Properties

Label 294.6.a.n.1.2
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} -4.50253 q^{5} +36.0000 q^{6} -64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} -4.50253 q^{5} +36.0000 q^{6} -64.0000 q^{8} +81.0000 q^{9} +18.0101 q^{10} -116.191 q^{11} -144.000 q^{12} +85.4773 q^{13} +40.5227 q^{15} +256.000 q^{16} -33.2662 q^{17} -324.000 q^{18} -635.377 q^{19} -72.0404 q^{20} +464.764 q^{22} +2727.43 q^{23} +576.000 q^{24} -3104.73 q^{25} -341.909 q^{26} -729.000 q^{27} +5860.48 q^{29} -162.091 q^{30} -279.136 q^{31} -1024.00 q^{32} +1045.72 q^{33} +133.065 q^{34} +1296.00 q^{36} +3038.49 q^{37} +2541.51 q^{38} -769.295 q^{39} +288.162 q^{40} -819.415 q^{41} +11100.2 q^{43} -1859.05 q^{44} -364.705 q^{45} -10909.7 q^{46} +7407.40 q^{47} -2304.00 q^{48} +12418.9 q^{50} +299.395 q^{51} +1367.64 q^{52} -13698.8 q^{53} +2916.00 q^{54} +523.153 q^{55} +5718.39 q^{57} -23441.9 q^{58} -22375.7 q^{59} +648.364 q^{60} +12692.1 q^{61} +1116.55 q^{62} +4096.00 q^{64} -384.864 q^{65} -4182.87 q^{66} -52303.3 q^{67} -532.259 q^{68} -24546.8 q^{69} +60230.2 q^{71} -5184.00 q^{72} -76958.4 q^{73} -12154.0 q^{74} +27942.5 q^{75} -10166.0 q^{76} +3077.18 q^{78} -33596.0 q^{79} -1152.65 q^{80} +6561.00 q^{81} +3277.66 q^{82} -60574.9 q^{83} +149.782 q^{85} -44400.9 q^{86} -52744.3 q^{87} +7436.22 q^{88} -92190.1 q^{89} +1458.82 q^{90} +43638.8 q^{92} +2512.23 q^{93} -29629.6 q^{94} +2860.80 q^{95} +9216.00 q^{96} -152287. q^{97} -9411.46 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} - 128 q^{8} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} - 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} - 128 q^{8} + 162 q^{9} + 432 q^{10} + 124 q^{11} - 288 q^{12} - 720 q^{13} + 972 q^{15} + 512 q^{16} + 1260 q^{17} - 648 q^{18} - 360 q^{19} - 1728 q^{20} - 496 q^{22} + 6524 q^{23} + 1152 q^{24} + 4482 q^{25} + 2880 q^{26} - 1458 q^{27} + 7088 q^{29} - 3888 q^{30} - 5904 q^{31} - 2048 q^{32} - 1116 q^{33} - 5040 q^{34} + 2592 q^{36} - 6040 q^{37} + 1440 q^{38} + 6480 q^{39} + 6912 q^{40} + 17388 q^{41} - 608 q^{43} + 1984 q^{44} - 8748 q^{45} - 26096 q^{46} + 30456 q^{47} - 4608 q^{48} - 17928 q^{50} - 11340 q^{51} - 11520 q^{52} + 3964 q^{53} + 5832 q^{54} - 24336 q^{55} + 3240 q^{57} - 28352 q^{58} - 40752 q^{59} + 15552 q^{60} + 1368 q^{61} + 23616 q^{62} + 8192 q^{64} + 82980 q^{65} + 4464 q^{66} - 16224 q^{67} + 20160 q^{68} - 58716 q^{69} - 3204 q^{71} - 10368 q^{72} - 23976 q^{73} + 24160 q^{74} - 40338 q^{75} - 5760 q^{76} - 25920 q^{78} - 82160 q^{79} - 27648 q^{80} + 13122 q^{81} - 69552 q^{82} - 173736 q^{83} - 133700 q^{85} + 2432 q^{86} - 63792 q^{87} - 7936 q^{88} - 200556 q^{89} + 34992 q^{90} + 104384 q^{92} + 53136 q^{93} - 121824 q^{94} - 25640 q^{95} + 18432 q^{96} - 251928 q^{97} + 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −9.00000 −0.577350
\(4\) 16.0000 0.500000
\(5\) −4.50253 −0.0805436 −0.0402718 0.999189i \(-0.512822\pi\)
−0.0402718 + 0.999189i \(0.512822\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 81.0000 0.333333
\(10\) 18.0101 0.0569529
\(11\) −116.191 −0.289528 −0.144764 0.989466i \(-0.546242\pi\)
−0.144764 + 0.989466i \(0.546242\pi\)
\(12\) −144.000 −0.288675
\(13\) 85.4773 0.140279 0.0701394 0.997537i \(-0.477656\pi\)
0.0701394 + 0.997537i \(0.477656\pi\)
\(14\) 0 0
\(15\) 40.5227 0.0465019
\(16\) 256.000 0.250000
\(17\) −33.2662 −0.0279177 −0.0139589 0.999903i \(-0.504443\pi\)
−0.0139589 + 0.999903i \(0.504443\pi\)
\(18\) −324.000 −0.235702
\(19\) −635.377 −0.403782 −0.201891 0.979408i \(-0.564709\pi\)
−0.201891 + 0.979408i \(0.564709\pi\)
\(20\) −72.0404 −0.0402718
\(21\) 0 0
\(22\) 464.764 0.204727
\(23\) 2727.43 1.07506 0.537531 0.843244i \(-0.319357\pi\)
0.537531 + 0.843244i \(0.319357\pi\)
\(24\) 576.000 0.204124
\(25\) −3104.73 −0.993513
\(26\) −341.909 −0.0991921
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 5860.48 1.29401 0.647006 0.762485i \(-0.276021\pi\)
0.647006 + 0.762485i \(0.276021\pi\)
\(30\) −162.091 −0.0328818
\(31\) −279.136 −0.0521690 −0.0260845 0.999660i \(-0.508304\pi\)
−0.0260845 + 0.999660i \(0.508304\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1045.72 0.167159
\(34\) 133.065 0.0197408
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 3038.49 0.364883 0.182442 0.983217i \(-0.441600\pi\)
0.182442 + 0.983217i \(0.441600\pi\)
\(38\) 2541.51 0.285517
\(39\) −769.295 −0.0809900
\(40\) 288.162 0.0284765
\(41\) −819.415 −0.0761279 −0.0380640 0.999275i \(-0.512119\pi\)
−0.0380640 + 0.999275i \(0.512119\pi\)
\(42\) 0 0
\(43\) 11100.2 0.915504 0.457752 0.889080i \(-0.348655\pi\)
0.457752 + 0.889080i \(0.348655\pi\)
\(44\) −1859.05 −0.144764
\(45\) −364.705 −0.0268479
\(46\) −10909.7 −0.760184
\(47\) 7407.40 0.489126 0.244563 0.969633i \(-0.421355\pi\)
