Properties

Label 294.6.a.s.1.2
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4705}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-33.7965\) of defining polynomial
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +59.5930 q^{5} -36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +238.372 q^{10} -616.337 q^{11} -144.000 q^{12} -418.372 q^{13} -536.337 q^{15} +256.000 q^{16} -1793.90 q^{17} +324.000 q^{18} -1279.93 q^{19} +953.488 q^{20} -2465.35 q^{22} +4781.69 q^{23} -576.000 q^{24} +426.326 q^{25} -1673.49 q^{26} -729.000 q^{27} +1716.02 q^{29} -2145.35 q^{30} -642.722 q^{31} +1024.00 q^{32} +5547.03 q^{33} -7175.58 q^{34} +1296.00 q^{36} -2360.02 q^{37} -5119.72 q^{38} +3765.35 q^{39} +3813.95 q^{40} -15639.9 q^{41} -1638.61 q^{43} -9861.39 q^{44} +4827.03 q^{45} +19126.7 q^{46} -20735.5 q^{47} -2304.00 q^{48} +1705.30 q^{50} +16145.1 q^{51} -6693.95 q^{52} -5347.93 q^{53} -2916.00 q^{54} -36729.4 q^{55} +11519.4 q^{57} +6864.09 q^{58} -16824.9 q^{59} -8581.39 q^{60} +13527.2 q^{61} -2570.89 q^{62} +4096.00 q^{64} -24932.0 q^{65} +22188.1 q^{66} -46483.5 q^{67} -28702.3 q^{68} -43035.2 q^{69} -3273.91 q^{71} +5184.00 q^{72} +76758.4 q^{73} -9440.09 q^{74} -3836.93 q^{75} -20478.9 q^{76} +15061.4 q^{78} -17731.4 q^{79} +15255.8 q^{80} +6561.00 q^{81} -62559.5 q^{82} -78846.7 q^{83} -106904. q^{85} -6554.43 q^{86} -15444.2 q^{87} -39445.6 q^{88} -74160.4 q^{89} +19308.1 q^{90} +76507.0 q^{92} +5784.50 q^{93} -82942.1 q^{94} -76274.9 q^{95} -9216.00 q^{96} -24360.2 q^{97} -49923.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} - 18 q^{5} - 72 q^{6} + 128 q^{8} + 162 q^{9} - 72 q^{10} + 2 q^{11} - 288 q^{12} - 288 q^{13} + 162 q^{15} + 512 q^{16} - 1530 q^{17} + 648 q^{18} - 1188 q^{19} - 288 q^{20}+ \cdots + 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −9.00000 −0.577350
\(4\) 16.0000 0.500000
\(5\) 59.5930 1.06603 0.533016 0.846105i \(-0.321059\pi\)
0.533016 + 0.846105i \(0.321059\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) 238.372 0.753798
\(11\) −616.337 −1.53581 −0.767903 0.640566i \(-0.778700\pi\)
−0.767903 + 0.640566i \(0.778700\pi\)
\(12\) −144.000 −0.288675
\(13\) −418.372 −0.686601 −0.343300 0.939226i \(-0.611545\pi\)
−0.343300 + 0.939226i \(0.611545\pi\)
\(14\) 0 0
\(15\) −536.337 −0.615474
\(16\) 256.000 0.250000
\(17\) −1793.90 −1.50548 −0.752740 0.658318i \(-0.771268\pi\)
−0.752740 + 0.658318i \(0.771268\pi\)
\(18\) 324.000 0.235702
\(19\) −1279.93 −0.813396 −0.406698 0.913563i \(-0.633320\pi\)
−0.406698 + 0.913563i \(0.633320\pi\)
\(20\) 953.488 0.533016
\(21\) 0 0
\(22\) −2465.35 −1.08598
\(23\) 4781.69 1.88478 0.942392 0.334512i \(-0.108571\pi\)
0.942392 + 0.334512i \(0.108571\pi\)
\(24\) −576.000 −0.204124
\(25\) 426.326 0.136424
\(26\) −1673.49 −0.485500
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 1716.02 0.378903 0.189451 0.981890i \(-0.439329\pi\)
0.189451 + 0.981890i \(0.439329\pi\)
\(30\) −2145.35 −0.435206
\(31\) −642.722 −0.120121 −0.0600605 0.998195i \(-0.519129\pi\)
−0.0600605 + 0.998195i \(0.519129\pi\)
\(32\) 1024.00 0.176777
\(33\) 5547.03 0.886698
\(34\) −7175.58 −1.06453
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −2360.02 −0.283408 −0.141704 0.989909i \(-0.545258\pi\)
−0.141704 + 0.989909i \(0.545258\pi\)
\(38\) −5119.72 −0.575158
\(39\) 3765.35 0.396409
\(40\) 3813.95 0.376899
\(41\) −15639.9 −1.45303 −0.726513 0.687152i \(-0.758860\pi\)
−0.726513 + 0.687152i \(0.758860\pi\)
\(42\) 0 0
\(43\) −1638.61 −0.135146 −0.0675731 0.997714i \(-0.521526\pi\)
−0.0675731 + 0.997714i \(0.521526\pi\)
\(44\) −9861.39 −0.767903
\(45\) 4827.03 0.355344
\(46\) 19126.7 1.33274
\(47\) −20735.5 −1.36921 −0.684606 0.728914i \(-0.740026\pi\)
−0.684606 + 0.728914i \(0.740026\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) 1705.30 0.0964666
\(51\) 16145.1 0.869189
\(52\) −6693.95 −0.343300
\(53\) −5347.93 −0.261515 −0.130757 0.991414i \(-0.541741\pi\)
−0.130757 + 0.991414i \(0.541741\pi\)
\(54\) −2916.00 −0.136083
\(55\) −36729.4 −1.63722
\(56\) 0 0
\(57\) 11519.4 0.469615
\(58\) 6864.09 0.267925
\(59\) −16824.9 −0.629250 −0.314625 0.949216i \(-0.601879\pi\)
−0.314625 + 0.949216i \(0.601879\pi\)
\(60\) −8581.39 −0.307737
\(61\) 13527.2 0.465460 0.232730 0.972541i \(-0.425234\pi\)
0.232730 + 0.972541i \(0.425234\pi\)
\(62\) −2570.89 −0.0849384
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −24932.0 −0.731938
\(66\) 22188.1 0.626990
\(67\) −46483.5 −1.26506 −0.632531 0.774535i \(-0.717984\pi\)
−0.632531 + 0.774535i \(0.717984\pi\)
\(68\) −28702.3 −0.752740
\(69\) −43035.2 −1.08818
\(70\) 0 0
\(71\) −3273.91 −0.0770762 −0.0385381 0.999257i \(-0.512270\pi\)
−0.0385381 + 0.999257i \(0.512270\pi\)
\(72\) 5184.00 0.117851
\(73\) 76758.4 1.68585 0.842924 0.538032i \(-0.180832\pi\)
0.842924 + 0.538032i \(0.180832\pi\)
\(74\) −9440.09 −0.200400
\(75\) −3836.93 −0.0787646
\(76\) −20478.9 −0.406698
\(77\) 0 0
\(78\) 15061.4 0.280304
\(79\) −17731.4 −0.319650 −0.159825 0.987145i \(-0.551093\pi\)
