116 0.954530i \(-0.403642\pi\)
0.298116 + 0.954530i \(0.403642\pi\)
\(164\) 114028. 0.331056
\(165\) 20086.1 0.0574363
\(166\) 25245.3 0.0711068
\(167\) −475790. −1.32015 −0.660076 0.751199i \(-0.729476\pi\)
−0.660076 + 0.751199i \(0.729476\pi\)
\(168\) 0 0
\(169\) −370098. −0.996782
\(170\) 503479. 1.33616
\(171\) −36631.3 −0.0957992
\(172\) 178267. 0.459462
\(173\) 284703. 0.723231 0.361616 0.932327i \(-0.382225\pi\)
0.361616 + 0.932327i \(0.382225\pi\)
\(174\) 171548. 0.429548
\(175\) 0 0
\(176\) −9355.30 −0.0227654
\(177\) −398005. −0.954895
\(178\) 205983. 0.487284
\(179\) 347958. 0.811699 0.405849 0.913940i \(-0.366976\pi\)
0.405849 + 0.913940i \(0.366976\pi\)
\(180\) 79148.1 0.182079
\(181\) −379706. −0.861492 −0.430746 0.902473i \(-0.641750\pi\)
−0.430746 + 0.902473i \(0.641750\pi\)
\(182\) 0 0
\(183\) 174424. 0.385016
\(184\) 107792. 0.234715
\(185\) −783051. −1.68213
\(186\) −189391. −0.401400
\(187\) −75318.9 −0.157507
\(188\) 375091. 0.774002
\(189\) 0 0
\(190\) −110475. −0.222013
\(191\) 194492. 0.385762 0.192881 0.981222i \(-0.438217\pi\)
0.192881 + 0.981222i \(0.438217\pi\)
\(192\) −36864.0 −0.0721688
\(193\) 877401. 1.69553 0.847763 0.530375i \(-0.177949\pi\)
0.847763 + 0.530375i \(0.177949\pi\)
\(194\) 509430. 0.971806
\(195\) 18998.6 0.0357796
\(196\) 0 0
\(197\) −752368. −1.38123 −0.690613 0.723225i \(-0.742659\pi\)
−0.690613 + 0.723225i \(0.742659\pi\)
\(198\) −11840.3 −0.0214635
\(199\) 155453. 0.278270 0.139135 0.990273i \(-0.455568\pi\)
0.139135 + 0.990273i \(0.455568\pi\)
\(200\) 38699.2 0.0684112
\(201\) −188497. −0.329089
\(202\) −263032. −0.453555
\(203\) 0 0
\(204\) −296790. −0.499313
\(205\) 435237. 0.723339
\(206\) −680041. −1.11652
\(207\) 136424. 0.221292
\(208\) −8848.79 −0.0141816
\(209\) 16526.7 0.0261709
\(210\) 0 0
\(211\) 3898.23 0.00602783 0.00301391 0.999995i \(-0.499041\pi\)
0.00301391 + 0.999995i \(0.499041\pi\)
\(212\) −112485. −0.171891
\(213\) −718591. −1.08526
\(214\) −431731. −0.644435
\(215\) 680435. 1.00390
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −890794. −1.26951
\(219\) −333592. −0.470009
\(220\) −35708.6 −0.0497413
\(221\) −71241.0 −0.0981182
\(222\) 461590. 0.628600
\(223\) −782574. −1.05381 −0.526906 0.849924i \(-0.676648\pi\)
−0.526906 + 0.849924i \(0.676648\pi\)
\(224\) 0 0
\(225\) 48978.7 0.0644987
\(226\) 724220. 0.943190
\(227\) −796543. −1.02599 −0.512997 0.858391i \(-0.671465\pi\)
−0.512997 + 0.858391i \(0.671465\pi\)
\(228\) 65122.3 0.0829645
\(229\) −387045. −0.487722 −0.243861 0.969810i \(-0.578414\pi\)
−0.243861 + 0.969810i \(0.578414\pi\)
\(230\) 411435. 0.512840
\(231\) 0 0
\(232\) −304974. −0.372000
\(233\) −383759. −0.463093 −0.231547 0.972824i \(-0.574379\pi\)
−0.231547 + 0.972824i \(0.574379\pi\)
\(234\) −11199.2 −0.0133705
\(235\) 1.43170e6 1.69115
\(236\) 707565. 0.826964
\(237\) −378648. −0.437890
\(238\) 0 0
\(239\) −465409. −0.527036 −0.263518 0.964654i \(-0.584883\pi\)
−0.263518 + 0.964654i \(0.584883\pi\)
\(240\) −140708. −0.157685
\(241\) 348744. 0.386781 0.193390 0.981122i \(-0.438052\pi\)
0.193390 + 0.981122i \(0.438052\pi\)
\(242\) −638862. −0.701243
\(243\) −59049.0 −0.0641500
\(244\) −310088. −0.333434
\(245\) 0 0
\(246\) −256563. −0.270306
\(247\) 15631.9 0.0163030
\(248\) 336695. 0.347623
\(249\) −56802.0 −0.0580584
\(250\) −615676. −0.623020
\(251\) 186543. 0.186894 0.0934468 0.995624i \(-0.470211\pi\)
0.0934468 + 0.995624i \(0.470211\pi\)
\(252\) 0 0
\(253\) −61549.4 −0.0604537
\(254\) 365899. 0.355858
\(255\) −1.13283e6 −1.09097
\(256\) 65536.0 0.0625000
\(257\) −1.55355e6 −1.46721 −0.733605 0.679577i \(-0.762164\pi\)
−0.733605 + 0.679577i \(0.762164\pi\)
\(258\) −401101. −0.375149
\(259\) 0 0
\(260\) −33775.3 −0.0309860
\(261\) −385983. −0.350725
\(262\) 77375.6 0.0696387
\(263\) −1.25960e6 −1.12290 −0.561451 0.827510i \(-0.689757\pi\)
−0.561451 + 0.827510i \(0.689757\pi\)
\(264\) 21049.4 0.0185879
\(265\) −429348. −0.375573
\(266\) 0 0