0.244563 + 0.969633i \(0.421355\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) 12418.9 0.702520
\(51\) 299.395 0.0161183
\(52\) 1367.64 0.0701394
\(53\) −13698.8 −0.669874 −0.334937 0.942241i \(-0.608715\pi\)
−0.334937 + 0.942241i \(0.608715\pi\)
\(54\) 2916.00 0.136083
\(55\) 523.153 0.0233196
\(56\) 0 0
\(57\) 5718.39 0.233124
\(58\) −23441.9 −0.915005
\(59\) −22375.7 −0.836848 −0.418424 0.908252i \(-0.637417\pi\)
−0.418424 + 0.908252i \(0.637417\pi\)
\(60\) 648.364 0.0232509
\(61\) 12692.1 0.436725 0.218363 0.975868i \(-0.429928\pi\)
0.218363 + 0.975868i \(0.429928\pi\)
\(62\) 1116.55 0.0368890
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −384.864 −0.0112986
\(66\) −4182.87 −0.118199
\(67\) −52303.3 −1.42345 −0.711725 0.702458i \(-0.752086\pi\)
−0.711725 + 0.702458i \(0.752086\pi\)
\(68\) −532.259 −0.0139589
\(69\) −24546.8 −0.620687
\(70\) 0 0
\(71\) 60230.2 1.41798 0.708988 0.705221i \(-0.249152\pi\)
0.708988 + 0.705221i \(0.249152\pi\)
\(72\) −5184.00 −0.117851
\(73\) −76958.4 −1.69024 −0.845121 0.534575i \(-0.820472\pi\)
−0.845121 + 0.534575i \(0.820472\pi\)
\(74\) −12154.0 −0.258011
\(75\) 27942.5 0.573605
\(76\) −10166.0 −0.201891
\(77\) 0 0
\(78\) 3077.18 0.0572686
\(79\) −33596.0 −0.605647 −0.302824 0.953047i \(-0.597929\pi\)
−0.302824 + 0.953047i \(0.597929\pi\)
\(80\) −1152.65 −0.0201359
\(81\) 6561.00 0.111111
\(82\) 3277.66 0.0538306
\(83\) −60574.9 −0.965157 −0.482578 0.875853i \(-0.660300\pi\)
−0.482578 + 0.875853i \(0.660300\pi\)
\(84\) 0 0
\(85\) 149.782 0.00224860
\(86\) −44400.9 −0.647359
\(87\) −52744.3 −0.747098
\(88\) 7436.22 0.102364
\(89\) −92190.1 −1.23370 −0.616850 0.787081i \(-0.711591\pi\)
−0.616850 + 0.787081i \(0.711591\pi\)
\(90\) 1458.82 0.0189843
\(91\) 0 0
\(92\) 43638.8 0.537531
\(93\) 2512.23 0.0301198
\(94\) −29629.6 −0.345865
\(95\) 2860.80 0.0325221
\(96\) 9216.00 0.102062
\(97\) −152287. −1.64336 −0.821680 0.569949i \(-0.806963\pi\)
−0.821680 + 0.569949i \(0.806963\pi\)
\(98\) 0 0
\(99\) −9411.46 −0.0965093
\(100\) −49675.6 −0.496756
\(101\) −107644. −1.04999 −0.524997 0.851104i \(-0.675934\pi\)
−0.524997 + 0.851104i \(0.675934\pi\)
\(102\) −1197.58 −0.0113974
\(103\) −120639. −1.12046 −0.560229 0.828338i \(-0.689287\pi\)
−0.560229 + 0.828338i \(0.689287\pi\)
\(104\) −5470.55 −0.0495961
\(105\) 0 0
\(106\) 54795.2 0.473672
\(107\) 86114.3 0.727136 0.363568 0.931568i \(-0.381558\pi\)
0.363568 + 0.931568i \(0.381558\pi\)
\(108\) −11664.0 −0.0962250
\(109\) −66139.2 −0.533203 −0.266602 0.963807i \(-0.585901\pi\)
−0.266602 + 0.963807i \(0.585901\pi\)
\(110\) −2092.61 −0.0164895
\(111\) −27346.4 −0.210665
\(112\) 0 0
\(113\) 131608. 0.969588 0.484794 0.874628i \(-0.338895\pi\)
0.484794 + 0.874628i \(0.338895\pi\)
\(114\) −22873.6 −0.164843
\(115\) −12280.3 −0.0865894
\(116\) 93767.7 0.647006
\(117\) 6923.66 0.0467596
\(118\) 89502.8 0.591741
\(119\) 0 0
\(120\) −2593.45 −0.0164409
\(121\) −147551. −0.916174
\(122\) −50768.3 −0.308812
\(123\) 7374.73 0.0439525
\(124\) −4466.18 −0.0260845
\(125\) 28049.5 0.160565
\(126\) 0 0
\(127\) 14437.3 0.0794284 0.0397142 0.999211i \(-0.487355\pi\)
0.0397142 + 0.999211i \(0.487355\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −99902.0 −0.528567
\(130\) 1539.45 0.00798929
\(131\) −319216. −1.62520 −0.812600 0.582821i \(-0.801949\pi\)
−0.812600 + 0.582821i \(0.801949\pi\)
\(132\) 16731.5 0.0835795
\(133\) 0 0
\(134\) 209213. 1.00653
\(135\) 3282.34 0.0155006
\(136\) 2129.03 0.00987041
\(137\) −50534.0 −0.230029 −0.115014 0.993364i \(-0.536691\pi\)
−0.115014 + 0.993364i \(0.536691\pi\)
\(138\) 98187.4 0.438892
\(139\) −223787. −0.982422 −0.491211 0.871041i \(-0.663446\pi\)
−0.491211 + 0.871041i \(0.663446\pi\)
\(140\) 0 0
\(141\) −66666.6 −0.282397
\(142\) −240921. −1.00266
\(143\) −9931.68 −0.0406146
\(144\) 20736.0 0.0833333
\(145\) −26387.0 −0.104224
\(146\) 307834. 1.19518
\(147\) 0 0
\(148\) 48615.9 0.182442
\(149\) 259521. 0.957651 0.478825 0.877910i \(-0.341063\pi\)
0.478825 + 0.877910i \(0.341063\pi\)
\(150\) −111770. −0.405600
\(151\) −110893. −0.395786 −0.197893 0.980224i \(-0.563410\pi\)
−0.197893 + 0.980224i \(0.563410\pi\)
\(152\) 40664.1 0.142759
\(153\) −2694.56 −0.00930592
\(154\) 0 0
\(155\) 1256.82 0.00420188
\(156\) −12308.7 −0.0404950
\(157\) 405385. 1.31256 0.656280 0.754518i \(-0.272129\pi\)
0.656280 + 0.754518i \(0.272129\pi\)
\(158\) 134384. 0.428257
\(159\) 123289. 0.386752
\(160\) 4610.59 0.0142382
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 38618.7 0.113849 0.0569244 0.998378i \(-0.481871\pi\)
0.0569244 + 0.998378i \(0.481871\pi\)
\(164\) −13110.6 −0.0380640
\(165\) −4708.37 −0.0134636
\(166\) 242300. 0.682469
\(167\) 207255. 0.575060 0.287530 0.957772i \(-0.407166\pi\)
0.287530 + 0.957772i \(0.407166\pi\)
\(168\) 0 0
\(169\) −363987. −0.980322
