Properties

Label 294.6.a.t
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,6,Mod(1,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,-18,32,108,-72,0,128,162,432,-124] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} - 9 q^{3} + 16 q^{4} + (5 \beta + 54) q^{5} - 36 q^{6} + 64 q^{8} + 81 q^{9} + (20 \beta + 216) q^{10} + (18 \beta - 62) q^{11} - 144 q^{12} + ( - 279 \beta + 360) q^{13} + ( - 45 \beta - 486) q^{15}+ \cdots + (1458 \beta - 5022) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} + 108 q^{5} - 72 q^{6} + 128 q^{8} + 162 q^{9} + 432 q^{10} - 124 q^{11} - 288 q^{12} + 720 q^{13} - 972 q^{15} + 512 q^{16} + 612 q^{17} + 648 q^{18} + 2088 q^{19} + 1728 q^{20}+ \cdots - 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
4.00000 −9.00000 16.0000 46.9289 −36.0000 0 64.0000 81.0000 187.716
1.2 4.00000 −9.00000 16.0000 61.0711 −36.0000 0 64.0000 81.0000 244.284
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.t 2
3.b odd 2 1 882.6.a.z 2
7.b odd 2 1 294.6.a.u yes 2
7.c even 3 2 294.6.e.v 4
7.d odd 6 2 294.6.e.u 4
21.c even 2 1 882.6.a.bj 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.t 2 1.a even 1 1 trivial
294.6.a.u yes 2 7.b odd 2 1
294.6.e.u 4 7.d odd 6 2
294.6.e.v 4 7.c even 3 2
882.6.a.z 2 3.b odd 2 1
882.6.a.bj 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5}^{2} - 108T_{5} + 2866 \) Copy content Toggle raw display
\( T_{11}^{2} + 124T_{11} + 3196 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( (T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 108T + 2866 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 124T + 3196 \) Copy content Toggle raw display
$13$ \( T^{2} - 720T - 26082 \) Copy content Toggle raw display
$17$ \( T^{2} - 612 T - 2986526 \) Copy content Toggle raw display
$19$ \( T^{2} - 2088 T - 1148792 \) Copy content Toggle raw display
$23$ \( T^{2} - 772 T - 1536452 \) Copy content Toggle raw display
$29$ \( T^{2} + 4592 T - 825416 \) Copy content Toggle raw display
$31$ \( T^{2} - 9792 T + 23837688 \) Copy content Toggle raw display
$37$ \( T^{2} + 5992 T - 87573392 \) Copy content Toggle raw display
$41$ \( T^{2} - 20196 T + 93141202 \) Copy content Toggle raw display
$43$ \( T^{2} + 1136 T - 136794176 \) Copy content Toggle raw display
$47$ \( T^{2} - 36936 T + 316314376 \) Copy content Toggle raw display
$53$ \( T^{2} + 16708 T + 68037124 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1343010808 \) Copy content Toggle raw display
$61$ \( T^{2} + 18648 T - 14195666 \) Copy content Toggle raw display
$67$ \( T^{2} - 67344 T + 971803584 \) Copy content Toggle raw display
$71$ \( T^{2} - 76548 T - 263115396 \) Copy content Toggle raw display
$73$ \( T^{2} - 47304 T + 379486654 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4147626784 \) Copy content Toggle raw display
$83$ \( T^{2} - 94104 T + 554088976 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 3558352334 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 5372109218 \) Copy content Toggle raw display
show more
show less