\(267\) −463462. −0.397866
\(268\) 335105. 0.285000
\(269\) 170461. 0.143630 0.0718149 0.997418i \(-0.477121\pi\)
0.0718149 + 0.997418i \(0.477121\pi\)
\(270\) −178083. −0.148667
\(271\) −2.22743e6 −1.84239 −0.921194 0.389104i \(-0.872785\pi\)
−0.921194 + 0.389104i \(0.872785\pi\)
\(272\) 527626. 0.432418
\(273\) 0 0
\(274\) −12308.1 −0.00990412
\(275\) −22097.3 −0.0176201
\(276\) −242532. −0.191644
\(277\) 1.98339e6 1.55314 0.776568 0.630034i \(-0.216959\pi\)
0.776568 + 0.630034i \(0.216959\pi\)
\(278\) −1.48000e6 −1.14855
\(279\) 426130. 0.327742
\(280\) 0 0
\(281\) −1.16687e6 −0.881573 −0.440786 0.897612i \(-0.645300\pi\)
−0.440786 + 0.897612i \(0.645300\pi\)
\(282\) −843955. −0.631970
\(283\) 1.90090e6 1.41089 0.705445 0.708765i \(-0.250747\pi\)
0.705445 + 0.708765i \(0.250747\pi\)
\(284\) 1.27749e6 0.939860
\(285\) 248568. 0.181273
\(286\) 5052.68 0.00365264
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) 2.82802e6 1.99177
\(290\) −1.16407e6 −0.812799
\(291\) −1.14622e6 −0.793477
\(292\) 593053. 0.407039
\(293\) −1.65009e6 −1.12289 −0.561445 0.827514i \(-0.689755\pi\)
−0.561445 + 0.827514i \(0.689755\pi\)
\(294\) 0 0
\(295\) 2.70073e6 1.80687
\(296\) −820605. −0.544384
\(297\) 26640.7 0.0175249
\(298\) −1.81648e6 −1.18492
\(299\) −58217.0 −0.0376593
\(300\) −87073.2 −0.0558575
\(301\) 0 0
\(302\) 710367. 0.448194
\(303\) 591821. 0.370326
\(304\) −115773. −0.0718494
\(305\) −1.18359e6 −0.728535
\(306\) 667777. 0.407688
\(307\) −597936. −0.362084 −0.181042 0.983475i \(-0.557947\pi\)
−0.181042 + 0.983475i \(0.557947\pi\)
\(308\) 0 0
\(309\) 1.53009e6 0.911635
\(310\) 1.28515e6 0.759536
\(311\) −230480. −0.135124 −0.0675620 0.997715i \(-0.521522\pi\)
−0.0675620 + 0.997715i \(0.521522\pi\)
\(312\) 19909.8 0.0115792
\(313\) −442577. −0.255346 −0.127673 0.991816i \(-0.540751\pi\)
−0.127673 + 0.991816i \(0.540751\pi\)
\(314\) 995925. 0.570036
\(315\) 0 0
\(316\) 673152. 0.379224
\(317\) −1.26248e6 −0.705627 −0.352813 0.935694i \(-0.614775\pi\)
−0.352813 + 0.935694i \(0.614775\pi\)
\(318\) 253091. 0.140349
\(319\) 174141. 0.0958129
\(320\) 250147. 0.136559
\(321\) 971396. 0.526179
\(322\) 0 0
\(323\) −932080. −0.497104
\(324\) 104976. 0.0555556
\(325\) −20901.0 −0.0109763
\(326\) 808991. 0.421599
\(327\) 2.00429e6 1.03655
\(328\) 456111. 0.234092
\(329\) 0 0
\(330\) 80344.5 0.0406136
\(331\) −468936. −0.235257 −0.117629 0.993058i \(-0.537529\pi\)
−0.117629 + 0.993058i \(0.537529\pi\)
\(332\) 100981. 0.0502801
\(333\) −1.03858e6 −0.513250
\(334\) −1.90316e6 −0.933489
\(335\) 1.27908e6 0.622708
\(336\) 0 0
\(337\) −2.46798e6 −1.18377 −0.591884 0.806023i \(-0.701616\pi\)
−0.591884 + 0.806023i \(0.701616\pi\)
\(338\) −1.48039e6 −0.704831
\(339\) −1.62949e6 −0.770112
\(340\) 2.01392e6 0.944810
\(341\) −192254. −0.0895343
\(342\) −146525. −0.0677402
\(343\) 0 0
\(344\) 713068. 0.324889
\(345\) −925729. −0.418732
\(346\) 1.13881e6 0.511402
\(347\) −4.28250e6 −1.90930 −0.954648 0.297736i \(-0.903769\pi\)
−0.954648 + 0.297736i \(0.903769\pi\)
\(348\) 686191. 0.303737
\(349\) 1.84999e6 0.813028 0.406514 0.913645i \(-0.366744\pi\)
0.406514 + 0.913645i \(0.366744\pi\)
\(350\) 0 0
\(351\) 25198.3 0.0109170
\(352\) −37421.2 −0.0160976
\(353\) 2.27380e6 0.971213 0.485607 0.874177i \(-0.338599\pi\)
0.485607 + 0.874177i \(0.338599\pi\)
\(354\) −1.59202e6 −0.675213
\(355\) 4.87612e6 2.05354
\(356\) 823933. 0.344562
\(357\) 0 0
\(358\) 1.39183e6 0.573958
\(359\) −4.39992e6 −1.80181 −0.900905 0.434017i \(-0.857096\pi\)
−0.900905 + 0.434017i \(0.857096\pi\)
\(360\) 316592. 0.128749
\(361\) −2.27158e6 −0.917403
\(362\) −1.51882e6 −0.609167
\(363\) 1.43744e6 0.572563
\(364\) 0 0
\(365\) 2.26365e6 0.889359
\(366\) 697697. 0.272248
\(367\) 1.89743e6 0.735362 0.367681 0.929952i \(-0.380152\pi\)
0.367681 + 0.929952i \(0.380152\pi\)
\(368\) 431168. 0.165969
\(369\) 577266. 0.220704
\(370\) −3.13220e6 −1.18945
\(371\) 0 0
\(372\) −757565. −0.283833
\(373\) 4.56260e6 1.69801 0.849005 0.528385i \(-0.177202\pi\)