\(170\) −599.127 −0.00159000
\(171\) −51465.5 −0.134594
\(172\) 177603. 0.457752
\(173\) 128257. 0.325812 0.162906 0.986642i \(-0.447913\pi\)
0.162906 + 0.986642i \(0.447913\pi\)
\(174\) 210977. 0.528278
\(175\) 0 0
\(176\) −29744.9 −0.0723820
\(177\) 201381. 0.483154
\(178\) 368760. 0.872357
\(179\) −98599.5 −0.230007 −0.115004 0.993365i \(-0.536688\pi\)
−0.115004 + 0.993365i \(0.536688\pi\)
\(180\) −5835.27 −0.0134239
\(181\) −599225. −1.35954 −0.679772 0.733423i \(-0.737921\pi\)
−0.679772 + 0.733423i \(0.737921\pi\)
\(182\) 0 0
\(183\) −114229. −0.252144
\(184\) −174555. −0.380092
\(185\) −13680.9 −0.0293890
\(186\) −10048.9 −0.0212979
\(187\) 3865.23 0.00808297
\(188\) 118518. 0.244563
\(189\) 0 0
\(190\) −11443.2 −0.0229966
\(191\) 829216. 1.64469 0.822346 0.568988i \(-0.192665\pi\)
0.822346 + 0.568988i \(0.192665\pi\)
\(192\) −36864.0 −0.0721688
\(193\) −416385. −0.804641 −0.402320 0.915499i \(-0.631796\pi\)
−0.402320 + 0.915499i \(0.631796\pi\)
\(194\) 609147. 1.16203
\(195\) 3463.77 0.00652323
\(196\) 0 0
\(197\) −592061. −1.08693 −0.543464 0.839433i \(-0.682887\pi\)
−0.543464 + 0.839433i \(0.682887\pi\)
\(198\) 37645.9 0.0682424
\(199\) 1.06608e6 1.90835 0.954173 0.299255i \(-0.0967380\pi\)
0.954173 + 0.299255i \(0.0967380\pi\)
\(200\) 198703. 0.351260
\(201\) 470730. 0.821830
\(202\) 430577. 0.742458
\(203\) 0 0
\(204\) 4790.33 0.00805916
\(205\) 3689.44 0.00613162
\(206\) 482557. 0.792283
\(207\) 220922. 0.358354
\(208\) 21882.2 0.0350697
\(209\) 73825.0 0.116906
\(210\) 0 0
\(211\) −846029. −1.30822 −0.654108 0.756401i \(-0.726956\pi\)
−0.654108 + 0.756401i \(0.726956\pi\)
\(212\) −219181. −0.334937
\(213\) −542072. −0.818669
\(214\) −344457. −0.514163
\(215\) −49979.0 −0.0737380
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) 264557. 0.377032
\(219\) 692625. 0.975861
\(220\) 8370.44 0.0116598
\(221\) −2843.50 −0.00391627
\(222\) 109386. 0.148963
\(223\) −112299. −0.151222 −0.0756109 0.997137i \(-0.524091\pi\)
−0.0756109 + 0.997137i \(0.524091\pi\)
\(224\) 0 0
\(225\) −251483. −0.331171
\(226\) −526433. −0.685602
\(227\) 178477. 0.229889 0.114944 0.993372i \(-0.463331\pi\)
0.114944 + 0.993372i \(0.463331\pi\)
\(228\) 91494.3 0.116562
\(229\) −459753. −0.579344 −0.289672 0.957126i \(-0.593546\pi\)
−0.289672 + 0.957126i \(0.593546\pi\)
\(230\) 49121.2 0.0612280
\(231\) 0 0
\(232\) −375071. −0.457502
\(233\) 748667. 0.903440 0.451720 0.892160i \(-0.350811\pi\)
0.451720 + 0.892160i \(0.350811\pi\)
\(234\) −27694.6 −0.0330640
\(235\) −33352.0 −0.0393960
\(236\) −358011. −0.418424
\(237\) 302364. 0.349670
\(238\) 0 0
\(239\) −814752. −0.922637 −0.461319 0.887235i \(-0.652623\pi\)
−0.461319 + 0.887235i \(0.652623\pi\)
\(240\) 10373.8 0.0116255
\(241\) 1.04763e6 1.16189 0.580947 0.813942i \(-0.302682\pi\)
0.580947 + 0.813942i \(0.302682\pi\)
\(242\) 590203. 0.647833
\(243\) −59049.0 −0.0641500
\(244\) 203073. 0.218363
\(245\) 0 0
\(246\) −29498.9 −0.0310791
\(247\) −54310.3 −0.0566421
\(248\) 17864.7 0.0184445
\(249\) 545174. 0.557233
\(250\) −112198. −0.113536
\(251\) 1.09401e6 1.09607 0.548034 0.836456i \(-0.315377\pi\)
0.548034 + 0.836456i \(0.315377\pi\)
\(252\) 0 0
\(253\) −316902. −0.311261
\(254\) −57749.1 −0.0561644
\(255\) −1348.04 −0.00129823
\(256\) 65536.0 0.0625000
\(257\) 778391. 0.735131 0.367566 0.929998i \(-0.380191\pi\)
0.367566 + 0.929998i \(0.380191\pi\)
\(258\) 399608. 0.373753
\(259\) 0 0
\(260\) −6157.82 −0.00564928
\(261\) 474699. 0.431337
\(262\) 1.27687e6 1.14919
\(263\) 1.10976e6 0.989329 0.494664 0.869084i \(-0.335291\pi\)
0.494664 + 0.869084i \(0.335291\pi\)
\(264\) −66926.0 −0.0590996
\(265\) 61679.2 0.0539540
\(266\) 0 0
\(267\) 829711. 0.712277
\(268\) −836854. −0.711725
\(269\) −1.33640e6 −1.12605 −0.563024 0.826440i \(-0.690362\pi\)
−0.563024 + 0.826440i \(0.690362\pi\)
\(270\) −13129.4 −0.0109606
\(271\) −1.79201e6 −1.48224 −0.741118 0.671375i \(-0.765704\pi\)
−0.741118 + 0.671375i \(0.765704\pi\)
\(272\) −8516.14 −0.00697944
\(273\) 0 0
\(274\) 202136. 0.162655
\(275\) 360741. 0.287650
\(276\) −392750. −0.310344
\(277\) 57577.6 0.0450873 0.0225436 0.999746i \(-0.492824\pi\)
0.0225436 + 0.999746i \(0.492824\pi\)
\(278\) 895148. 0.694677
\(279\) −22610.0 −0.0173897
\(280\) 0 0
\(281\) −550257. −0.415719 −0.207860 0.978159i \(-0.566650\pi\)
−0.207860 + 0.978159i \(0.566650\pi\)
\(282\) 266666. 0.199685
\(283\) 1.17788e6 0.874249 0.437125 0.899401i \(-0.355997\pi\)
0.437125 + 0.899401i \(0.355997\pi\)
\(284\) 963684. 0.708988
\(285\) −25747.2 −0.0187766
\(286\) 39726.7 0.0287189
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) −1.41875e6 −0.999221
\(290\) 105548. 0.0736978
\(291\) 1.37058e6 0.948795
\(292\) −1.23133e6 −0.845121
\(293\) −300762. −0.204670 −0.102335 0.994750i \(-0.532631\pi\)
−0.102335 + 0.994750i \(0.532631\pi\)