−0.159825 + 0.987145i \(0.551093\pi\)
\(80\) 15255.8 0.266508
\(81\) 6561.00 0.111111
\(82\) −62559.5 −1.02744
\(83\) −78846.7 −1.25629 −0.628143 0.778098i \(-0.716185\pi\)
−0.628143 + 0.778098i \(0.716185\pi\)
\(84\) 0 0
\(85\) −106904. −1.60489
\(86\) −6554.43 −0.0955628
\(87\) −15444.2 −0.218760
\(88\) −39445.6 −0.542990
\(89\) −74160.4 −0.992424 −0.496212 0.868201i \(-0.665276\pi\)
−0.496212 + 0.868201i \(0.665276\pi\)
\(90\) 19308.1 0.251266
\(91\) 0 0
\(92\) 76507.0 0.942392
\(93\) 5784.50 0.0693519
\(94\) −82942.1 −0.968179
\(95\) −76274.9 −0.867107
\(96\) −9216.00 −0.102062
\(97\) −24360.2 −0.262876 −0.131438 0.991324i \(-0.541959\pi\)
−0.131438 + 0.991324i \(0.541959\pi\)
\(98\) 0 0
\(99\) −49923.3 −0.511936
\(100\) 6821.22 0.0682122
\(101\) 148780. 1.45124 0.725622 0.688093i \(-0.241552\pi\)
0.725622 + 0.688093i \(0.241552\pi\)
\(102\) 64580.2 0.614609
\(103\) −205516. −1.90877 −0.954383 0.298584i \(-0.903486\pi\)
−0.954383 + 0.298584i \(0.903486\pi\)
\(104\) −26775.8 −0.242750
\(105\) 0 0
\(106\) −21391.7 −0.184919
\(107\) −104578. −0.883038 −0.441519 0.897252i \(-0.645560\pi\)
−0.441519 + 0.897252i \(0.645560\pi\)
\(108\) −11664.0 −0.0962250
\(109\) 212746. 1.71512 0.857560 0.514383i \(-0.171979\pi\)
0.857560 + 0.514383i \(0.171979\pi\)
\(110\) −146917. −1.15769
\(111\) 21240.2 0.163626
\(112\) 0 0
\(113\) 224886. 1.65678 0.828391 0.560150i \(-0.189256\pi\)
0.828391 + 0.560150i \(0.189256\pi\)
\(114\) 46077.5 0.332068
\(115\) 284955. 2.00924
\(116\) 27456.4 0.189451
\(117\) −33888.1 −0.228867
\(118\) −67299.7 −0.444947
\(119\) 0 0
\(120\) −34325.6 −0.217603
\(121\) 218820. 1.35870
\(122\) 54108.7 0.329130
\(123\) 140759. 0.838905
\(124\) −10283.6 −0.0600605
\(125\) −160822. −0.920599
\(126\) 0 0
\(127\) −44027.2 −0.242221 −0.121110 0.992639i \(-0.538646\pi\)
−0.121110 + 0.992639i \(0.538646\pi\)
\(128\) 16384.0 0.0883883
\(129\) 14747.5 0.0780267
\(130\) −99728.2 −0.517559
\(131\) 391132. 1.99134 0.995668 0.0929748i \(-0.0296376\pi\)
0.995668 + 0.0929748i \(0.0296376\pi\)
\(132\) 88752.5 0.443349
\(133\) 0 0
\(134\) −185934. −0.894534
\(135\) −43443.3 −0.205158
\(136\) −114809. −0.532267
\(137\) 70982.2 0.323108 0.161554 0.986864i \(-0.448349\pi\)
0.161554 + 0.986864i \(0.448349\pi\)
\(138\) −172141. −0.769459
\(139\) −102764. −0.451133 −0.225567 0.974228i \(-0.572423\pi\)
−0.225567 + 0.974228i \(0.572423\pi\)
\(140\) 0 0
\(141\) 186620. 0.790515
\(142\) −13095.6 −0.0545011
\(143\) 257858. 1.05449
\(144\) 20736.0 0.0833333
\(145\) 102263. 0.403923
\(146\) 307034. 1.19208
\(147\) 0 0
\(148\) −37760.4 −0.141704
\(149\) −226298. −0.835053 −0.417527 0.908665i \(-0.637103\pi\)
−0.417527 + 0.908665i \(0.637103\pi\)
\(150\) −15347.7 −0.0556950
\(151\) −548224. −1.95666 −0.978330 0.207051i \(-0.933613\pi\)
−0.978330 + 0.207051i \(0.933613\pi\)
\(152\) −81915.5 −0.287579
\(153\) −145305. −0.501826
\(154\) 0 0
\(155\) −38301.7 −0.128053
\(156\) 60245.6 0.198205
\(157\) −241144. −0.780778 −0.390389 0.920650i \(-0.627659\pi\)
−0.390389 + 0.920650i \(0.627659\pi\)
\(158\) −70925.5 −0.226027
\(159\) 48131.4 0.150986
\(160\) 61023.2 0.188450
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 630902. 1.85991 0.929957 0.367668i \(-0.119844\pi\)
0.929957 + 0.367668i \(0.119844\pi\)
\(164\) −250238. −0.726513
\(165\) 330564. 0.945249
\(166\) −315387. −0.888328
\(167\) −239113. −0.663456 −0.331728 0.943375i \(-0.607632\pi\)
−0.331728 + 0.943375i \(0.607632\pi\)
\(168\) 0 0
\(169\) −196258. −0.528579
\(170\) −427614. −1.13483
\(171\) −103674. −0.271132
\(172\) −26217.7 −0.0675731
\(173\) 302939. 0.769556 0.384778 0.923009i \(-0.374278\pi\)
0.384778 + 0.923009i \(0.374278\pi\)
\(174\) −61776.8 −0.154686
\(175\) 0 0
\(176\) −157782. −0.383952
\(177\) 151424. 0.363297
\(178\) −296642. −0.701750
\(179\) −105990. −0.247247 −0.123623 0.992329i \(-0.539451\pi\)
−0.123623 + 0.992329i \(0.539451\pi\)
\(180\) 77232.5 0.177672
\(181\) 473727. 1.07481 0.537405 0.843324i \(-0.319405\pi\)
0.537405 + 0.843324i \(0.319405\pi\)
\(182\) 0 0
\(183\) −121745. −0.268734
\(184\) 306028. 0.666371
\(185\) −140641. −0.302122
\(186\) 23138.0 0.0490392
\(187\) 1.10564e6 2.31212
\(188\) −331768. −0.684606
\(189\) 0 0
\(190\) −305099. −0.613137
\(191\) −587813. −1.16589 −0.582943 0.812513i \(-0.698099\pi\)
−0.582943 + 0.812513i \(0.698099\pi\)
\(192\) −36864.0 −0.0721688
\(193\) −366861. −0.708938 −0.354469 0.935068i \(-0.615338\pi\)
−0.354469 + 0.935068i \(0.615338\pi\)
\(194\) −97440.7 −0.185881
\(195\) 224388. 0.422585
\(196\) 0 0
\(197\) 727471. 1.33552 0.667760 0.744377i \(-0.267253\pi\)
0.667760 + 0.744377i \(0.267253\pi\)
\(198\) −199693. −0.361993
\(199\) 234812. 0.420327 0.210163 0.977666i \(-0.432600\pi\)
0.210163 + 0.977666i \(0.432600\pi\)
\(200\) 27284.9 0.0482333
\(201\) 418352. 0.730384
\(202\) 595119. 1.02619
\(203\) 0 0
\(204\) 258321. 0.434594
\(205\) −932027. −1.54897
\(206\) −822065. −1.34970
\(207\) 387316. 0.628261
\(208\) −107103. −0.171650