0.849005 + 0.528385i \(0.177202\pi\)
\(374\) −301276. −0.111374
\(375\) 1.38527e6 0.508694
\(376\) 1.50037e6 0.547302
\(377\) 164713. 0.0596861
\(378\) 0 0
\(379\) 4.99400e6 1.78587 0.892936 0.450184i \(-0.148642\pi\)
0.892936 + 0.450184i \(0.148642\pi\)
\(380\) −441898. −0.156987
\(381\) −823273. −0.290557
\(382\) 777970. 0.272775
\(383\) 3.67907e6 1.28157 0.640783 0.767722i \(-0.278610\pi\)
0.640783 + 0.767722i \(0.278610\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) 3.50960e6 1.19892
\(387\) 902477. 0.306308
\(388\) 2.03772e6 0.687171
\(389\) 257234. 0.0861894 0.0430947 0.999071i \(-0.486278\pi\)
0.0430947 + 0.999071i \(0.486278\pi\)
\(390\) 75994.5 0.0253000
\(391\) 3.47130e6 1.14829
\(392\) 0 0
\(393\) −174095. −0.0568598
\(394\) −3.00947e6 −0.976674
\(395\) 2.56938e6 0.828583
\(396\) −47361.2 −0.0151770
\(397\) −433280. −0.137972 −0.0689862 0.997618i \(-0.521976\pi\)
−0.0689862 + 0.997618i \(0.521976\pi\)
\(398\) 621811. 0.196766
\(399\) 0 0
\(400\) 154797. 0.0483740
\(401\) −1.13824e6 −0.353488 −0.176744 0.984257i \(-0.556556\pi\)
−0.176744 + 0.984257i \(0.556556\pi\)
\(402\) −753987. −0.232701
\(403\) −181845. −0.0557749
\(404\) −1.05213e6 −0.320712
\(405\) 400687. 0.121386
\(406\) 0 0
\(407\) 468568. 0.140212
\(408\) −1.18716e6 −0.353068
\(409\) 5.02438e6 1.48516 0.742581 0.669756i \(-0.233601\pi\)
0.742581 + 0.669756i \(0.233601\pi\)
\(410\) 1.74095e6 0.511478
\(411\) 27693.3 0.00808668
\(412\) −2.72016e6 −0.789499
\(413\) 0 0
\(414\) 545696. 0.156477
\(415\) 385440. 0.109859
\(416\) −35395.2 −0.0100279
\(417\) 3.33001e6 0.937789
\(418\) 66106.6 0.0185056
\(419\) 2.57295e6 0.715974 0.357987 0.933727i \(-0.383463\pi\)
0.357987 + 0.933727i \(0.383463\pi\)
\(420\) 0 0
\(421\) 336425. 0.0925089 0.0462545 0.998930i \(-0.485271\pi\)
0.0462545 + 0.998930i \(0.485271\pi\)
\(422\) 15592.9 0.00426232
\(423\) 1.89890e6 0.516002
\(424\) −449939. −0.121546
\(425\) 1.24626e6 0.334685
\(426\) −2.87436e6 −0.767392
\(427\) 0 0
\(428\) −1.72693e6 −0.455685
\(429\) −11368.5 −0.00298237
\(430\) 2.72174e6 0.709864
\(431\) 236410. 0.0613018 0.0306509 0.999530i \(-0.490242\pi\)
0.0306509 + 0.999530i \(0.490242\pi\)
\(432\) −186624. −0.0481125
\(433\) 2.33004e6 0.597232 0.298616 0.954373i \(-0.403475\pi\)
0.298616 + 0.954373i \(0.403475\pi\)
\(434\) 0 0
\(435\) 2.61915e6 0.663648
\(436\) −3.56317e6 −0.897679
\(437\) −761681. −0.190796
\(438\) −1.33437e6 −0.332346
\(439\) −3.19962e6 −0.792387 −0.396193 0.918167i \(-0.629669\pi\)
−0.396193 + 0.918167i \(0.629669\pi\)
\(440\) −142835. −0.0351724
\(441\) 0 0
\(442\) −284964. −0.0693800
\(443\) 1.13240e6 0.274152 0.137076 0.990561i \(-0.456230\pi\)
0.137076 + 0.990561i \(0.456230\pi\)
\(444\) 1.84636e6 0.444487
\(445\) 3.14490e6 0.752848
\(446\) −3.13029e6 −0.745157
\(447\) 4.08708e6 0.967485
\(448\) 0 0
\(449\) −8.23687e6 −1.92817 −0.964087 0.265585i \(-0.914435\pi\)
−0.964087 + 0.265585i \(0.914435\pi\)
\(450\) 195915. 0.0456075
\(451\) −260441. −0.0602931
\(452\) 2.89688e6 0.666936
\(453\) −1.59833e6 −0.365949
\(454\) −3.18617e6 −0.725487
\(455\) 0 0
\(456\) 260489. 0.0586648
\(457\) −365132. −0.0817824 −0.0408912 0.999164i \(-0.513020\pi\)
−0.0408912 + 0.999164i \(0.513020\pi\)
\(458\) −1.54818e6 −0.344872
\(459\) −1.50250e6 −0.332876
\(460\) 1.64574e6 0.362633
\(461\) −332567. −0.0728832 −0.0364416 0.999336i \(-0.511602\pi\)
−0.0364416 + 0.999336i \(0.511602\pi\)
\(462\) 0 0
\(463\) 1.69992e6 0.368533 0.184266 0.982876i \(-0.441009\pi\)
0.184266 + 0.982876i \(0.441009\pi\)
\(464\) −1.21990e6 −0.263044
\(465\) −2.89158e6 −0.620159
\(466\) −1.53504e6 −0.327456
\(467\) 990465. 0.210159 0.105079 0.994464i \(-0.466490\pi\)
0.105079 + 0.994464i \(0.466490\pi\)
\(468\) −44797.0 −0.00945441
\(469\) 0 0
\(470\) 5.72681e6 1.19583
\(471\) −2.24083e6 −0.465432
\(472\) 2.83026e6 0.584752
\(473\) −407164. −0.0836789
\(474\) −1.51459e6 −0.309635
\(475\) −273457. −0.0556103
\(476\) 0 0