\(294\) 0 0
\(295\) 100747. 0.0674028
\(296\) −194463. −0.129006
\(297\) 84703.2 0.0557197
\(298\) −1.03808e6 −0.677161
\(299\) 233133. 0.150809
\(300\) 447081. 0.286802
\(301\) 0 0
\(302\) 443571. 0.279863
\(303\) 968798. 0.606215
\(304\) −162656. −0.100946
\(305\) −57146.4 −0.0351754
\(306\) 10778.2 0.00658028
\(307\) −146787. −0.0888874 −0.0444437 0.999012i \(-0.514152\pi\)
−0.0444437 + 0.999012i \(0.514152\pi\)
\(308\) 0 0
\(309\) 1.08575e6 0.646896
\(310\) −5027.27 −0.00297118
\(311\) −1.70311e6 −0.998484 −0.499242 0.866462i \(-0.666388\pi\)
−0.499242 + 0.866462i \(0.666388\pi\)
\(312\) 49234.9 0.0286343
\(313\) −1.11695e6 −0.644424 −0.322212 0.946668i \(-0.604426\pi\)
−0.322212 + 0.946668i \(0.604426\pi\)
\(314\) −1.62154e6 −0.928120
\(315\) 0 0
\(316\) −537536. −0.302824
\(317\) −962894. −0.538184 −0.269092 0.963115i \(-0.586724\pi\)
−0.269092 + 0.963115i \(0.586724\pi\)
\(318\) −493157. −0.273475
\(319\) −680935. −0.374653
\(320\) −18442.3 −0.0100680
\(321\) −775029. −0.419812
\(322\) 0 0
\(323\) 21136.5 0.0112727
\(324\) 104976. 0.0555556
\(325\) −265384. −0.139369
\(326\) −154475. −0.0805032
\(327\) 595253. 0.307845
\(328\) 52442.5 0.0269153
\(329\) 0 0
\(330\) 18833.5 0.00952020
\(331\) −2.25995e6 −1.13378 −0.566891 0.823793i \(-0.691854\pi\)
−0.566891 + 0.823793i \(0.691854\pi\)
\(332\) −969199. −0.482578
\(333\) 246118. 0.121628
\(334\) −829019. −0.406629
\(335\) 235497. 0.114650
\(336\) 0 0
\(337\) 1.33338e6 0.639557 0.319778 0.947492i \(-0.396392\pi\)
0.319778 + 0.947492i \(0.396392\pi\)
\(338\) 1.45595e6 0.693192
\(339\) −1.18447e6 −0.559792
\(340\) 2396.51 0.00112430
\(341\) 32433.1 0.0151044
\(342\) 205862. 0.0951724
\(343\) 0 0
\(344\) −710414. −0.323680
\(345\) 110523. 0.0499924
\(346\) −513029. −0.230384
\(347\) −1.43486e6 −0.639715 −0.319857 0.947466i \(-0.603635\pi\)
−0.319857 + 0.947466i \(0.603635\pi\)
\(348\) −843909. −0.373549
\(349\) −3.34711e6 −1.47098 −0.735489 0.677536i \(-0.763048\pi\)
−0.735489 + 0.677536i \(0.763048\pi\)
\(350\) 0 0
\(351\) −62312.9 −0.0269967
\(352\) 118979. 0.0511818
\(353\) −4.00418e6 −1.71032 −0.855160 0.518365i \(-0.826541\pi\)
−0.855160 + 0.518365i \(0.826541\pi\)
\(354\) −805525. −0.341642
\(355\) −271188. −0.114209
\(356\) −1.47504e6 −0.616850
\(357\) 0 0
\(358\) 394398. 0.162640
\(359\) −595986. −0.244062 −0.122031 0.992526i \(-0.538941\pi\)
−0.122031 + 0.992526i \(0.538941\pi\)
\(360\) 23341.1 0.00949216
\(361\) −2.07240e6 −0.836960
\(362\) 2.39690e6 0.961343
\(363\) 1.32796e6 0.528953
\(364\) 0 0
\(365\) 346507. 0.136138
\(366\) 456915. 0.178292
\(367\) 3.30390e6 1.28045 0.640224 0.768188i \(-0.278842\pi\)
0.640224 + 0.768188i \(0.278842\pi\)
\(368\) 698221. 0.268766
\(369\) −66372.6 −0.0253760
\(370\) 54723.5 0.0207812
\(371\) 0 0
\(372\) 40195.6 0.0150599
\(373\) −2.83063e6 −1.05344 −0.526722 0.850038i \(-0.676579\pi\)
−0.526722 + 0.850038i \(0.676579\pi\)
\(374\) −15460.9 −0.00571552
\(375\) −252446. −0.0927021
\(376\) −474074. −0.172932
\(377\) 500938. 0.181523
\(378\) 0 0
\(379\) 2.45025e6 0.876218 0.438109 0.898922i \(-0.355648\pi\)
0.438109 + 0.898922i \(0.355648\pi\)
\(380\) 45772.8 0.0162610
\(381\) −129935. −0.0458580
\(382\) −3.31687e6 −1.16297
\(383\) 3.38405e6 1.17880 0.589399 0.807842i \(-0.299364\pi\)
0.589399 + 0.807842i \(0.299364\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 1.66554e6 0.568967
\(387\) 899118. 0.305168
\(388\) −2.43659e6 −0.821680
\(389\) −4.14961e6 −1.39038 −0.695189 0.718827i \(-0.744679\pi\)
−0.695189 + 0.718827i \(0.744679\pi\)
\(390\) −13855.1 −0.00461262
\(391\) −90731.0 −0.0300133
\(392\) 0 0
\(393\) 2.87295e6 0.938310
\(394\) 2.36824e6 0.768574
\(395\) 151267. 0.0487810
\(396\) −150583. −0.0482547
\(397\) 1.64666e6 0.524358 0.262179 0.965019i \(-0.415559\pi\)
0.262179 + 0.965019i \(0.415559\pi\)
\(398\) −4.26432e6 −1.34940
\(399\) 0 0
\(400\) −794810. −0.248378
\(401\) −4.38664e6 −1.36229 −0.681147 0.732147i \(-0.738519\pi\)
−0.681147 + 0.732147i \(0.738519\pi\)
\(402\) −1.88292e6 −0.581121
\(403\) −23859.8 −0.00731820
\(404\) −1.72231e6 −0.524997
\(405\) −29541.1 −0.00894929
\(406\) 0 0
\(407\) −353045. −0.105644
\(408\) −19161.3 −0.00569869
\(409\) −354592. −0.104814 −0.0524072 0.998626i \(-0.516689\pi\)
−0.0524072 + 0.998626i \(0.516689\pi\)
\(410\) −14757.7 −0.00433571
\(411\) 454806. 0.132807
\(412\) −1.93023e6 −0.560229
\(413\) 0 0
\(414\) −883686. −0.253395
\(415\) 272740. 0.0777372
\(416\) −87528.7 −0.0247980
\(417\) 2.01408e6 0.567202
\(418\) −295300. −0.0826652
\(419\) 1.79802e6 0.500335 0.250167 0.968203i \(-0.419514\pi\)
0.250167 + 0.968203i \(0.419514\pi\)
\(420\) 0 0
\(421\) 6.10881e6 1.67978 0.839888 0.542760i \(-0.182621\pi\)
0.839888 + 0.542760i \(0.182621\pi\)
\(422\) 3.38412e6 0.925048
\(423\) 599999. 0.163042
\(424\) 876723. 0.236836