\(209\) 788868. 1.24922
\(210\) 0 0
\(211\) −308050. −0.476337 −0.238169 0.971224i \(-0.576547\pi\)
−0.238169 + 0.971224i \(0.576547\pi\)
\(212\) −85566.9 −0.130757
\(213\) 29465.2 0.0445000
\(214\) −418311. −0.624402
\(215\) −97649.5 −0.144070
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) 850983. 1.21277
\(219\) −690825. −0.973325
\(220\) −587670. −0.818610
\(221\) 750515. 1.03366
\(222\) 84960.8 0.115701
\(223\) −510190. −0.687021 −0.343510 0.939149i \(-0.611616\pi\)
−0.343510 + 0.939149i \(0.611616\pi\)
\(224\) 0 0
\(225\) 34532.4 0.0454748
\(226\) 899542. 1.17152
\(227\) −1.03803e6 −1.33705 −0.668523 0.743692i \(-0.733073\pi\)
−0.668523 + 0.743692i \(0.733073\pi\)
\(228\) 184310. 0.234807
\(229\) 1.03849e6 1.30862 0.654310 0.756226i \(-0.272959\pi\)
0.654310 + 0.756226i \(0.272959\pi\)
\(230\) 1.13982e6 1.42075
\(231\) 0 0
\(232\) 109825. 0.133962
\(233\) 1.31745e6 1.58981 0.794905 0.606734i \(-0.207521\pi\)
0.794905 + 0.606734i \(0.207521\pi\)
\(234\) −135553. −0.161833
\(235\) −1.23569e6 −1.45962
\(236\) −269199. −0.314625
\(237\) 159582. 0.184550
\(238\) 0 0
\(239\) 800669. 0.906689 0.453345 0.891335i \(-0.350231\pi\)
0.453345 + 0.891335i \(0.350231\pi\)
\(240\) −137302. −0.153868
\(241\) −402307. −0.446185 −0.223093 0.974797i \(-0.571615\pi\)
−0.223093 + 0.974797i \(0.571615\pi\)
\(242\) 875281. 0.960747
\(243\) −59049.0 −0.0641500
\(244\) 216435. 0.232730
\(245\) 0 0
\(246\) 563035. 0.593196
\(247\) 535487. 0.558479
\(248\) −41134.2 −0.0424692
\(249\) 709620. 0.725317
\(250\) −643288. −0.650962
\(251\) 1.29078e6 1.29320 0.646601 0.762828i \(-0.276190\pi\)
0.646601 + 0.762828i \(0.276190\pi\)
\(252\) 0 0
\(253\) −2.94713e6 −2.89466
\(254\) −176109. −0.171276
\(255\) 962132. 0.926583
\(256\) 65536.0 0.0625000
\(257\) 1.76435e6 1.66629 0.833146 0.553053i \(-0.186537\pi\)
0.833146 + 0.553053i \(0.186537\pi\)
\(258\) 58989.9 0.0551732
\(259\) 0 0
\(260\) −398913. −0.365969
\(261\) 138998. 0.126301
\(262\) 1.56453e6 1.40809
\(263\) 427745. 0.381325 0.190663 0.981656i \(-0.438936\pi\)
0.190663 + 0.981656i \(0.438936\pi\)
\(264\) 355010. 0.313495
\(265\) −318699. −0.278783
\(266\) 0 0
\(267\) 667444. 0.572976
\(268\) −743736. −0.632531
\(269\) 1.26691e6 1.06749 0.533744 0.845646i \(-0.320784\pi\)
0.533744 + 0.845646i \(0.320784\pi\)
\(270\) −173773. −0.145069
\(271\) 312034. 0.258095 0.129047 0.991638i \(-0.458808\pi\)
0.129047 + 0.991638i \(0.458808\pi\)
\(272\) −459237. −0.376370
\(273\) 0 0
\(274\) 283929. 0.228472
\(275\) −262760. −0.209521
\(276\) −688563. −0.544090
\(277\) −1.67860e6 −1.31446 −0.657229 0.753691i \(-0.728271\pi\)
−0.657229 + 0.753691i \(0.728271\pi\)
\(278\) −411057. −0.319000
\(279\) −52060.5 −0.0400403
\(280\) 0 0
\(281\) −765001. −0.577958 −0.288979 0.957335i \(-0.593316\pi\)
−0.288979 + 0.957335i \(0.593316\pi\)
\(282\) 746479. 0.558978
\(283\) 85831.7 0.0637062 0.0318531 0.999493i \(-0.489859\pi\)
0.0318531 + 0.999493i \(0.489859\pi\)
\(284\) −52382.5 −0.0385381
\(285\) 686474. 0.500624
\(286\) 1.03143e6 0.745634
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) 1.79820e6 1.26647
\(290\) 409052. 0.285616
\(291\) 219242. 0.151772
\(292\) 1.22813e6 0.842924
\(293\) 97784.7 0.0665429 0.0332715 0.999446i \(-0.489407\pi\)
0.0332715 + 0.999446i \(0.489407\pi\)
\(294\) 0 0
\(295\) −1.00265e6 −0.670800
\(296\) −151041. −0.100200
\(297\) 449310. 0.295566
\(298\) −905190. −0.590472
\(299\) −2.00052e6 −1.29409
\(300\) −61390.9 −0.0393823
\(301\) 0 0
\(302\) −2.19289e6 −1.38357
\(303\) −1.33902e6 −0.837877
\(304\) −327662. −0.203349
\(305\) 806125. 0.496196
\(306\) −581222. −0.354845
\(307\) 1.75546e6 1.06303 0.531514 0.847050i \(-0.321623\pi\)
0.531514 + 0.847050i \(0.321623\pi\)
\(308\) 0 0
\(309\) 1.84965e6 1.10203
\(310\) −153207. −0.0905470
\(311\) 1.80396e6 1.05761 0.528804 0.848744i \(-0.322641\pi\)
0.528804 + 0.848744i \(0.322641\pi\)
\(312\) 240982. 0.140152
\(313\) −2.46429e6 −1.42178 −0.710888 0.703305i \(-0.751707\pi\)
−0.710888 + 0.703305i \(0.751707\pi\)
\(314\) −964576. −0.552093
\(315\) 0 0
\(316\) −283702. −0.159825
\(317\) 1.65286e6 0.923822 0.461911 0.886926i \(-0.347164\pi\)
0.461911 + 0.886926i \(0.347164\pi\)
\(318\) 192526. 0.106763
\(319\) −1.05765e6 −0.581922
\(320\) 244093. 0.133254
\(321\) 941199. 0.509822
\(322\) 0 0
\(323\) 2.29606e6 1.22455
\(324\) 104976. 0.0555556
\(325\) −178363. −0.0936690
\(326\) 2.52361e6 1.31516
\(327\) −1.91471e6 −0.990226
\(328\) −1.00095e6 −0.513722
\(329\) 0 0
\(330\) 1.32226e6 0.668392
\(331\) −1.66814e6 −0.836881 −0.418440 0.908244i \(-0.637423\pi\)
−0.418440 + 0.908244i \(0.637423\pi\)
\(332\) −1.26155e6 −0.628143
\(333\) −191162. −0.0944693
\(334\) −956452. −0.469134
\(335\) −2.77009e6 −1.34860
\(336\) 0 0
\(337\) −524769. −0.251706 −0.125853 0.992049i \(-0.540167\pi\)
−0.125853 + 0.992049i \(0.540167\pi\)
\(338\) −785031. −0.373762
\(339\) −2.02397e6 −0.956544
\(340\) −1.71046e6 −0.802444
\(341\) 396133. 0.184483
\(342\) −414697. −0.191719
\(343\) 0 0