\(477\) −569454. −0.114594
\(478\) −1.86164e6 −0.372671
\(479\) 6.08065e6 1.21091 0.605454 0.795880i \(-0.292991\pi\)
0.605454 + 0.795880i \(0.292991\pi\)
\(480\) −562831. −0.111500
\(481\) 443198. 0.0873445
\(482\) 1.39498e6 0.273495
\(483\) 0 0
\(484\) −2.55545e6 −0.495854
\(485\) 7.77785e6 1.50143
\(486\) −236196. −0.0453609
\(487\) −6.71098e6 −1.28222 −0.641112 0.767448i \(-0.721526\pi\)
−0.641112 + 0.767448i \(0.721526\pi\)
\(488\) −1.24035e6 −0.235773
\(489\) −1.82023e6 −0.344234
\(490\) 0 0
\(491\) −914042. −0.171105 −0.0855525 0.996334i \(-0.527266\pi\)
−0.0855525 + 0.996334i \(0.527266\pi\)
\(492\) −1.02625e6 −0.191135
\(493\) −9.82130e6 −1.81992
\(494\) 62527.5 0.0115280
\(495\) −180775. −0.0331608
\(496\) 1.34678e6 0.245806
\(497\) 0 0
\(498\) −227208. −0.0410535
\(499\) −7.75492e6 −1.39420 −0.697101 0.716972i \(-0.745527\pi\)
−0.697101 + 0.716972i \(0.745527\pi\)
\(500\) −2.46270e6 −0.440542
\(501\) 4.28211e6 0.762190
\(502\) 746172. 0.132154
\(503\) 3.79381e6 0.668584 0.334292 0.942470i \(-0.391503\pi\)
0.334292 + 0.942470i \(0.391503\pi\)
\(504\) 0 0
\(505\) −4.01591e6 −0.700737
\(506\) −246198. −0.0427472
\(507\) 3.33088e6 0.575492
\(508\) 1.46360e6 0.251630
\(509\) 8.53160e6 1.45961 0.729804 0.683657i \(-0.239611\pi\)
0.729804 + 0.683657i \(0.239611\pi\)
\(510\) −4.53131e6 −0.771434
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 329681. 0.0553097
\(514\) −6.21419e6 −1.03747
\(515\) −1.03827e7 −1.72501
\(516\) −1.60440e6 −0.265271
\(517\) −856712. −0.140964
\(518\) 0 0
\(519\) −2.56233e6 −0.417558
\(520\) −135101. −0.0219104
\(521\) −3.19066e6 −0.514976 −0.257488 0.966282i \(-0.582895\pi\)
−0.257488 + 0.966282i \(0.582895\pi\)
\(522\) −1.54393e6 −0.248000
\(523\) −9.60678e6 −1.53576 −0.767880 0.640593i \(-0.778689\pi\)
−0.767880 + 0.640593i \(0.778689\pi\)
\(524\) 309502. 0.0492420
\(525\) 0 0
\(526\) −5.03838e6 −0.794012
\(527\) 1.08429e7 1.70066
\(528\) 84197.7 0.0131436
\(529\) −3.59965e6 −0.559270
\(530\) −1.71739e6 −0.265570
\(531\) 3.58205e6 0.551309
\(532\) 0 0
\(533\) −246340. −0.0375592
\(534\) −1.85385e6 −0.281333
\(535\) −6.59158e6 −0.995646
\(536\) 1.34042e6 0.201525
\(537\) −3.13163e6 −0.468634
\(538\) 681844. 0.101562
\(539\) 0 0
\(540\) −712333. −0.105123
\(541\) 1.02366e7 1.50371 0.751855 0.659328i \(-0.229159\pi\)
0.751855 + 0.659328i \(0.229159\pi\)
\(542\) −8.90972e6 −1.30276
\(543\) 3.41736e6 0.497383
\(544\) 2.11050e6 0.305766
\(545\) −1.36004e7 −1.96138
\(546\) 0 0
\(547\) −9.27757e6 −1.32576 −0.662882 0.748724i \(-0.730667\pi\)
−0.662882 + 0.748724i \(0.730667\pi\)
\(548\) −49232.6 −0.00700327
\(549\) −1.56982e6 −0.222289
\(550\) −88389.4 −0.0124593
\(551\) 2.15501e6 0.302392
\(552\) −970127. −0.135513
\(553\) 0 0
\(554\) 7.93357e6 1.09823
\(555\) 7.04745e6 0.971180
\(556\) −5.92001e6 −0.812149
\(557\) 620098. 0.0846881 0.0423441 0.999103i \(-0.486517\pi\)
0.0423441 + 0.999103i \(0.486517\pi\)
\(558\) 1.70452e6 0.231748
\(559\) −385119. −0.0521273
\(560\) 0 0
\(561\) 677870. 0.0909368
\(562\) −4.66750e6 −0.623366
\(563\) 7.36664e6 0.979487 0.489744 0.871867i \(-0.337090\pi\)
0.489744 + 0.871867i \(0.337090\pi\)
\(564\) −3.37582e6 −0.446871
\(565\) 1.10572e7 1.45722
\(566\) 7.60360e6 0.997650
\(567\) 0 0
\(568\) 5.10998e6 0.664581
\(569\) 3.68222e6 0.476792 0.238396 0.971168i \(-0.423378\pi\)
0.238396 + 0.971168i \(0.423378\pi\)
\(570\) 994272. 0.128179
\(571\) 1.03320e7 1.32615 0.663077 0.748551i \(-0.269250\pi\)
0.663077 + 0.748551i \(0.269250\pi\)
\(572\) 20210.7 0.00258281
\(573\) −1.75043e6 −0.222720
\(574\) 0 0
\(575\) 1.01842e6 0.128457
\(576\) 331776. 0.0416667
\(577\) −1.25123e7 −1.56458 −0.782292 0.622911i \(-0.785950\pi\)
−0.782292 + 0.622911i \(0.785950\pi\)
\(578\) 1.13121e7 1.40839
\(579\) −7.89661e6 −0.978913
\(580\) −4.65627e6 −0.574736
\(581\) 0 0
\(582\) −4.58487e6 −0.561073
\(583\) 256916. 0.0313055
\(584\) 2.37221e6 0.287820
\(585\) −170988. −0.0206574
\(586\) −6.60034e6 −0.794004