\(425\) 103282. 0.0277366
\(426\) 2.16829e6 0.578886
\(427\) 0 0
\(428\) 1.37783e6 0.363568
\(429\) 89385.1 0.0234489
\(430\) 199916. 0.0521407
\(431\) −1.91176e6 −0.495724 −0.247862 0.968795i \(-0.579728\pi\)
−0.247862 + 0.968795i \(0.579728\pi\)
\(432\) −186624. −0.0481125
\(433\) −385530. −0.0988186 −0.0494093 0.998779i \(-0.515734\pi\)
−0.0494093 + 0.998779i \(0.515734\pi\)
\(434\) 0 0
\(435\) 237483. 0.0601740
\(436\) −1.05823e6 −0.266602
\(437\) −1.73294e6 −0.434091
\(438\) −2.77050e6 −0.690038
\(439\) 1.83382e6 0.454146 0.227073 0.973878i \(-0.427084\pi\)
0.227073 + 0.973878i \(0.427084\pi\)
\(440\) −33481.8 −0.00824473
\(441\) 0 0
\(442\) 11374.0 0.00276922
\(443\) −1.93392e6 −0.468198 −0.234099 0.972213i \(-0.575214\pi\)
−0.234099 + 0.972213i \(0.575214\pi\)
\(444\) −437543. −0.105333
\(445\) 415088. 0.0993666
\(446\) 449197. 0.106930
\(447\) −2.33569e6 −0.552900
\(448\) 0 0
\(449\) 6.76354e6 1.58328 0.791641 0.610987i \(-0.209227\pi\)
0.791641 + 0.610987i \(0.209227\pi\)
\(450\) 1.00593e6 0.234173
\(451\) 95208.5 0.0220412
\(452\) 2.10573e6 0.484794
\(453\) 998035. 0.228507
\(454\) −713907. −0.162556
\(455\) 0 0
\(456\) −365977. −0.0824217
\(457\) −2.39492e6 −0.536414 −0.268207 0.963361i \(-0.586431\pi\)
−0.268207 + 0.963361i \(0.586431\pi\)
\(458\) 1.83901e6 0.409658
\(459\) 24251.0 0.00537277
\(460\) −196485. −0.0432947
\(461\) 6.42949e6 1.40904 0.704522 0.709682i \(-0.251162\pi\)
0.704522 + 0.709682i \(0.251162\pi\)
\(462\) 0 0
\(463\) 1.36524e6 0.295976 0.147988 0.988989i \(-0.452720\pi\)
0.147988 + 0.988989i \(0.452720\pi\)
\(464\) 1.50028e6 0.323503
\(465\) −11311.4 −0.00242595
\(466\) −2.99467e6 −0.638828
\(467\) −4.36362e6 −0.925880 −0.462940 0.886390i \(-0.653205\pi\)
−0.462940 + 0.886390i \(0.653205\pi\)
\(468\) 110779. 0.0233798
\(469\) 0 0
\(470\) 133408. 0.0278572
\(471\) −3.64847e6 −0.757807
\(472\) 1.43204e6 0.295870
\(473\) −1.28974e6 −0.265064
\(474\) −1.20946e6 −0.247254
\(475\) 1.97267e6 0.401163
\(476\) 0 0
\(477\) −1.10960e6 −0.223291
\(478\) 3.25901e6 0.652403
\(479\) 1.39250e6 0.277303 0.138652 0.990341i \(-0.455723\pi\)
0.138652 + 0.990341i \(0.455723\pi\)
\(480\) −41495.3 −0.00822045
\(481\) 259722. 0.0511854
\(482\) −4.19053e6 −0.821583
\(483\) 0 0
\(484\) −2.36081e6 −0.458087
\(485\) 685675. 0.132362
\(486\) 236196. 0.0453609
\(487\) 9.82919e6 1.87800 0.939000 0.343918i \(-0.111754\pi\)
0.939000 + 0.343918i \(0.111754\pi\)
\(488\) −812294. −0.154406
\(489\) −347568. −0.0657306
\(490\) 0 0
\(491\) −7.67255e6 −1.43627 −0.718135 0.695904i \(-0.755004\pi\)
−0.718135 + 0.695904i \(0.755004\pi\)
\(492\) 117996. 0.0219762
\(493\) −194956. −0.0361259
\(494\) 217241. 0.0400520
\(495\) 42375.4 0.00777321
\(496\) −71458.9 −0.0130422
\(497\) 0 0
\(498\) −2.18070e6 −0.394024
\(499\) 3.39383e6 0.610152 0.305076 0.952328i \(-0.401318\pi\)
0.305076 + 0.952328i \(0.401318\pi\)
\(500\) 448792. 0.0802824
\(501\) −1.86529e6 −0.332011
\(502\) −4.37604e6 −0.775037
\(503\) 8.36268e6 1.47376 0.736878 0.676026i \(-0.236299\pi\)
0.736878 + 0.676026i \(0.236299\pi\)
\(504\) 0 0
\(505\) 484671. 0.0845704
\(506\) 1.26761e6 0.220094
\(507\) 3.27588e6 0.565989
\(508\) 230996. 0.0397142
\(509\) −3.87324e6 −0.662643 −0.331322 0.943518i \(-0.607494\pi\)
−0.331322 + 0.943518i \(0.607494\pi\)
\(510\) 5392.14 0.000917986 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 463190. 0.0777079
\(514\) −3.11356e6 −0.519816
\(515\) 543181. 0.0902457
\(516\) −1.59843e6 −0.264283
\(517\) −860672. −0.141616
\(518\) 0 0
\(519\) −1.15432e6 −0.188108
\(520\) 24631.3 0.00399465
\(521\) −731064. −0.117994 −0.0589971 0.998258i \(-0.518790\pi\)
−0.0589971 + 0.998258i \(0.518790\pi\)
\(522\) −1.89880e6 −0.305002
\(523\) 7.10854e6 1.13639 0.568193 0.822895i \(-0.307643\pi\)
0.568193 + 0.822895i \(0.307643\pi\)
\(524\) −5.10746e6 −0.812600
\(525\) 0 0
\(526\) −4.43905e6 −0.699561
\(527\) 9285.80 0.00145644
\(528\) 267704. 0.0417898
\(529\) 1.00252e6 0.155759
\(530\) −246717. −0.0381513
\(531\) −1.81243e6 −0.278949
\(532\) 0 0
\(533\) −70041.3 −0.0106791
\(534\) −3.31884e6 −0.503656
\(535\) −387732. −0.0585662
\(536\) 3.34741e6 0.503266
\(537\) 887395. 0.132795
\(538\) 5.34562e6 0.796237
\(539\) 0 0
\(540\) 52517.5 0.00775031
\(541\) 3.79514e6 0.557487 0.278743 0.960366i \(-0.410082\pi\)
0.278743 + 0.960366i \(0.410082\pi\)
\(542\) 7.16804e6 1.04810
\(543\) 5.39302e6 0.784933
\(544\) 34064.5 0.00493521
\(545\) 297793. 0.0429461
\(546\) 0 0
\(547\) −1.34686e7 −1.92466 −0.962332 0.271879i \(-0.912355\pi\)
−0.962332 + 0.271879i \(0.912355\pi\)
\(548\) −808543. −0.115014
\(549\) 1.02806e6 0.145575
\(550\) −1.44296e6 −0.203399
\(551\) −3.72361e6 −0.522499
\(552\) 1.57100e6 0.219446
\(553\) 0 0
\(554\) −230310. −0.0318815
\(555\) 123128. 0.0169677
\(556\) −3.58059e6 −0.491211