\(344\) −104871. −0.0477814
\(345\) −2.56459e6 −1.16003
\(346\) 1.21176e6 0.544158
\(347\) 1.92637e6 0.858846 0.429423 0.903103i \(-0.358717\pi\)
0.429423 + 0.903103i \(0.358717\pi\)
\(348\) −247107. −0.109380
\(349\) −340342. −0.149573 −0.0747864 0.997200i \(-0.523827\pi\)
−0.0747864 + 0.997200i \(0.523827\pi\)
\(350\) 0 0
\(351\) 304993. 0.132136
\(352\) −631129. −0.271495
\(353\) 74791.2 0.0319458 0.0159729 0.999872i \(-0.494915\pi\)
0.0159729 + 0.999872i \(0.494915\pi\)
\(354\) 605697. 0.256890
\(355\) −195102. −0.0821657
\(356\) −1.18657e6 −0.496212
\(357\) 0 0
\(358\) −423958. −0.174830
\(359\) 2.41754e6 0.990004 0.495002 0.868892i \(-0.335167\pi\)
0.495002 + 0.868892i \(0.335167\pi\)
\(360\) 308930. 0.125633
\(361\) −837878. −0.338386
\(362\) 1.89491e6 0.760005
\(363\) −1.96938e6 −0.784447
\(364\) 0 0
\(365\) 4.57426e6 1.79717
\(366\) −486978. −0.190023
\(367\) −161864. −0.0627314 −0.0313657 0.999508i \(-0.509986\pi\)
−0.0313657 + 0.999508i \(0.509986\pi\)
\(368\) 1.22411e6 0.471196
\(369\) −1.26683e6 −0.484342
\(370\) −562563. −0.213632
\(371\) 0 0
\(372\) 92552.0 0.0346759
\(373\) 77002.5 0.0286571 0.0143286 0.999897i \(-0.495439\pi\)
0.0143286 + 0.999897i \(0.495439\pi\)
\(374\) 4.42258e6 1.63492
\(375\) 1.44740e6 0.531508
\(376\) −1.32707e6 −0.484089
\(377\) −717936. −0.260155
\(378\) 0 0
\(379\) −774165. −0.276844 −0.138422 0.990373i \(-0.544203\pi\)
−0.138422 + 0.990373i \(0.544203\pi\)
\(380\) −1.22040e6 −0.433553
\(381\) 396245. 0.139846
\(382\) −2.35125e6 −0.824406
\(383\) −3.63328e6 −1.26561 −0.632807 0.774309i \(-0.718098\pi\)
−0.632807 + 0.774309i \(0.718098\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −1.46744e6 −0.501295
\(387\) −132727. −0.0450487
\(388\) −389763. −0.131438
\(389\) −2.51908e6 −0.844048 −0.422024 0.906585i \(-0.638680\pi\)
−0.422024 + 0.906585i \(0.638680\pi\)
\(390\) 897554. 0.298813
\(391\) −8.57784e6 −2.83750
\(392\) 0 0
\(393\) −3.52019e6 −1.14970
\(394\) 2.90989e6 0.944355
\(395\) −1.05667e6 −0.340757
\(396\) −798773. −0.255968
\(397\) −5.59278e6 −1.78095 −0.890474 0.455034i \(-0.849627\pi\)
−0.890474 + 0.455034i \(0.849627\pi\)
\(398\) 939246. 0.297216
\(399\) 0 0
\(400\) 109139. 0.0341061
\(401\) −191062. −0.0593353 −0.0296676 0.999560i \(-0.509445\pi\)
−0.0296676 + 0.999560i \(0.509445\pi\)
\(402\) 1.67341e6 0.516459
\(403\) 268897. 0.0824751
\(404\) 2.38048e6 0.725622
\(405\) 390990. 0.118448
\(406\) 0 0
\(407\) 1.45457e6 0.435260
\(408\) 1.03328e6 0.307305
\(409\) −4.45805e6 −1.31776 −0.658880 0.752248i \(-0.728970\pi\)
−0.658880 + 0.752248i \(0.728970\pi\)
\(410\) −3.72811e6 −1.09529
\(411\) −638840. −0.186547
\(412\) −3.28826e6 −0.954383
\(413\) 0 0
\(414\) 1.54927e6 0.444248
\(415\) −4.69871e6 −1.33924
\(416\) −428413. −0.121375
\(417\) 924878. 0.260462
\(418\) 3.15547e6 0.883332
\(419\) −4.76120e6 −1.32489 −0.662447 0.749109i \(-0.730482\pi\)
−0.662447 + 0.749109i \(0.730482\pi\)
\(420\) 0 0
\(421\) −1.38498e6 −0.380835 −0.190418 0.981703i \(-0.560984\pi\)
−0.190418 + 0.981703i \(0.560984\pi\)
\(422\) −1.23220e6 −0.336821
\(423\) −1.67958e6 −0.456404
\(424\) −342268. −0.0924595
\(425\) −764784. −0.205384
\(426\) 117861. 0.0314662
\(427\) 0 0
\(428\) −1.67324e6 −0.441519
\(429\) −2.32072e6 −0.608808
\(430\) −390598. −0.101873
\(431\) 4.55891e6 1.18214 0.591069 0.806621i \(-0.298706\pi\)
0.591069 + 0.806621i \(0.298706\pi\)
\(432\) −186624. −0.0481125
\(433\) 6.00870e6 1.54014 0.770071 0.637958i \(-0.220221\pi\)
0.770071 + 0.637958i \(0.220221\pi\)
\(434\) 0 0
\(435\) −920366. −0.233205
\(436\) 3.40393e6 0.857560
\(437\) −6.12022e6 −1.53308
\(438\) −2.76330e6 −0.688245
\(439\) −560503. −0.138809 −0.0694044 0.997589i \(-0.522110\pi\)
−0.0694044 + 0.997589i \(0.522110\pi\)
\(440\) −2.35068e6 −0.578844
\(441\) 0 0
\(442\) 3.00206e6 0.730910
\(443\) 3.34074e6 0.808786 0.404393 0.914585i \(-0.367483\pi\)
0.404393 + 0.914585i \(0.367483\pi\)
\(444\) 339843. 0.0818128
\(445\) −4.41944e6 −1.05796
\(446\) −2.04076e6 −0.485797
\(447\) 2.03668e6 0.482118
\(448\) 0 0
\(449\) −6.47842e6 −1.51654 −0.758269 0.651942i \(-0.773955\pi\)
−0.758269 + 0.651942i \(0.773955\pi\)
\(450\) 138130. 0.0321555
\(451\) 9.63943e6 2.23157
\(452\) 3.59817e6 0.828391
\(453\) 4.93401e6 1.12968
\(454\) −4.15213e6 −0.945434
\(455\) 0 0
\(456\) 737240. 0.166034
\(457\) 4.31138e6 0.965663 0.482831 0.875713i \(-0.339608\pi\)
0.482831 + 0.875713i \(0.339608\pi\)
\(458\) 4.15396e6 0.925334
\(459\) 1.30775e6 0.289730
\(460\) 4.55928e6 1.00462
\(461\) 320951. 0.0703374 0.0351687 0.999381i \(-0.488803\pi\)
0.0351687 + 0.999381i \(0.488803\pi\)
\(462\) 0 0
\(463\) −3.14239e6 −0.681251 −0.340626 0.940199i \(-0.610639\pi\)
−0.340626 + 0.940199i \(0.610639\pi\)
\(464\) 439302. 0.0947257
\(465\) 344716. 0.0739313
\(466\) 5.26981e6 1.12417
\(467\) −4.14587e6 −0.879677 −0.439839 0.898077i \(-0.644964\pi\)
−0.439839 + 0.898077i \(0.644964\pi\)
\(468\) −542210. −0.114433
\(469\) 0 0
\(470\) −4.94277e6 −1.03211
\(471\) 2.17030e6 0.450782
\(472\) −1.07679e6 −0.222473