\(587\) −1.60865e7 −1.92694 −0.963468 0.267823i \(-0.913696\pi\)
−0.963468 + 0.267823i \(0.913696\pi\)
\(588\) 0 0
\(589\) −2.37916e6 −0.282577
\(590\) 1.08029e7 1.27765
\(591\) 6.77131e6 0.797451
\(592\) −3.28242e6 −0.384937
\(593\) −9.46330e6 −1.10511 −0.552556 0.833476i \(-0.686347\pi\)
−0.552556 + 0.833476i \(0.686347\pi\)
\(594\) 106563. 0.0123919
\(595\) 0 0
\(596\) −7.26592e6 −0.837866
\(597\) −1.39908e6 −0.160659
\(598\) −232868. −0.0266291
\(599\) 5.01498e6 0.571087 0.285544 0.958366i \(-0.407826\pi\)
0.285544 + 0.958366i \(0.407826\pi\)
\(600\) −348293. −0.0394972
\(601\) 1.26473e7 1.42828 0.714139 0.700004i \(-0.246818\pi\)
0.714139 + 0.700004i \(0.246818\pi\)
\(602\) 0 0
\(603\) 1.69647e6 0.190000
\(604\) 2.84147e6 0.316921
\(605\) −9.75400e6 −1.08341
\(606\) 2.36729e6 0.261860
\(607\) −2.87702e6 −0.316936 −0.158468 0.987364i \(-0.550655\pi\)
−0.158468 + 0.987364i \(0.550655\pi\)
\(608\) −463092. −0.0508052
\(609\) 0 0
\(610\) −4.73434e6 −0.515152
\(611\) −810328. −0.0878128
\(612\) 2.67111e6 0.288279
\(613\) −3.72582e6 −0.400471 −0.200236 0.979748i \(-0.564171\pi\)
−0.200236 + 0.979748i \(0.564171\pi\)
\(614\) −2.39174e6 −0.256032
\(615\) −3.91714e6 −0.417620
\(616\) 0 0
\(617\) −1.15861e7 −1.22525 −0.612625 0.790374i \(-0.709886\pi\)
−0.612625 + 0.790374i \(0.709886\pi\)
\(618\) 6.12037e6 0.644624
\(619\) 1.85608e6 0.194702 0.0973508 0.995250i \(-0.468963\pi\)
0.0973508 + 0.995250i \(0.468963\pi\)
\(620\) 5.14059e6 0.537073
\(621\) −1.22782e6 −0.127763
\(622\) −921921. −0.0955471
\(623\) 0 0
\(624\) 79639.1 0.00818776
\(625\) −1.12896e7 −1.15606
\(626\) −1.77031e6 −0.180557
\(627\) −148740. −0.0151098
\(628\) 3.98370e6 0.403076
\(629\) −2.64266e7 −2.66326
\(630\) 0 0
\(631\) 8.92135e6 0.891984 0.445992 0.895037i \(-0.352851\pi\)
0.445992 + 0.895037i \(0.352851\pi\)
\(632\) 2.69261e6 0.268152
\(633\) −35084.0 −0.00348017
\(634\) −5.04990e6 −0.498953
\(635\) 5.58646e6 0.549797
\(636\) 1.01236e6 0.0992415
\(637\) 0 0
\(638\) 696563. 0.0677499
\(639\) 6.46731e6 0.626573
\(640\) 1.00059e6 0.0965618
\(641\) 1.31866e7 1.26762 0.633810 0.773489i \(-0.281490\pi\)
0.633810 + 0.773489i \(0.281490\pi\)
\(642\) 3.88558e6 0.372065
\(643\) 9.67813e6 0.923132 0.461566 0.887106i \(-0.347288\pi\)
0.461566 + 0.887106i \(0.347288\pi\)
\(644\) 0 0
\(645\) −6.12391e6 −0.579602
\(646\) −3.72832e6 −0.351505
\(647\) 1.72491e6 0.161996 0.0809982 0.996714i \(-0.474189\pi\)
0.0809982 + 0.996714i \(0.474189\pi\)
\(648\) 419904. 0.0392837
\(649\) −1.61609e6 −0.150610
\(650\) −83603.8 −0.00776145
\(651\) 0 0
\(652\) 3.23596e6 0.298116
\(653\) 597510. 0.0548356 0.0274178 0.999624i \(-0.491272\pi\)
0.0274178 + 0.999624i \(0.491272\pi\)
\(654\) 8.01714e6 0.732951
\(655\) 1.18135e6 0.107591
\(656\) 1.82444e6 0.165528
\(657\) 3.00233e6 0.271360
\(658\) 0 0
\(659\) 1.47605e7 1.32400 0.662001 0.749503i \(-0.269707\pi\)
0.662001 + 0.749503i \(0.269707\pi\)
\(660\) 321378. 0.0287181
\(661\) −1.69041e7 −1.50484 −0.752418 0.658686i \(-0.771112\pi\)
−0.752418 + 0.658686i \(0.771112\pi\)
\(662\) −1.87574e6 −0.166352
\(663\) 641169. 0.0566486
\(664\) 403925. 0.0355534
\(665\) 0 0
\(666\) −4.15431e6 −0.362922
\(667\) −8.02581e6 −0.698512
\(668\) −7.61264e6 −0.660076
\(669\) 7.04316e6 0.608418
\(670\) 5.11631e6 0.440321
\(671\) 708243. 0.0607262
\(672\) 0 0
\(673\) −1.58960e7 −1.35285 −0.676425 0.736512i \(-0.736472\pi\)
−0.676425 + 0.736512i \(0.736472\pi\)
\(674\) −9.87191e6 −0.837050
\(675\) −440808. −0.0372383
\(676\) −5.92157e6 −0.498391
\(677\) 1.95361e6 0.163820 0.0819099 0.996640i \(-0.473898\pi\)
0.0819099 + 0.996640i \(0.473898\pi\)
\(678\) −6.51798e6 −0.544551
\(679\) 0 0
\(680\) 8.05567e6 0.668081
\(681\) 7.16889e6 0.592357
\(682\) −769016. −0.0633103
\(683\) −9.23970e6 −0.757890 −0.378945 0.925419i \(-0.623713\pi\)
−0.378945 + 0.925419i \(0.623713\pi\)
\(684\) −586100. −0.0478996
\(685\) −187918. −0.0153018
\(686\) 0 0
\(687\) 3.48340e6 0.281587
\(688\) 2.85227e6 0.229731