\(557\) 4.89487e6 0.668503 0.334251 0.942484i \(-0.391517\pi\)
0.334251 + 0.942484i \(0.391517\pi\)
\(558\) 90440.2 0.0122963
\(559\) 948816. 0.128426
\(560\) 0 0
\(561\) −34787.0 −0.00466670
\(562\) 2.20103e6 0.293958
\(563\) 6.25606e6 0.831821 0.415910 0.909406i \(-0.363463\pi\)
0.415910 + 0.909406i \(0.363463\pi\)
\(564\) −1.06667e6 −0.141199
\(565\) −592569. −0.0780941
\(566\) −4.71152e6 −0.618188
\(567\) 0 0
\(568\) −3.85474e6 −0.501330
\(569\) 1.42825e6 0.184937 0.0924685 0.995716i \(-0.470524\pi\)
0.0924685 + 0.995716i \(0.470524\pi\)
\(570\) 102989. 0.0132771
\(571\) 9.05147e6 1.16179 0.580897 0.813977i \(-0.302702\pi\)
0.580897 + 0.813977i \(0.302702\pi\)
\(572\) −158907. −0.0203073
\(573\) −7.46295e6 −0.949563
\(574\) 0 0
\(575\) −8.46792e6 −1.06809
\(576\) 331776. 0.0416667
\(577\) −8.01919e6 −1.00275 −0.501373 0.865231i \(-0.667172\pi\)
−0.501373 + 0.865231i \(0.667172\pi\)
\(578\) 5.67500e6 0.706556
\(579\) 3.74747e6 0.464559
\(580\) −422191. −0.0521122
\(581\) 0 0
\(582\) −5.48232e6 −0.670899
\(583\) 1.59168e6 0.193947
\(584\) 4.92534e6 0.597591
\(585\) −31174.0 −0.00376619
\(586\) 1.20305e6 0.144723
\(587\) 8.28470e6 0.992388 0.496194 0.868212i \(-0.334730\pi\)
0.496194 + 0.868212i \(0.334730\pi\)
\(588\) 0 0
\(589\) 177357. 0.0210649
\(590\) −402989. −0.0476610
\(591\) 5.32855e6 0.627538
\(592\) 777854. 0.0912208
\(593\) −5.91443e6 −0.690679 −0.345340 0.938478i \(-0.612236\pi\)
−0.345340 + 0.938478i \(0.612236\pi\)
\(594\) −338813. −0.0393998
\(595\) 0 0
\(596\) 4.15234e6 0.478825
\(597\) −9.59472e6 −1.10178
\(598\) −932532. −0.106638
\(599\) 3.32897e6 0.379091 0.189545 0.981872i \(-0.439299\pi\)
0.189545 + 0.981872i \(0.439299\pi\)
\(600\) −1.78832e6 −0.202800
\(601\) 4.87081e6 0.550066 0.275033 0.961435i \(-0.411311\pi\)
0.275033 + 0.961435i \(0.411311\pi\)
\(602\) 0 0
\(603\) −4.23657e6 −0.474484
\(604\) −1.77428e6 −0.197893
\(605\) 664351. 0.0737919
\(606\) −3.87519e6 −0.428659
\(607\) 1.51701e7 1.67115 0.835577 0.549374i \(-0.185134\pi\)
0.835577 + 0.549374i \(0.185134\pi\)
\(608\) 650626. 0.0713793
\(609\) 0 0
\(610\) 228586. 0.0248728
\(611\) 633164. 0.0686141
\(612\) −43112.9 −0.00465296
\(613\) 5.18156e6 0.556941 0.278471 0.960445i \(-0.410173\pi\)
0.278471 + 0.960445i \(0.410173\pi\)
\(614\) 587146. 0.0628529
\(615\) −33204.9 −0.00354009
\(616\) 0 0
\(617\) 1.55854e6 0.164818 0.0824092 0.996599i \(-0.473739\pi\)
0.0824092 + 0.996599i \(0.473739\pi\)
\(618\) −4.34301e6 −0.457425
\(619\) 1.40751e6 0.147647 0.0738236 0.997271i \(-0.476480\pi\)
0.0738236 + 0.997271i \(0.476480\pi\)
\(620\) 20109.1 0.00210094
\(621\) −1.98829e6 −0.206896
\(622\) 6.81243e6 0.706035
\(623\) 0 0
\(624\) −196940. −0.0202475
\(625\) 9.57598e6 0.980580
\(626\) 4.46779e6 0.455677
\(627\) −664425. −0.0674959
\(628\) 6.48617e6 0.656280
\(629\) −101079. −0.0101867
\(630\) 0 0
\(631\) −1.09643e7 −1.09624 −0.548120 0.836399i \(-0.684656\pi\)
−0.548120 + 0.836399i \(0.684656\pi\)
\(632\) 2.15014e6 0.214129
\(633\) 7.61426e6 0.755298
\(634\) 3.85158e6 0.380553
\(635\) −65004.2 −0.00639745
\(636\) 1.97263e6 0.193376
\(637\) 0 0
\(638\) 2.72374e6 0.264919
\(639\) 4.87865e6 0.472659
\(640\) 73769.4 0.00711912
\(641\) −1.42122e7 −1.36621 −0.683103 0.730322i \(-0.739370\pi\)
−0.683103 + 0.730322i \(0.739370\pi\)
\(642\) 3.10012e6 0.296852
\(643\) 9.13928e6 0.871735 0.435868 0.900011i \(-0.356442\pi\)
0.435868 + 0.900011i \(0.356442\pi\)
\(644\) 0 0
\(645\) 449811. 0.0425727
\(646\) −84546.2 −0.00797100
\(647\) 1.89272e7 1.77757 0.888785 0.458324i \(-0.151550\pi\)
0.888785 + 0.458324i \(0.151550\pi\)
\(648\) −419904. −0.0392837
\(649\) 2.59985e6 0.242291
\(650\) 1.06153e6 0.0985487
\(651\) 0 0
\(652\) 617899. 0.0569244
\(653\) −4.29983e6 −0.394610 −0.197305 0.980342i \(-0.563219\pi\)
−0.197305 + 0.980342i \(0.563219\pi\)
\(654\) −2.38101e6 −0.217679
\(655\) 1.43728e6 0.130900
\(656\) −209770. −0.0190320
\(657\) −6.23363e6 −0.563414
\(658\) 0 0
\(659\) −1.15303e7 −1.03425 −0.517126 0.855909i \(-0.672998\pi\)
−0.517126 + 0.855909i \(0.672998\pi\)
\(660\) −75334.0 −0.00673180
\(661\) −1.47047e7 −1.30904 −0.654521 0.756044i \(-0.727130\pi\)
−0.654521 + 0.756044i \(0.727130\pi\)
\(662\) 9.03981e6 0.801704
\(663\) 25591.5 0.00226106
\(664\) 3.87680e6 0.341234
\(665\) 0 0
\(666\) −984471. −0.0860037
\(667\) 1.59840e7 1.39114
\(668\) 3.31608e6 0.287530
\(669\) 1.01069e6 0.0873080
\(670\) −941989. −0.0810697
\(671\) −1.47471e6 −0.126444
\(672\) 0 0
\(673\) 1.42971e7 1.21678 0.608389 0.793639i \(-0.291816\pi\)
0.608389 + 0.793639i \(0.291816\pi\)
\(674\) −5.33352e6 −0.452235
\(675\) 2.26335e6 0.191202
\(676\) −5.82379e6 −0.490161
\(677\) −9.12025e6 −0.764777 −0.382389 0.924002i \(-0.624898\pi\)
−0.382389 + 0.924002i \(0.624898\pi\)
\(678\) 4.73790e6 0.395832
\(679\) 0 0
\(680\) −9586.03 −0.000794999 0