\(473\) 1.00993e6 0.207558
\(474\) 638329. 0.130497
\(475\) −545667. −0.110967
\(476\) 0 0
\(477\) −433183. −0.0871716
\(478\) 3.20268e6 0.641126
\(479\) 257678. 0.0513142 0.0256571 0.999671i \(-0.491832\pi\)
0.0256571 + 0.999671i \(0.491832\pi\)
\(480\) −549209. −0.108801
\(481\) 987367. 0.194588
\(482\) −1.60923e6 −0.315501
\(483\) 0 0
\(484\) 3.50113e6 0.679351
\(485\) −1.45170e6 −0.280234
\(486\) −236196. −0.0453609
\(487\) 1.72033e6 0.328692 0.164346 0.986403i \(-0.447449\pi\)
0.164346 + 0.986403i \(0.447449\pi\)
\(488\) 865739. 0.164565
\(489\) −5.67812e6 −1.07382
\(490\) 0 0
\(491\) 6.49101e6 1.21509 0.607546 0.794285i \(-0.292154\pi\)
0.607546 + 0.794285i \(0.292154\pi\)
\(492\) 2.25214e6 0.419453
\(493\) −3.07836e6 −0.570430
\(494\) 2.14195e6 0.394904
\(495\) −2.97508e6 −0.545740
\(496\) −164537. −0.0300302
\(497\) 0 0
\(498\) 2.83848e6 0.512876
\(499\) 379631. 0.0682512 0.0341256 0.999418i \(-0.489135\pi\)
0.0341256 + 0.999418i \(0.489135\pi\)
\(500\) −2.57315e6 −0.460300
\(501\) 2.15202e6 0.383047
\(502\) 5.16311e6 0.914433
\(503\) 8.60340e6 1.51618 0.758089 0.652151i \(-0.226133\pi\)
0.758089 + 0.652151i \(0.226133\pi\)
\(504\) 0 0
\(505\) 8.86624e6 1.54707
\(506\) −1.17885e7 −2.04684
\(507\) 1.76632e6 0.305176
\(508\) −704435. −0.121110
\(509\) −1.03543e6 −0.177144 −0.0885718 0.996070i \(-0.528230\pi\)
−0.0885718 + 0.996070i \(0.528230\pi\)
\(510\) 3.84853e6 0.655193
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 933069. 0.156538
\(514\) 7.05739e6 1.17825
\(515\) −1.22473e7 −2.03481
\(516\) 235959. 0.0390133
\(517\) 1.27801e7 2.10284
\(518\) 0 0
\(519\) −2.72645e6 −0.444303
\(520\) −1.59565e6 −0.258779
\(521\) −6.42373e6 −1.03680 −0.518398 0.855140i \(-0.673471\pi\)
−0.518398 + 0.855140i \(0.673471\pi\)
\(522\) 555991. 0.0893083
\(523\) −8.06384e6 −1.28910 −0.644551 0.764561i \(-0.722956\pi\)
−0.644551 + 0.764561i \(0.722956\pi\)
\(524\) 6.25811e6 0.995668
\(525\) 0 0
\(526\) 1.71098e6 0.269638
\(527\) 1.15298e6 0.180840
\(528\) 1.42004e6 0.221675
\(529\) 1.64282e7 2.55241
\(530\) −1.27480e6 −0.197129
\(531\) −1.36282e6 −0.209750
\(532\) 0 0
\(533\) 6.54329e6 0.997649
\(534\) 2.66978e6 0.405155
\(535\) −6.23210e6 −0.941347
\(536\) −2.97494e6 −0.447267
\(537\) 953906. 0.142748
\(538\) 5.06762e6 0.754829
\(539\) 0 0
\(540\) −695093. −0.102579
\(541\) −8.62213e6 −1.26655 −0.633274 0.773928i \(-0.718289\pi\)
−0.633274 + 0.773928i \(0.718289\pi\)
\(542\) 1.24814e6 0.182500
\(543\) −4.26354e6 −0.620542
\(544\) −1.83695e6 −0.266134
\(545\) 1.26782e7 1.82837
\(546\) 0 0
\(547\) −3.51266e6 −0.501958 −0.250979 0.967993i \(-0.580753\pi\)
−0.250979 + 0.967993i \(0.580753\pi\)
\(548\) 1.13571e6 0.161554
\(549\) 1.09570e6 0.155153
\(550\) −1.05104e6 −0.148154
\(551\) −2.19639e6 −0.308198
\(552\) −2.75425e6 −0.384730
\(553\) 0 0
\(554\) −6.71438e6 −0.929462
\(555\) 1.26577e6 0.174430
\(556\) −1.64423e6 −0.225567
\(557\) −1.22183e7 −1.66868 −0.834340 0.551251i \(-0.814151\pi\)
−0.834340 + 0.551251i \(0.814151\pi\)
\(558\) −208242. −0.0283128
\(559\) 685548. 0.0927915
\(560\) 0 0
\(561\) −9.95080e6 −1.33491
\(562\) −3.06000e6 −0.408678
\(563\) −1.48761e6 −0.197796 −0.0988980 0.995098i \(-0.531532\pi\)
−0.0988980 + 0.995098i \(0.531532\pi\)
\(564\) 2.98592e6 0.395257
\(565\) 1.34016e7 1.76618
\(566\) 343327. 0.0450471
\(567\) 0 0
\(568\) −209530. −0.0272506
\(569\) 5.83501e6 0.755547 0.377773 0.925898i \(-0.376690\pi\)
0.377773 + 0.925898i \(0.376690\pi\)
\(570\) 2.74590e6 0.353995
\(571\) 9.83227e6 1.26201 0.631006 0.775778i \(-0.282642\pi\)
0.631006 + 0.775778i \(0.282642\pi\)
\(572\) 4.12573e6 0.527243
\(573\) 5.29032e6 0.673125
\(574\) 0 0
\(575\) 2.03856e6 0.257130
\(576\) 331776. 0.0416667
\(577\) −324006. −0.0405147 −0.0202574 0.999795i \(-0.506449\pi\)
−0.0202574 + 0.999795i \(0.506449\pi\)
\(578\) 7.19281e6 0.895528
\(579\) 3.30175e6 0.409305
\(580\) 1.63621e6 0.201961
\(581\) 0 0
\(582\) 876966. 0.107319
\(583\) 3.29613e6 0.401636
\(584\) 4.91254e6 0.596038
\(585\) −2.01950e6 −0.243979
\(586\) 391139. 0.0470530
\(587\) −4.27646e6 −0.512258 −0.256129 0.966643i \(-0.582447\pi\)
−0.256129 + 0.966643i \(0.582447\pi\)
\(588\) 0 0
\(589\) 822639. 0.0977060
\(590\) −4.01059e6 −0.474327
\(591\) −6.54724e6 −0.771063
\(592\) −604166. −0.0708519
\(593\) 1.58930e7 1.85596 0.927982 0.372625i \(-0.121542\pi\)
0.927982 + 0.372625i \(0.121542\pi\)
\(594\) 1.79724e6 0.208997
\(595\) 0 0
\(596\) −3.62076e6 −0.417527
\(597\) −2.11330e6 −0.242676
\(598\) −8.00209e6 −0.915062
\(599\) −1.75061e7 −1.99353 −0.996766 0.0803623i \(-0.974392\pi\)
−0.996766 + 0.0803623i \(0.974392\pi\)
\(600\) −245564. −0.0278475
\(601\) 5.98914e6 0.676361 0.338180 0.941081i \(-0.390189\pi\)
0.338180 + 0.941081i \(0.390189\pi\)
\(602\) 0 0
\(603\) −3.76516e6 −0.421687
\(604\) −8.77158e6 −0.978330
\(605\) 1.30402e7 1.44842
\(606\) −5.35607e6 −0.592468
\(607\) 3.27501e6 0.360778 0.180389 0.983595i \(-0.442264\pi\)
0.180389 + 0.983595i \(0.442264\pi\)
\(608\) −1.31065e6 −0.143790