\(689\) 243006. 0.0195016
\(690\) −3.70292e6 −0.296088
\(691\) 1.45698e7 1.16080 0.580401 0.814331i \(-0.302896\pi\)
0.580401 + 0.814331i \(0.302896\pi\)
\(692\) 4.55525e6 0.361616
\(693\) 0 0
\(694\) −1.71300e7 −1.35008
\(695\) −2.25964e7 −1.77450
\(696\) 2.74476e6 0.214774
\(697\) 1.46885e7 1.14524
\(698\) 7.39995e6 0.574898
\(699\) 3.45383e6 0.267367
\(700\) 0 0
\(701\) −3.70190e6 −0.284531 −0.142266 0.989829i \(-0.545439\pi\)
−0.142266 + 0.989829i \(0.545439\pi\)
\(702\) 100793. 0.00771949
\(703\) 5.79858e6 0.442520
\(704\) −149685. −0.0113827
\(705\) −1.28853e7 −0.976387
\(706\) 9.09518e6 0.686751
\(707\) 0 0
\(708\) −6.36809e6 −0.477448
\(709\) −2.52937e7 −1.88971 −0.944857 0.327484i \(-0.893799\pi\)
−0.944857 + 0.327484i \(0.893799\pi\)
\(710\) 1.95045e7 1.45207
\(711\) 3.40783e6 0.252816
\(712\) 3.29573e6 0.243642
\(713\) 8.86061e6 0.652739
\(714\) 0 0
\(715\) 77143.1 0.00564329
\(716\) 5.56734e6 0.405849
\(717\) 4.18868e6 0.304284
\(718\) −1.75997e7 −1.27407
\(719\) −1.45185e7 −1.04737 −0.523683 0.851913i \(-0.675443\pi\)
−0.523683 + 0.851913i \(0.675443\pi\)
\(720\) 1.26637e6 0.0910394
\(721\) 0 0
\(722\) −9.08632e6 −0.648702
\(723\) −3.13870e6 −0.223308
\(724\) −6.07530e6 −0.430746
\(725\) −2.88141e6 −0.203592
\(726\) 5.74976e6 0.404863
\(727\) 1.42855e7 1.00244 0.501222 0.865319i \(-0.332884\pi\)
0.501222 + 0.865319i \(0.332884\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 9.05460e6 0.628872
\(731\) 2.29635e7 1.58944
\(732\) 2.79079e6 0.192508
\(733\) 8.21556e6 0.564777 0.282389 0.959300i \(-0.408873\pi\)
0.282389 + 0.959300i \(0.408873\pi\)
\(734\) 7.58973e6 0.519979
\(735\) 0 0
\(736\) 1.72467e6 0.117358
\(737\) −765384. −0.0519052
\(738\) 2.30906e6 0.156061
\(739\) −3.43896e6 −0.231641 −0.115821 0.993270i \(-0.536950\pi\)
−0.115821 + 0.993270i \(0.536950\pi\)
\(740\) −1.25288e7 −0.841067
\(741\) −140687. −0.00941256
\(742\) 0 0
\(743\) 1.53588e6 0.102067 0.0510334 0.998697i \(-0.483748\pi\)
0.0510334 + 0.998697i \(0.483748\pi\)
\(744\) −3.03026e6 −0.200700
\(745\) −2.77336e7 −1.83069
\(746\) 1.82504e7 1.20067
\(747\) 511218. 0.0335201
\(748\) −1.20510e6 −0.0787535
\(749\) 0 0
\(750\) 5.54108e6 0.359701
\(751\) −2.01146e7 −1.30140 −0.650700 0.759335i \(-0.725524\pi\)
−0.650700 + 0.759335i \(0.725524\pi\)
\(752\) 6.00146e6 0.387001
\(753\) −1.67889e6 −0.107903
\(754\) 658850. 0.0422044
\(755\) 1.08457e7 0.692454
\(756\) 0 0
\(757\) 202045. 0.0128147 0.00640733 0.999979i \(-0.497960\pi\)
0.00640733 + 0.999979i \(0.497960\pi\)
\(758\) 1.99760e7 1.26280
\(759\) 553945. 0.0349029
\(760\) −1.76759e6 −0.111007
\(761\) 1.08202e6 0.0677290 0.0338645 0.999426i \(-0.489219\pi\)
0.0338645 + 0.999426i \(0.489219\pi\)
\(762\) −3.29309e6 −0.205455
\(763\) 0 0
\(764\) 3.11188e6 0.192881
\(765\) 1.01955e7 0.629873
\(766\) 1.47163e7 0.906205
\(767\) −1.52859e6 −0.0938214
\(768\) −589824. −0.0360844
\(769\) −1.19305e7 −0.727517 −0.363759 0.931493i \(-0.618507\pi\)
−0.363759 + 0.931493i \(0.618507\pi\)
\(770\) 0 0
\(771\) 1.39819e7 0.847094
\(772\) 1.40384e7 0.847763
\(773\) 6.58657e6 0.396470 0.198235 0.980155i \(-0.436479\pi\)
0.198235 + 0.980155i \(0.436479\pi\)
\(774\) 3.60991e6 0.216593
\(775\) 3.18112e6 0.190250
\(776\) 8.15087e6 0.485903
\(777\) 0 0
\(778\) 1.02894e6 0.0609451
\(779\) −3.22298e6 −0.190289
\(780\) 303978. 0.0178898
\(781\) −2.91781e6 −0.171171
\(782\) 1.38852e7 0.811961
\(783\) 3.47384e6 0.202491
\(784\) 0 0
\(785\) 1.52055e7 0.880700
\(786\) −696380. −0.0402059
\(787\) 1.92720e7 1.10915 0.554575 0.832134i \(-0.312881\pi\)
0.554575 + 0.832134i \(0.312881\pi\)
\(788\) −1.20379e7 −0.690613
\(789\) 1.13364e7 0.648308
\(790\) 1.02775e7 0.585897
\(791\) 0 0
\(792\) −189445. −0.0107317
\(793\) 669897. 0.0378290
\(794\) −1.73312e6 −0.0975613
\(795\) 3.86413e6 0.216837
\(796\) 2.48724e6 0.139135
\(797\) −1.54906e7 −0.863816 −0.431908 0.901918i \(-0.642159\pi\)
−0.431908 + 0.901918i \(0.642159\pi\)
\(798\) 0 0
\(799\) 4.83174e7 2.67754