\(681\) −1.60629e6 −0.132726
\(682\) −129732. −0.0106804
\(683\) −1.45152e7 −1.19062 −0.595309 0.803497i \(-0.702970\pi\)
−0.595309 + 0.803497i \(0.702970\pi\)
\(684\) −823448. −0.0672971
\(685\) 227530. 0.0185273
\(686\) 0 0
\(687\) 4.13778e6 0.334484
\(688\) 2.84166e6 0.228876
\(689\) −1.17094e6 −0.0939691
\(690\) −442091. −0.0353500
\(691\) −2.08507e6 −0.166122 −0.0830608 0.996544i \(-0.526470\pi\)
−0.0830608 + 0.996544i \(0.526470\pi\)
\(692\) 2.05212e6 0.162906
\(693\) 0 0
\(694\) 5.73945e6 0.452347
\(695\) 1.00761e6 0.0791278
\(696\) 3.37564e6 0.264139
\(697\) 27258.8 0.00212532
\(698\) 1.33884e7 1.04014
\(699\) −6.73801e6 −0.521601
\(700\) 0 0
\(701\) 9.96513e6 0.765928 0.382964 0.923763i \(-0.374903\pi\)
0.382964 + 0.923763i \(0.374903\pi\)
\(702\) 249252. 0.0190895
\(703\) −1.93059e6 −0.147333
\(704\) −475918. −0.0361910
\(705\) 300168. 0.0227453
\(706\) 1.60167e7 1.20938
\(707\) 0 0
\(708\) 3.22210e6 0.241577
\(709\) 7.09035e6 0.529727 0.264864 0.964286i \(-0.414673\pi\)
0.264864 + 0.964286i \(0.414673\pi\)
\(710\) 1.08475e6 0.0807579
\(711\) −2.72127e6 −0.201882
\(712\) 5.90017e6 0.436179
\(713\) −761324. −0.0560849
\(714\) 0 0
\(715\) 44717.6 0.00327125
\(716\) −1.57759e6 −0.115004
\(717\) 7.33277e6 0.532685
\(718\) 2.38394e6 0.172578
\(719\) −1.20167e7 −0.866886 −0.433443 0.901181i \(-0.642701\pi\)
−0.433443 + 0.901181i \(0.642701\pi\)
\(720\) −93364.4 −0.00671197
\(721\) 0 0
\(722\) 8.28958e6 0.591820
\(723\) −9.42869e6 −0.670820
\(724\) −9.58760e6 −0.679772
\(725\) −1.81952e7 −1.28562
\(726\) −5.31182e6 −0.374026
\(727\) −1.32577e7 −0.930318 −0.465159 0.885227i \(-0.654003\pi\)
−0.465159 + 0.885227i \(0.654003\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −1.38603e6 −0.0962642
\(731\) −369262. −0.0255588
\(732\) −1.82766e6 −0.126072
\(733\) 909303. 0.0625099 0.0312549 0.999511i \(-0.490050\pi\)
0.0312549 + 0.999511i \(0.490050\pi\)
\(734\) −1.32156e7 −0.905413
\(735\) 0 0
\(736\) −2.79289e6 −0.190046
\(737\) 6.07717e6 0.412129
\(738\) 265490. 0.0179435
\(739\) −286851. −0.0193217 −0.00966086 0.999953i \(-0.503075\pi\)
−0.00966086 + 0.999953i \(0.503075\pi\)
\(740\) −218894. −0.0146945
\(741\) 488792. 0.0327024
\(742\) 0 0
\(743\) −1.35906e6 −0.0903163 −0.0451582 0.998980i \(-0.514379\pi\)
−0.0451582 + 0.998980i \(0.514379\pi\)
\(744\) −160783. −0.0106489
\(745\) −1.16850e6 −0.0771327
\(746\) 1.13225e7 0.744897
\(747\) −4.90657e6 −0.321719
\(748\) 61843.6 0.00404148
\(749\) 0 0
\(750\) 1.00978e6 0.0655503
\(751\) 1.54404e7 0.998982 0.499491 0.866319i \(-0.333520\pi\)
0.499491 + 0.866319i \(0.333520\pi\)
\(752\) 1.89629e6 0.122282
\(753\) −9.84610e6 −0.632815
\(754\) −2.00375e6 −0.128356
\(755\) 499298. 0.0318781
\(756\) 0 0
\(757\) 1.70683e7 1.08256 0.541279 0.840843i \(-0.317940\pi\)
0.541279 + 0.840843i \(0.317940\pi\)
\(758\) −9.80100e6 −0.619580
\(759\) 2.85212e6 0.179706
\(760\) −183091. −0.0114983
\(761\) −3.08345e6 −0.193008 −0.0965041 0.995333i \(-0.530766\pi\)
−0.0965041 + 0.995333i \(0.530766\pi\)
\(762\) 519742. 0.0324265
\(763\) 0 0
\(764\) 1.32675e7 0.822346
\(765\) 12132.3 0.000749532 0
\(766\) −1.35362e7 −0.833537
\(767\) −1.91261e6 −0.117392
\(768\) −589824. −0.0360844
\(769\) −3.00821e7 −1.83439 −0.917195 0.398439i \(-0.869552\pi\)
−0.917195 + 0.398439i \(0.869552\pi\)
\(770\) 0 0
\(771\) −7.00552e6 −0.424428
\(772\) −6.66216e6 −0.402320
\(773\) −2.16914e7 −1.30569 −0.652843 0.757494i \(-0.726424\pi\)
−0.652843 + 0.757494i \(0.726424\pi\)
\(774\) −3.59647e6 −0.215786
\(775\) 866642. 0.0518305
\(776\) 9.74635e6 0.581016
\(777\) 0 0
\(778\) 1.65984e7 0.983146
\(779\) 520637. 0.0307391
\(780\) 55420.4 0.00326162
\(781\) −6.99821e6 −0.410544
\(782\) 362924. 0.0212226
\(783\) −4.27229e6 −0.249033
\(784\) 0 0
\(785\) −1.82526e6 −0.105718
\(786\) −1.14918e7 −0.663485
\(787\) −1.21019e6 −0.0696490 −0.0348245 0.999393i \(-0.511087\pi\)
−0.0348245 + 0.999393i \(0.511087\pi\)
\(788\) −9.47297e6 −0.543464
\(789\) −9.98786e6 −0.571189
\(790\) −605067. −0.0344934
\(791\) 0 0
\(792\) 602334. 0.0341212
\(793\) 1.08489e6 0.0612633
\(794\) −6.58664e6 −0.370777
\(795\) −555113. −0.0311504
\(796\) 1.70573e7 0.954173
\(797\) −2.44457e7 −1.36319 −0.681596 0.731728i \(-0.738714\pi\)
−0.681596 + 0.731728i \(0.738714\pi\)
\(798\) 0 0
\(799\) −246416. −0.0136553
\(800\) 3.17924e6 0.175630
\(801\) −7.46740e6 −0.411233
\(802\) 1.75466e7 0.963288
\(803\) 8.94186e6 0.489372
\(804\) 7.53168e6 0.410915
\(805\) 0 0
\(806\) 95439.3 0.00517475
\(807\) 1.20276e7 0.650124
\(808\) 6.88923e6 0.371229
\(809\) −1.18645e7 −0.637352 −0.318676 0.947864i \(-0.603238\pi\)
−0.318676 + 0.947864i \(0.603238\pi\)
\(810\) 118164. 0.00632810
\(811\) 1.63289e7 0.871778 0.435889 0.900000i \(-0.356434\pi\)
0.435889 + 0.900000i \(0.356434\pi\)
\(812\) 0 0
\(813\) 1.61281e7 0.855769