\(609\) 0 0
\(610\) 3.22450e6 0.350863
\(611\) 8.67516e6 0.940101
\(612\) −2.32489e6 −0.250913
\(613\) −7.62114e6 −0.819160 −0.409580 0.912274i \(-0.634325\pi\)
−0.409580 + 0.912274i \(0.634325\pi\)
\(614\) 7.02183e6 0.751674
\(615\) 8.38824e6 0.894300
\(616\) 0 0
\(617\) 1.28554e7 1.35948 0.679741 0.733453i \(-0.262092\pi\)
0.679741 + 0.733453i \(0.262092\pi\)
\(618\) 7.39858e6 0.779251
\(619\) 8.52350e6 0.894111 0.447055 0.894506i \(-0.352473\pi\)
0.447055 + 0.894506i \(0.352473\pi\)
\(620\) −612828. −0.0640264
\(621\) −3.48585e6 −0.362727
\(622\) 7.21582e6 0.747842
\(623\) 0 0
\(624\) 963929. 0.0991023
\(625\) −1.09161e7 −1.11781
\(626\) −9.85716e6 −1.00535
\(627\) −7.09981e6 −0.721237
\(628\) −3.85831e6 −0.390389
\(629\) 4.23363e6 0.426664
\(630\) 0 0
\(631\) −1.37373e7 −1.37350 −0.686750 0.726894i \(-0.740963\pi\)
−0.686750 + 0.726894i \(0.740963\pi\)
\(632\) −1.13481e6 −0.113013
\(633\) 2.77245e6 0.275013
\(634\) 6.61144e6 0.653241
\(635\) −2.62371e6 −0.258215
\(636\) 770102. 0.0754928
\(637\) 0 0
\(638\) −4.23059e6 −0.411481
\(639\) −265186. −0.0256921
\(640\) 976372. 0.0942248
\(641\) −5.04466e6 −0.484939 −0.242470 0.970159i \(-0.577957\pi\)
−0.242470 + 0.970159i \(0.577957\pi\)
\(642\) 3.76480e6 0.360499
\(643\) −9.94759e6 −0.948835 −0.474417 0.880300i \(-0.657341\pi\)
−0.474417 + 0.880300i \(0.657341\pi\)
\(644\) 0 0
\(645\) 878846. 0.0831790
\(646\) 9.18424e6 0.865888
\(647\) −1.26276e6 −0.118593 −0.0592966 0.998240i \(-0.518886\pi\)
−0.0592966 + 0.998240i \(0.518886\pi\)
\(648\) 419904. 0.0392837
\(649\) 1.03698e7 0.966406
\(650\) −713451. −0.0662340
\(651\) 0 0
\(652\) 1.00944e7 0.929957
\(653\) −1.28147e7 −1.17605 −0.588026 0.808842i \(-0.700095\pi\)
−0.588026 + 0.808842i \(0.700095\pi\)
\(654\) −7.65885e6 −0.700195
\(655\) 2.33087e7 2.12283
\(656\) −4.00381e6 −0.363257
\(657\) 6.21743e6 0.561950
\(658\) 0 0
\(659\) −3.81355e6 −0.342071 −0.171035 0.985265i \(-0.554711\pi\)
−0.171035 + 0.985265i \(0.554711\pi\)
\(660\) 5.28903e6 0.472624
\(661\) −1.66244e7 −1.47994 −0.739968 0.672642i \(-0.765159\pi\)
−0.739968 + 0.672642i \(0.765159\pi\)
\(662\) −6.67257e6 −0.591764
\(663\) −6.75464e6 −0.596786
\(664\) −5.04619e6 −0.444164
\(665\) 0 0
\(666\) −764647. −0.0667999
\(667\) 8.20548e6 0.714150
\(668\) −3.82581e6 −0.331728
\(669\) 4.59171e6 0.396652
\(670\) −1.10804e7 −0.953602
\(671\) −8.33730e6 −0.714857
\(672\) 0 0
\(673\) 1.76139e7 1.49905 0.749527 0.661974i \(-0.230281\pi\)
0.749527 + 0.661974i \(0.230281\pi\)
\(674\) −2.09908e6 −0.177983
\(675\) −310792. −0.0262549
\(676\) −3.14013e6 −0.264290
\(677\) 1.78430e7 1.49622 0.748112 0.663573i \(-0.230961\pi\)
0.748112 + 0.663573i \(0.230961\pi\)
\(678\) −8.09588e6 −0.676379
\(679\) 0 0
\(680\) −6.84183e6 −0.567414
\(681\) 9.34229e6 0.771943
\(682\) 1.58453e6 0.130449
\(683\) 1.41532e7 1.16092 0.580459 0.814289i \(-0.302873\pi\)
0.580459 + 0.814289i \(0.302873\pi\)
\(684\) −1.65879e6 −0.135566
\(685\) 4.23004e6 0.344444
\(686\) 0 0
\(687\) −9.34641e6 −0.755532
\(688\) −419484. −0.0337865
\(689\) 2.23743e6 0.179556
\(690\) −1.02584e7 −0.820268
\(691\) −2.22535e6 −0.177297 −0.0886487 0.996063i \(-0.528255\pi\)
−0.0886487 + 0.996063i \(0.528255\pi\)
\(692\) 4.84703e6 0.384778
\(693\) 0 0
\(694\) 7.70547e6 0.607296
\(695\) −6.12403e6 −0.480923
\(696\) −988429. −0.0773432
\(697\) 2.80563e7 2.18750
\(698\) −1.36137e6 −0.105764
\(699\) −1.18571e7 −0.917877
\(700\) 0 0
\(701\) −4.49378e6 −0.345396 −0.172698 0.984975i \(-0.555248\pi\)
−0.172698 + 0.984975i \(0.555248\pi\)
\(702\) 1.21997e6 0.0934345
\(703\) 3.02066e6 0.230523
\(704\) −2.52452e6 −0.191976
\(705\) 1.11212e7 0.842714
\(706\) 299165. 0.0225891
\(707\) 0 0
\(708\) 2.42279e6 0.181649
\(709\) −1.54232e7 −1.15228 −0.576141 0.817350i \(-0.695442\pi\)
−0.576141 + 0.817350i \(0.695442\pi\)
\(710\) −780408. −0.0580999
\(711\) −1.43624e6 −0.106550
\(712\) −4.74627e6 −0.350875
\(713\) −3.07329e6 −0.226402
\(714\) 0 0
\(715\) 1.53665e7 1.12412
\(716\) −1.69583e6 −0.123623
\(717\) −7.20602e6 −0.523477
\(718\) 9.67014e6 0.700038
\(719\) 1.07276e7 0.773890 0.386945 0.922103i \(-0.373530\pi\)
0.386945 + 0.922103i \(0.373530\pi\)
\(720\) 1.23572e6 0.0888360
\(721\) 0 0
\(722\) −3.35151e6 −0.239275
\(723\) 3.62076e6 0.257605
\(724\) 7.57963e6 0.537405
\(725\) 731585. 0.0516916
\(726\) −7.87753e6 −0.554688
\(727\) −2.05652e7 −1.44310 −0.721551 0.692362i \(-0.756570\pi\)
−0.721551 + 0.692362i \(0.756570\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.82971e7 1.27079
\(731\) 2.93949e6 0.203460
\(732\) −1.94791e6 −0.134367
\(733\) −3.29322e6 −0.226392 −0.113196 0.993573i \(-0.536109\pi\)
−0.113196 + 0.993573i \(0.536109\pi\)
\(734\) −647455. −0.0443578
\(735\) 0 0
\(736\) 4.89645e6 0.333186
\(737\) 2.86495e7 1.94289
\(738\) −5.06732e6 −0.342482
\(739\) −7.71767e6 −0.519847 −0.259923 0.965629i \(-0.583697\pi\)
−0.259923 + 0.965629i \(0.583697\pi\)
\(740\) −2.25025e6 −0.151061
\(741\) −4.81938e6 −0.322438
\(742\) 0 0