\(800\) 619188. 0.0342056
\(801\) 4.17116e6 0.229708
\(802\) −4.55298e6 −0.249954
\(803\) −1.35454e6 −0.0741315
\(804\) −3.01595e6 −0.164545
\(805\) 0 0
\(806\) −727380. −0.0394388
\(807\) −1.53415e6 −0.0829247
\(808\) −4.20851e6 −0.226777
\(809\) −1.77071e6 −0.0951210 −0.0475605 0.998868i \(-0.515145\pi\)
−0.0475605 + 0.998868i \(0.515145\pi\)
\(810\) 1.60275e6 0.0858327
\(811\) −6.80547e6 −0.363334 −0.181667 0.983360i \(-0.558149\pi\)
−0.181667 + 0.983360i \(0.558149\pi\)
\(812\) 0 0
\(813\) 2.00469e7 1.06370
\(814\) 1.87427e6 0.0991451
\(815\) 1.23515e7 0.651366
\(816\) −4.74863e6 −0.249657
\(817\) −5.03869e6 −0.264097
\(818\) 2.00975e7 1.05017
\(819\) 0 0
\(820\) 6.96380e6 0.361669
\(821\) 2.27127e7 1.17601 0.588006 0.808857i \(-0.299913\pi\)
0.588006 + 0.808857i \(0.299913\pi\)
\(822\) 110773. 0.00571815
\(823\) −3.03576e7 −1.56231 −0.781156 0.624336i \(-0.785370\pi\)
−0.781156 + 0.624336i \(0.785370\pi\)
\(824\) −1.08807e7 −0.558260
\(825\) 198876. 0.0101730
\(826\) 0 0
\(827\) −5.80776e6 −0.295287 −0.147644 0.989041i \(-0.547169\pi\)
−0.147644 + 0.989041i \(0.547169\pi\)
\(828\) 2.18279e6 0.110646
\(829\) 9.04916e6 0.457322 0.228661 0.973506i \(-0.426565\pi\)
0.228661 + 0.973506i \(0.426565\pi\)
\(830\) 1.54176e6 0.0776822
\(831\) −1.78505e7 −0.896703
\(832\) −141581. −0.00709080
\(833\) 0 0
\(834\) 1.33200e7 0.663117
\(835\) −2.90570e7 −1.44223
\(836\) 264426. 0.0130855
\(837\) −3.83517e6 −0.189222
\(838\) 1.02918e7 0.506270
\(839\) 8.17101e6 0.400747 0.200374 0.979720i \(-0.435784\pi\)
0.200374 + 0.979720i \(0.435784\pi\)
\(840\) 0 0
\(841\) 2.19614e6 0.107071
\(842\) 1.34570e6 0.0654137
\(843\) 1.05019e7 0.508976
\(844\) 62371.6 0.00301391
\(845\) −2.26023e7 −1.08896
\(846\) 7.59560e6 0.364868
\(847\) 0 0
\(848\) −1.79976e6 −0.0859457
\(849\) −1.71081e7 −0.814578
\(850\) 4.98504e6 0.236658
\(851\) −2.15954e7 −1.02220
\(852\) −1.14974e7 −0.542628
\(853\) −2.88437e7 −1.35731 −0.678654 0.734458i \(-0.737436\pi\)
−0.678654 + 0.734458i \(0.737436\pi\)
\(854\) 0 0
\(855\) −2.23711e6 −0.104658
\(856\) −6.90770e6 −0.322218
\(857\) 2.69462e7 1.25327 0.626637 0.779311i \(-0.284431\pi\)
0.626637 + 0.779311i \(0.284431\pi\)
\(858\) −45474.1 −0.00210885
\(859\) 7.49124e6 0.346394 0.173197 0.984887i \(-0.444590\pi\)
0.173197 + 0.984887i \(0.444590\pi\)
\(860\) 1.08870e7 0.501950
\(861\) 0 0
\(862\) 945641. 0.0433469
\(863\) −1.41552e6 −0.0646977 −0.0323489 0.999477i \(-0.510299\pi\)
−0.0323489 + 0.999477i \(0.510299\pi\)
\(864\) −746496. −0.0340207
\(865\) 1.73871e7 0.790110
\(866\) 9.32015e6 0.422307
\(867\) −2.54522e7 −1.14995
\(868\) 0 0
\(869\) −1.53749e6 −0.0690656
\(870\) 1.04766e7 0.469270
\(871\) −723944. −0.0323340
\(872\) −1.42527e7 −0.634755
\(873\) 1.03159e7 0.458114
\(874\) −3.04672e6 −0.134913
\(875\) 0 0
\(876\) −5.33748e6 −0.235004
\(877\) 2.55232e7 1.12056 0.560281 0.828303i \(-0.310693\pi\)
0.560281 + 0.828303i \(0.310693\pi\)
\(878\) −1.27985e7 −0.560302
\(879\) 1.48508e7 0.648301
\(880\) −571338. −0.0248706
\(881\) 2.07516e6 0.0900764 0.0450382 0.998985i \(-0.485659\pi\)
0.0450382 + 0.998985i \(0.485659\pi\)
\(882\) 0 0
\(883\) 1.80641e7 0.779677 0.389839 0.920883i \(-0.372531\pi\)
0.389839 + 0.920883i \(0.372531\pi\)
\(884\) −1.13986e6 −0.0490591
\(885\) −2.43066e7 −1.04320
\(886\) 4.52961e6 0.193855
\(887\) 9.28389e6 0.396206 0.198103 0.980181i \(-0.436522\pi\)
0.198103 + 0.980181i \(0.436522\pi\)
\(888\) 7.38545e6 0.314300
\(889\) 0 0
\(890\) 1.25796e7 0.532344
\(891\) −239766. −0.0101180
\(892\) −1.25212e7 −0.526906
\(893\) −1.06019e7 −0.444893
\(894\) 1.63483e7 0.684115
\(895\) 2.12502e7 0.886758
\(896\) 0 0
\(897\) 523953. 0.0217426
\(898\) −3.29475e7 −1.36343
\(899\) −2.50692e7 −1.03452
\(900\) 783659. 0.0322494
\(901\) −1.44897e7 −0.594631
\(902\) −1.04176e6 −0.0426336
\(903\) 0 0
\(904\) 1.15875e7 0.471595
\(905\) −2.31891e7 −0.941156
\(906\) −6.39331e6 −0.258765
\(907\) −4.20818e7 −1.69854 −0.849270 0.527958i \(-0.822958\pi\)
