Properties

Label 294.6.a.r
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{9601}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{9601})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} - 9 q^{3} + 16 q^{4} + ( - \beta - 26) q^{5} - 36 q^{6} + 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} - 9 q^{3} + 16 q^{4} + ( - \beta - 26) q^{5} - 36 q^{6} + 64 q^{8} + 81 q^{9} + ( - 4 \beta - 104) q^{10} + ( - 5 \beta + 98) q^{11} - 144 q^{12} + (11 \beta - 195) q^{13} + (9 \beta + 234) q^{15} + 256 q^{16} + ( - 20 \beta - 160) q^{17} + 324 q^{18} + ( - 39 \beta - 865) q^{19} + ( - 16 \beta - 416) q^{20} + ( - 20 \beta + 392) q^{22} + (4 \beta + 1616) q^{23} - 576 q^{24} + (53 \beta - 49) q^{25} + (44 \beta - 780) q^{26} - 729 q^{27} + ( - 61 \beta + 2260) q^{29} + (36 \beta + 936) q^{30} + (164 \beta + 915) q^{31} + 1024 q^{32} + (45 \beta - 882) q^{33} + ( - 80 \beta - 640) q^{34} + 1296 q^{36} + ( - 51 \beta + 10319) q^{37} + ( - 156 \beta - 3460) q^{38} + ( - 99 \beta + 1755) q^{39} + ( - 64 \beta - 1664) q^{40} + (66 \beta + 4374) q^{41} + (87 \beta + 7883) q^{43} + ( - 80 \beta + 1568) q^{44} + ( - 81 \beta - 2106) q^{45} + (16 \beta + 6464) q^{46} + (156 \beta + 16878) q^{47} - 2304 q^{48} + (212 \beta - 196) q^{50} + (180 \beta + 1440) q^{51} + (176 \beta - 3120) q^{52} + ( - 225 \beta + 24732) q^{53} - 2916 q^{54} + (37 \beta + 9452) q^{55} + (351 \beta + 7785) q^{57} + ( - 244 \beta + 9040) q^{58} + (41 \beta - 28388) q^{59} + (144 \beta + 3744) q^{60} + (32 \beta + 33738) q^{61} + (656 \beta + 3660) q^{62} + 4096 q^{64} + ( - 102 \beta - 21330) q^{65} + (180 \beta - 3528) q^{66} + (337 \beta + 37693) q^{67} + ( - 320 \beta - 2560) q^{68} + ( - 36 \beta - 14544) q^{69} + ( - 1340 \beta - 3826) q^{71} + 5184 q^{72} + ( - 875 \beta - 1163) q^{73} + ( - 204 \beta + 41276) q^{74} + ( - 477 \beta + 441) q^{75} + ( - 624 \beta - 13840) q^{76} + ( - 396 \beta + 7020) q^{78} + (986 \beta + 12813) q^{79} + ( - 256 \beta - 6656) q^{80} + 6561 q^{81} + (264 \beta + 17496) q^{82} + ( - 1769 \beta + 410) q^{83} + (700 \beta + 52160) q^{85} + (348 \beta + 31532) q^{86} + (549 \beta - 20340) q^{87} + ( - 320 \beta + 6272) q^{88} + (210 \beta + 88176) q^{89} + ( - 324 \beta - 8424) q^{90} + (64 \beta + 25856) q^{92} + ( - 1476 \beta - 8235) q^{93} + (624 \beta + 67512) q^{94} + (1918 \beta + 116090) q^{95} - 9216 q^{96} + (1981 \beta - 65702) q^{97} + ( - 405 \beta + 7938) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} - 53 q^{5} - 72 q^{6} + 128 q^{8} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} - 18 q^{3} + 32 q^{4} - 53 q^{5} - 72 q^{6} + 128 q^{8} + 162 q^{9} - 212 q^{10} + 191 q^{11} - 288 q^{12} - 379 q^{13} + 477 q^{15} + 512 q^{16} - 340 q^{17} + 648 q^{18} - 1769 q^{19} - 848 q^{20} + 764 q^{22} + 3236 q^{23} - 1152 q^{24} - 45 q^{25} - 1516 q^{26} - 1458 q^{27} + 4459 q^{29} + 1908 q^{30} + 1994 q^{31} + 2048 q^{32} - 1719 q^{33} - 1360 q^{34} + 2592 q^{36} + 20587 q^{37} - 7076 q^{38} + 3411 q^{39} - 3392 q^{40} + 8814 q^{41} + 15853 q^{43} + 3056 q^{44} - 4293 q^{45} + 12944 q^{46} + 