\(743\) −8.33553e6 −0.553938 −0.276969 0.960879i \(-0.589330\pi\)
−0.276969 + 0.960879i \(0.589330\pi\)
\(744\) 370208. 0.0245196
\(745\) −1.34857e7 −0.890193
\(746\) 308010. 0.0202636
\(747\) −6.38658e6 −0.418762
\(748\) 1.76903e7 1.15606
\(749\) 0 0
\(750\) 5.78960e6 0.375833
\(751\) −1.80694e7 −1.16908 −0.584539 0.811366i \(-0.698725\pi\)
−0.584539 + 0.811366i \(0.698725\pi\)
\(752\) −5.30830e6 −0.342303
\(753\) −1.16170e7 −0.746631
\(754\) −2.87174e6 −0.183957
\(755\) −3.26703e7 −2.08586
\(756\) 0 0
\(757\) −8.13311e6 −0.515842 −0.257921 0.966166i \(-0.583037\pi\)
−0.257921 + 0.966166i \(0.583037\pi\)
\(758\) −3.09666e6 −0.195758
\(759\) 2.65242e7 1.67123
\(760\) −4.88159e6 −0.306568
\(761\) −2.01691e6 −0.126248 −0.0631239 0.998006i \(-0.520106\pi\)
−0.0631239 + 0.998006i \(0.520106\pi\)
\(762\) 1.58498e6 0.0988863
\(763\) 0 0
\(764\) −9.40501e6 −0.582943
\(765\) −8.65919e6 −0.534963
\(766\) −1.45331e7 −0.894925
\(767\) 7.03908e6 0.432043
\(768\) −589824. −0.0360844
\(769\) −1.18971e7 −0.725478 −0.362739 0.931891i \(-0.618158\pi\)
−0.362739 + 0.931891i \(0.618158\pi\)
\(770\) 0 0
\(771\) −1.58791e7 −0.962034
\(772\) −5.86977e6 −0.354469
\(773\) −172292. −0.0103709 −0.00518545 0.999987i \(-0.501651\pi\)
−0.00518545 + 0.999987i \(0.501651\pi\)
\(774\) −530909. −0.0318543
\(775\) −274009. −0.0163874
\(776\) −1.55905e6 −0.0929407
\(777\) 0 0
\(778\) −1.00763e7 −0.596832
\(779\) 2.00179e7 1.18189
\(780\) 3.59021e6 0.211292
\(781\) 2.01783e6 0.118374
\(782\) −3.43114e7 −2.00642
\(783\) −1.25098e6 −0.0729199
\(784\) 0 0
\(785\) −1.43705e7 −0.832334
\(786\) −1.40807e7 −0.812960
\(787\) 1.09131e7 0.628075 0.314037 0.949411i \(-0.398318\pi\)
0.314037 + 0.949411i \(0.398318\pi\)
\(788\) 1.16395e7 0.667760
\(789\) −3.84971e6 −0.220158
\(790\) −4.22666e6 −0.240952
\(791\) 0 0
\(792\) −3.19509e6 −0.180997
\(793\) −5.65939e6 −0.319585
\(794\) −2.23711e7 −1.25932
\(795\) 2.86829e6 0.160956
\(796\) 3.75699e6 0.210163
\(797\) 2.45403e7 1.36847 0.684234 0.729263i \(-0.260137\pi\)
0.684234 + 0.729263i \(0.260137\pi\)
\(798\) 0 0
\(799\) 3.71974e7 2.06132
\(800\) 436558. 0.0241166
\(801\) −6.00700e6 −0.330808
\(802\) −764247. −0.0419564
\(803\) −4.73090e7 −2.58914
\(804\) 6.69362e6 0.365192
\(805\) 0 0
\(806\) 1.07559e6 0.0583187
\(807\) −1.14021e7 −0.616315
\(808\) 9.52191e6 0.513093
\(809\) −3.07074e7 −1.64958 −0.824788 0.565442i \(-0.808706\pi\)
−0.824788 + 0.565442i \(0.808706\pi\)
\(810\) 1.56396e6 0.0837554
\(811\) −1.51675e7 −0.809771 −0.404886 0.914367i \(-0.632689\pi\)
−0.404886 + 0.914367i \(0.632689\pi\)
\(812\) 0 0
\(813\) −2.80831e6 −0.149011
\(814\) 5.81828e6 0.307775
\(815\) 3.75974e7 1.98273
\(816\) 4.13313e6 0.217297
\(817\) 2.09730e6 0.109927
\(818\) −1.78322e7 −0.931797
\(819\) 0 0
\(820\) −1.49124e7 −0.774486
\(821\) 3.48574e6 0.180483 0.0902416 0.995920i \(-0.471236\pi\)
0.0902416 + 0.995920i \(0.471236\pi\)
\(822\) −2.55536e6 −0.131908
\(823\) −2.20822e7 −1.13643 −0.568214 0.822881i \(-0.692365\pi\)
−0.568214 + 0.822881i \(0.692365\pi\)
\(824\) −1.31530e7 −0.674851
\(825\) 2.36484e6 0.120967
\(826\) 0 0
\(827\) 2.28055e7 1.15951 0.579757 0.814789i \(-0.303147\pi\)
0.579757 + 0.814789i \(0.303147\pi\)
\(828\) 6.19706e6 0.314131
\(829\) 3.56532e7 1.80182 0.900912 0.434002i \(-0.142899\pi\)
0.900912 + 0.434002i \(0.142899\pi\)
\(830\) −1.87948e7 −0.946986
\(831\) 1.51074e7 0.758902
\(832\) −1.71365e6 −0.0858251
\(833\) 0 0
\(834\) 3.69951e6 0.184174
\(835\) −1.42495e7 −0.707266
\(836\) 1.26219e7 0.624610
\(837\) 468544. 0.0231173
\(838\) −1.90448e7 −0.936842
\(839\) −2.55545e7 −1.25332 −0.626662 0.779291i \(-0.715579\pi\)
−0.626662 + 0.779291i \(0.715579\pi\)
\(840\) 0 0
\(841\) −1.75664e7 −0.856433
\(842\) −5.53990e6 −0.269291
\(843\) 6.88501e6 0.333684
\(844\) −4.92879e6 −0.238169
\(845\) −1.16956e7 −0.563483
\(846\) −6.71831e6 −0.322726
\(847\) 0 0
\(848\) −1.36907e6 −0.0653787
\(849\) −772485. −0.0367808
\(850\) −3.05914e6 −0.145228
\(851\) −1.12849e7 −0.534162
\(852\) 471443. 0.0222500
\(853\) −2.55946e6 −0.120441 −0.0602206 0.998185i \(-0.519180\pi\)
−0.0602206 + 0.998185i \(0.519180\pi\)
\(854\) 0 0
\(855\) −6.17826e6 −0.289036
\(856\) −6.69297e6 −0.312201
\(857\) −4.96836e6 −0.231079 −0.115540 0.993303i \(-0.536860\pi\)
−0.115540 + 0.993303i \(0.536860\pi\)
\(858\) −9.28289e6 −0.430492
\(859\) 1.11897e7 0.517411 0.258706 0.965956i \(-0.416704\pi\)
0.258706 + 0.965956i \(0.416704\pi\)
\(860\) −1.56239e6 −0.0720351
\(861\) 0 0
\(862\) 1.82356e7 0.835897
\(863\) −2.97620e6 −0.136030 −0.0680151 0.997684i \(-0.521667\pi\)
−0.0680151 + 0.997684i \(0.521667\pi\)
\(864\) −746496. −0.0340207
\(865\) 1.80530e7 0.820371
\(866\) 2.40348e7 1.08905
\(867\) −1.61838e7 −0.731195
\(868\) 0 0
\(869\) 1.09285e7 0.490920
\(870\) −3.68146e6 −0.164901
\(871\) 1.94474e7 0.868593
\(872\) 1.36157e7 0.606387
\(873\) −1.97317e6 −0.0876254
\(874\) −2.44809e7 −1.08405
\(875\) 0 0
\(876\) −1.10532e7 −0.486663
\(877\) 2.84689e7 1.24989 0.624945 0.780669i \(-0.285121\pi\)
0.624945 + 0.780669i \(0.285121\pi\)