−0.849270 + 0.527958i \(0.822958\pi\)
\(908\) −1.27447e7 −0.512997
\(909\) −5.32639e6 −0.213808
\(910\) 0 0
\(911\) 2.33510e7 0.932199 0.466100 0.884732i \(-0.345659\pi\)
0.466100 + 0.884732i \(0.345659\pi\)
\(912\) 1.04196e6 0.0414823
\(913\) −230642. −0.00915719
\(914\) −1.46053e6 −0.0578289
\(915\) 1.06523e7 0.420620
\(916\) −6.19272e6 −0.243861
\(917\) 0 0
\(918\) −6.00999e6 −0.235379
\(919\) 1.54594e7 0.603817 0.301908 0.953337i \(-0.402376\pi\)
0.301908 + 0.953337i \(0.402376\pi\)
\(920\) 6.58296e6 0.256420
\(921\) 5.38142e6 0.209049
\(922\) −1.33027e6 −0.0515362
\(923\) −2.75983e6 −0.106630
\(924\) 0 0
\(925\) −7.75312e6 −0.297935
\(926\) 6.79968e6 0.260592
\(927\) −1.37708e7 −0.526333
\(928\) −4.87958e6 −0.186000
\(929\) −1.49993e7 −0.570204 −0.285102 0.958497i \(-0.592028\pi\)
−0.285102 + 0.958497i \(0.592028\pi\)
\(930\) −1.15663e7 −0.438519
\(931\) 0 0
\(932\) −6.14014e6 −0.231547
\(933\) 2.07432e6 0.0780139
\(934\) 3.96186e6 0.148605
\(935\) −4.59981e6 −0.172072
\(936\) −179188. −0.00668527
\(937\) −1.52742e7 −0.568343 −0.284172 0.958773i \(-0.591719\pi\)
−0.284172 + 0.958773i \(0.591719\pi\)
\(938\) 0 0
\(939\) 3.98320e6 0.147424
\(940\) 2.29072e7 0.845576
\(941\) 5.13600e6 0.189082 0.0945412 0.995521i \(-0.469862\pi\)
0.0945412 + 0.995521i \(0.469862\pi\)
\(942\) −8.96332e6 −0.329110
\(943\) 1.20032e7 0.439559
\(944\) 1.13210e7 0.413482
\(945\) 0 0
\(946\) −1.62865e6 −0.0591699
\(947\) −4.50054e7 −1.63076 −0.815379 0.578928i \(-0.803471\pi\)
−0.815379 + 0.578928i \(0.803471\pi\)
\(948\) −6.05837e6 −0.218945
\(949\) −1.28120e6 −0.0461798
\(950\) −1.09383e6 −0.0393224
\(951\) 1.13623e7 0.407394
\(952\) 0 0
\(953\) −4.49596e7 −1.60358 −0.801789 0.597607i \(-0.796118\pi\)
−0.801789 + 0.597607i \(0.796118\pi\)
\(954\) −2.27782e6 −0.0810303
\(955\) 1.18779e7 0.421434
\(956\) −7.44655e6 −0.263518
\(957\) −1.56727e6 −0.0553176
\(958\) 2.43226e7 0.856242
\(959\) 0 0
\(960\) −2.25132e6 −0.0788424
\(961\) −952428. −0.0332678
\(962\) 1.77279e6 0.0617619
\(963\) −8.74256e6 −0.303790
\(964\) 5.57991e6 0.193390
\(965\) 5.35838e7 1.85232
\(966\) 0 0
\(967\) 1.04364e7 0.358907 0.179454 0.983766i \(-0.442567\pi\)
0.179454 + 0.983766i \(0.442567\pi\)
\(968\) −1.02218e7 −0.350622
\(969\) 8.38872e6 0.287003
\(970\) 3.11114e7 1.06167
\(971\) 1.72207e7 0.586142 0.293071 0.956091i \(-0.405323\pi\)
0.293071 + 0.956091i \(0.405323\pi\)
\(972\) −944784. −0.0320750
\(973\) 0 0
\(974\) −2.68439e7 −0.906669
\(975\) 188109. 0.00633720
\(976\) −4.96140e6 −0.166717
\(977\) 3.24376e7 1.08721 0.543603 0.839343i \(-0.317060\pi\)
0.543603 + 0.839343i \(0.317060\pi\)
\(978\) −7.28092e6 −0.243410
\(979\) −1.88187e6 −0.0627528
\(980\) 0 0
\(981\) −1.80386e7 −0.598452
\(982\) −3.65617e6 −0.120989
\(983\) −3.19804e7 −1.05560 −0.527801 0.849368i \(-0.676983\pi\)
−0.527801 + 0.849368i \(0.676983\pi\)
\(984\) −4.10500e6 −0.135153
\(985\) −4.59479e7 −1.50895
\(986\) −3.92852e7 −1.28688
\(987\) 0 0
\(988\) 250110. 0.00815152
\(989\) 1.87654e7 0.610051
\(990\) −723100. −0.0234483
\(991\) 5.49614e7 1.77776 0.888880 0.458139i \(-0.151484\pi\)
0.888880 + 0.458139i \(0.151484\pi\)
\(992\) 5.38713e6 0.173811
\(993\) 4.22042e6 0.135826
\(994\) 0 0
\(995\) 9.49367e6 0.304002
\(996\) −908832. −0.0290292
\(997\) −7.51010e6 −0.239281 −0.119640 0.992817i \(-0.538174\pi\)
−0.119640 + 0.992817i \(0.538174\pi\)
\(998\) −3.10197e7 −0.985850
\(999\) 9.34721e6 0.296325
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.t.1.2 2
3.2 odd 2 882.6.a.z.1.1 2
7.2 even 3 294.6.e.v.67.1 4
7.3 odd 6 294.6.e.u.79.2 4
7.4 even 3 294.6.e.v.79.1 4
7.5 odd 6 294.6.e.u.67.2 4
7.6 odd 2 294.6.a.u.1.1 yes 2
21.20 even 2 882.6.a.bj.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.t.1.2 2 1.1 even 1 trivial
294.6.a.u.1.1 yes 2 7.6 odd 2
294.6.e.u.67.2 4 7.5 odd 6
294.6.e.u.79.2 4 7.3 odd 6
294.6.e.v.67.1 4 7.2 even 3
294.6.e.v.79.1 4 7.4 even 3
882.6.a.z.1.1 2 3.2 odd 2
882.6.a.bj.1.2 2 21.20 even 2