33912 q^{47} - 4608 q^{48} - 180 q^{50} + 3060 q^{51} - 6064 q^{52} + 49239 q^{53} - 5832 q^{54} + 18941 q^{55} + 15921 q^{57} + 17836 q^{58} - 56735 q^{59} + 7632 q^{60} + 67508 q^{61} + 7976 q^{62} + 8192 q^{64} - 42762 q^{65} - 6876 q^{66} + 75723 q^{67} - 5440 q^{68} - 29124 q^{69} - 8992 q^{71} + 10368 q^{72} - 3201 q^{73} + 82348 q^{74} + 405 q^{75} - 28304 q^{76} + 13644 q^{78} + 26612 q^{79} - 13568 q^{80} + 13122 q^{81} + 35256 q^{82} - 949 q^{83} + 105020 q^{85} + 63412 q^{86} - 40131 q^{87} + 12224 q^{88} + 176562 q^{89} - 17172 q^{90} + 51776 q^{92} - 17946 q^{93} + 135648 q^{94} + 234098 q^{95} - 18432 q^{96} - 129423 q^{97} + 15471 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
49.4923
−48.4923
4.00000 −9.00000 16.0000 −75.4923 −36.0000 0 64.0000 81.0000 −301.969
1.2 4.00000 −9.00000 16.0000 22.4923 −36.0000 0 64.0000 81.0000 89.9694
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.r 2
3.b odd 2 1 882.6.a.bh 2
7.b odd 2 1 294.6.a.w 2
7.c even 3 2 42.6.e.c 4
7.d odd 6 2 294.6.e.s 4
21.c even 2 1 882.6.a.bb 2
21.h odd 6 2 126.6.g.h 4
28.g odd 6 2 336.6.q.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.e.c 4 7.c even 3 2
126.6.g.h 4 21.h odd 6 2
294.6.a.r 2 1.a even 1 1 trivial
294.6.a.w 2 7.b odd 2 1
294.6.e.s 4 7.d odd 6 2
336.6.q.f 4 28.g odd 6 2
882.6.a.bb 2 21.c even 2 1
882.6.a.bh 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5}^{2} + 53T_{5} - 1698 \) Copy content Toggle raw display
\( T_{11}^{2} - 191T_{11} - 50886 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( (T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 53T - 1698 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 191T - 50886 \) Copy content Toggle raw display
$13$ \( T^{2} + 379T - 254520 \) Copy content Toggle raw display
$17$ \( T^{2} + 340T - 931200 \) Copy content Toggle raw display
$19$ \( T^{2} + 1769 T - 2868440 \) Copy content Toggle raw display
$23$ \( T^{2} - 3236 T + 2579520 \) Copy content Toggle raw display
$29$ \( T^{2} - 4459 T - 3960660 \) Copy content Toggle raw display
$31$ \( T^{2} - 1994 T - 63563115 \) Copy content Toggle raw display
$37$ \( T^{2} - 20587 T + 99713092 \) Copy content Toggle raw display
$41$ \( T^{2} - 8814 T + 8966160 \) Copy content Toggle raw display
$43$ \( T^{2} - 15853 T + 44661910 \) Copy content Toggle raw display
$47$ \( T^{2} - 33912 T + 229093452 \) Copy content Toggle raw display
$53$ \( T^{2} - 49239 T + 484607124 \) Copy content Toggle raw display
$59$ \( T^{2} + 56735 T + 800680236 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1136874660 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1160899190 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 4289674884 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1835129806 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 2156463813 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 7511023590 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 7687683936 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 5231869258 \) Copy content Toggle raw display
show more
show less