\(878\) −2.24201e6 −0.0981526
\(879\) −880063. −0.0384186
\(880\) −9.40272e6 −0.409305
\(881\) 1.97744e7 0.858346 0.429173 0.903222i \(-0.358805\pi\)
0.429173 + 0.903222i \(0.358805\pi\)
\(882\) 0 0
\(883\) 1.88722e7 0.814556 0.407278 0.913304i \(-0.366478\pi\)
0.407278 + 0.913304i \(0.366478\pi\)
\(884\) 1.20082e7 0.516831
\(885\) 9.02383e6 0.387287
\(886\) 1.33630e7 0.571898
\(887\) 1.71526e7 0.732016 0.366008 0.930612i \(-0.380724\pi\)
0.366008 + 0.930612i \(0.380724\pi\)
\(888\) 1.35937e6 0.0578504
\(889\) 0 0
\(890\) −1.76778e7 −0.748088
\(891\) −4.04379e6 −0.170645
\(892\) −8.16304e6 −0.343510
\(893\) 2.65400e7 1.11371
\(894\) 8.14671e6 0.340909
\(895\) −6.31624e6 −0.263573
\(896\) 0 0
\(897\) 1.80047e7 0.747145
\(898\) −2.59137e7 −1.07235
\(899\) −1.10292e6 −0.0455142
\(900\) 552518. 0.0227374
\(901\) 9.59363e6 0.393705
\(902\) 3.85577e7 1.57796
\(903\) 0 0
\(904\) 1.43927e7 0.585761
\(905\) 2.82308e7 1.14578
\(906\) 1.97361e7 0.798803
\(907\) −2.02760e7 −0.818399 −0.409199 0.912445i \(-0.634192\pi\)
−0.409199 + 0.912445i \(0.634192\pi\)
\(908\) −1.66085e7 −0.668523
\(909\) 1.20512e7 0.483748
\(910\) 0 0
\(911\) −1.53633e7 −0.613322 −0.306661 0.951819i \(-0.599212\pi\)
−0.306661 + 0.951819i \(0.599212\pi\)
\(912\) 2.94896e6 0.117404
\(913\) 4.85961e7 1.92941
\(914\) 1.72455e7 0.682827
\(915\) −7.25513e6 −0.286479
\(916\) 1.66158e7 0.654310
\(917\) 0 0
\(918\) 5.23100e6 0.204870
\(919\) 2.10973e7 0.824021 0.412010 0.911179i \(-0.364827\pi\)
0.412010 + 0.911179i \(0.364827\pi\)
\(920\) 1.82371e7 0.710373
\(921\) −1.57991e7 −0.613739
\(922\) 1.28380e6 0.0497360
\(923\) 1.36971e6 0.0529206
\(924\) 0 0
\(925\) −1.00614e6 −0.0386637
\(926\) −1.25695e7 −0.481717
\(927\) −1.66468e7 −0.636256
\(928\) 1.75721e6 0.0669812
\(929\) 1.17648e7 0.447244 0.223622 0.974676i \(-0.428212\pi\)
0.223622 + 0.974676i \(0.428212\pi\)
\(930\) 1.37886e6 0.0522773
\(931\) 0 0
\(932\) 2.10792e7 0.794905
\(933\) −1.62356e7 −0.610611
\(934\) −1.65835e7 −0.622026
\(935\) 6.58886e7 2.46480
\(936\) −2.16884e6 −0.0809167
\(937\) −7.83051e6 −0.291367 −0.145684 0.989331i \(-0.546538\pi\)
−0.145684 + 0.989331i \(0.546538\pi\)
\(938\) 0 0
\(939\) 2.21786e7 0.820863
\(940\) −1.97711e7 −0.729812
\(941\) −3.39315e7 −1.24919 −0.624595 0.780948i \(-0.714736\pi\)
−0.624595 + 0.780948i \(0.714736\pi\)
\(942\) 8.68119e6 0.318751
\(943\) −7.47849e7 −2.73864
\(944\) −4.30718e6 −0.157312
\(945\) 0 0
\(946\) 4.03974e6 0.146766
\(947\) −4.08599e7 −1.48055 −0.740274 0.672305i \(-0.765304\pi\)
−0.740274 + 0.672305i \(0.765304\pi\)
\(948\) 2.55332e6 0.0922750
\(949\) −3.21136e7 −1.15751
\(950\) −2.18267e6 −0.0784655
\(951\) −1.48757e7 −0.533369
\(952\) 0 0
\(953\) −3.53837e7 −1.26203 −0.631016 0.775770i \(-0.717362\pi\)
−0.631016 + 0.775770i \(0.717362\pi\)
\(954\) −1.73273e6 −0.0616396
\(955\) −3.50296e7 −1.24287
\(956\) 1.28107e7 0.453345
\(957\) 9.51883e6 0.335973
\(958\) 1.03071e6 0.0362846
\(959\) 0 0
\(960\) −2.19684e6 −0.0769342
\(961\) −2.82161e7 −0.985571
\(962\) 3.94947e6 0.137594
\(963\) −8.47079e6 −0.294346
\(964\) −6.43691e6 −0.223093
\(965\) −2.18623e7 −0.755750
\(966\) 0 0
\(967\) −4.37744e7 −1.50541 −0.752703 0.658360i \(-0.771250\pi\)
−0.752703 + 0.658360i \(0.771250\pi\)
\(968\) 1.40045e7 0.480374
\(969\) −2.06645e7 −0.706995
\(970\) −5.80679e6 −0.198156
\(971\) 7.16196e6 0.243772 0.121886 0.992544i \(-0.461106\pi\)
0.121886 + 0.992544i \(0.461106\pi\)
\(972\) −944784. −0.0320750
\(973\) 0 0
\(974\) 6.88132e6 0.232421
\(975\) 1.60527e6 0.0540798
\(976\) 3.46296e6 0.116365
\(977\) −2.68803e7 −0.900945 −0.450473 0.892790i \(-0.648745\pi\)
−0.450473 + 0.892790i \(0.648745\pi\)
\(978\) −2.27125e7 −0.759307
\(979\) 4.57078e7 1.52417
\(980\) 0 0
\(981\) 1.72324e7 0.571707
\(982\) 2.59641e7 0.859199
\(983\) −1.06207e6 −0.0350565 −0.0175283 0.999846i \(-0.505580\pi\)
−0.0175283 + 0.999846i \(0.505580\pi\)
\(984\) 9.00857e6 0.296598
\(985\) 4.33522e7 1.42371
\(986\) −1.23135e7 −0.403355
\(987\) 0 0
\(988\) 8.56779e6 0.279239
\(989\) −7.83531e6 −0.254721
\(990\) −1.19003e7 −0.385896
\(991\) −7.39380e6 −0.239157 −0.119579 0.992825i \(-0.538154\pi\)
−0.119579 + 0.992825i \(0.538154\pi\)
\(992\) −658147. −0.0212346
\(993\) 1.50133e7 0.483173
\(994\) 0 0
\(995\) 1.39931e7 0.448082
\(996\) 1.13539e7 0.362658
\(997\) −2.41365e7 −0.769019 −0.384510 0.923121i \(-0.625629\pi\)
−0.384510 + 0.923121i \(0.625629\pi\)
\(998\) 1.51852e6 0.0482609
\(999\) 1.72046e6 0.0545419
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.s.1.2 2
3.2 odd 2 882.6.a.bg.1.1 2
7.2 even 3 294.6.e.w.67.1 4
7.3 odd 6 294.6.e.t.79.2 4
7.4 even 3 294.6.e.w.79.1 4
7.5 odd 6 294.6.e.t.67.2 4
7.6 odd 2 294.6.a.v.1.1 yes 2
21.20 even 2 882.6.a.bc.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.s.1.2 2 1.1 even 1 trivial
294.6.a.v.1.1 yes 2 7.6 odd 2
294.6.e.t.67.2 4 7.5 odd 6
294.6.e.t.79.2 4 7.3 odd 6
294.6.e.w.67.1 4 7.2 even 3
294.6.e.w.79.1 4 7.4 even 3
882.6.a.bc.1.2 2 21.20 even 2
882.6.a.bg.1.1 2 3.2 odd 2