\(814\) 1.41218e6 0.0747015
\(815\) −173882. −0.00916979
\(816\) 76645.2 0.00402958
\(817\) −7.05282e6 −0.369664
\(818\) 1.41837e6 0.0741150
\(819\) 0 0
\(820\) 59031.0 0.00306581
\(821\) −2.20202e7 −1.14015 −0.570077 0.821591i \(-0.693087\pi\)
−0.570077 + 0.821591i \(0.693087\pi\)
\(822\) −1.81922e6 −0.0939088
\(823\) 9.43220e6 0.485415 0.242708 0.970099i \(-0.421964\pi\)
0.242708 + 0.970099i \(0.421964\pi\)
\(824\) 7.72091e6 0.396142
\(825\) −3.24667e6 −0.166075
\(826\) 0 0
\(827\) −1.93147e7 −0.982027 −0.491014 0.871152i \(-0.663374\pi\)
−0.491014 + 0.871152i \(0.663374\pi\)
\(828\) 3.53475e6 0.179177
\(829\) −3.26260e7 −1.64883 −0.824417 0.565982i \(-0.808497\pi\)
−0.824417 + 0.565982i \(0.808497\pi\)
\(830\) −1.09096e6 −0.0549685
\(831\) −518198. −0.0260311
\(832\) 350115. 0.0175349
\(833\) 0 0
\(834\) −8.05634e6 −0.401072
\(835\) −933170. −0.0463174
\(836\) 1.18120e6 0.0584531
\(837\) 203490. 0.0100399
\(838\) −7.19210e6 −0.353790
\(839\) −2.39890e7 −1.17654 −0.588272 0.808663i \(-0.700191\pi\)
−0.588272 + 0.808663i \(0.700191\pi\)
\(840\) 0 0
\(841\) 1.38341e7 0.674467
\(842\) −2.44352e7 −1.18778
\(843\) 4.95231e6 0.240015
\(844\) −1.35365e7 −0.654108
\(845\) 1.63886e6 0.0789587
\(846\) −2.40000e6 −0.115288
\(847\) 0 0
\(848\) −3.50689e6 −0.167468
\(849\) −1.06009e7 −0.504748
\(850\) −413129. −0.0196128
\(851\) 8.28726e6 0.392272
\(852\) −8.67316e6 −0.409334
\(853\) −1.36214e7 −0.640988 −0.320494 0.947251i \(-0.603849\pi\)
−0.320494 + 0.947251i \(0.603849\pi\)
\(854\) 0 0
\(855\) 231725. 0.0108407
\(856\) −5.51132e6 −0.257082
\(857\) −3.97793e7 −1.85014 −0.925071 0.379793i \(-0.875995\pi\)
−0.925071 + 0.379793i \(0.875995\pi\)
\(858\) −357541. −0.0165809
\(859\) −1.88973e7 −0.873807 −0.436904 0.899508i \(-0.643925\pi\)
−0.436904 + 0.899508i \(0.643925\pi\)
\(860\) −799664. −0.0368690
\(861\) 0 0
\(862\) 7.64704e6 0.350530
\(863\) −1.81214e7 −0.828256 −0.414128 0.910219i \(-0.635913\pi\)
−0.414128 + 0.910219i \(0.635913\pi\)
\(864\) 746496. 0.0340207
\(865\) −577482. −0.0262421
\(866\) 1.54212e6 0.0698753
\(867\) 1.27688e7 0.576900
\(868\) 0 0
\(869\) 3.90355e6 0.175352
\(870\) −949931. −0.0425494
\(871\) −4.47075e6 −0.199680
\(872\) 4.23291e6 0.188516
\(873\) −1.23352e7 −0.547787
\(874\) 6.93178e6 0.306949
\(875\) 0 0
\(876\) 1.10820e7 0.487931
\(877\) −2.38248e7 −1.04600 −0.522999 0.852333i \(-0.675187\pi\)
−0.522999 + 0.852333i \(0.675187\pi\)
\(878\) −7.33528e6 −0.321129
\(879\) 2.70686e6 0.118166
\(880\) 133927. 0.00582991
\(881\) 6.59299e6 0.286182 0.143091 0.989710i \(-0.454296\pi\)
0.143091 + 0.989710i \(0.454296\pi\)
\(882\) 0 0
\(883\) 1.13391e7 0.489413 0.244707 0.969597i \(-0.421308\pi\)
0.244707 + 0.969597i \(0.421308\pi\)
\(884\) −45496.0 −0.00195814
\(885\) −906724. −0.0389150
\(886\) 7.73568e6 0.331066
\(887\) 1.16981e7 0.499237 0.249619 0.968344i \(-0.419695\pi\)
0.249619 + 0.968344i \(0.419695\pi\)
\(888\) 1.75017e6 0.0744814
\(889\) 0 0
\(890\) −1.66035e6 −0.0702628
\(891\) −762329. −0.0321698
\(892\) −1.79679e6 −0.0756109
\(893\) −4.70649e6 −0.197501
\(894\) 9.34276e6 0.390959
\(895\) 443947. 0.0185256
\(896\) 0 0
\(897\) −2.09820e6 −0.0870693
\(898\) −2.70542e7 −1.11955
\(899\) −1.63587e6 −0.0675073
\(900\) −4.02373e6 −0.165585
\(901\) 455706. 0.0187014
\(902\) −380834. −0.0155855
\(903\) 0 0
\(904\) −8.42293e6 −0.342801
\(905\) 2.69803e6 0.109503
\(906\) −3.99214e6 −0.161579
\(907\) 2.74600e6 0.110837 0.0554183 0.998463i \(-0.482351\pi\)
0.0554183 + 0.998463i \(0.482351\pi\)
\(908\) 2.85563e6 0.114944
\(909\) −8.71918e6 −0.349998
\(910\) 0 0
\(911\) −8.70382e6 −0.347467 −0.173734 0.984793i \(-0.555583\pi\)
−0.173734 + 0.984793i \(0.555583\pi\)
\(912\) 1.46391e6 0.0582810
\(913\) 7.03826e6 0.279440
\(914\) 9.57967e6 0.379302
\(915\) 514318. 0.0203086
\(916\) −7.35606e6 −0.289672
\(917\) 0 0
\(918\) −97004.1 −0.00379912
\(919\) 3.65884e7 1.42907 0.714536 0.699598i \(-0.246638\pi\)
0.714536 + 0.699598i \(0.246638\pi\)
\(920\) 785940. 0.0306140
\(921\) 1.32108e6 0.0513192
\(922\) −2.57180e7 −0.996344
\(923\) 5.14832e6 0.198912
\(924\) 0 0
\(925\) −9.43369e6 −0.362516
\(926\) −5.46097e6 −0.209287
\(927\) −9.77177e6 −0.373486
\(928\) −6.00113e6 −0.228751
\(929\) 3.19411e6 0.121426 0.0607128 0.998155i \(-0.480663\pi\)
0.0607128 + 0.998155i \(0.480663\pi\)
\(930\) 45245.5 0.00171541
\(931\) 0 0
\(932\) 1.19787e7 0.451720
\(933\) 1.53280e7 0.576475
\(934\) 1.74545e7 0.654696
\(935\) −17403.3 −0.000651031 0
\(936\) −443114. −0.0165320
\(937\) −1.53039e7 −0.569447 −0.284724 0.958610i \(-0.591902\pi\)
−0.284724 + 0.958610i \(0.591902\pi\)
\(938\) 0 0
\(939\) 1.00525e7 0.372058
\(940\) −533632. −0.0196980
\(941\) −1.23623e7 −0.455121 −0.227560 0.973764i \(-0.573075\pi\)
−0.227560 + 0.973764i \(0.573075\pi\)
\(942\) 1.45939e7 0.535850
\(943\) −2.23489e6 −0.0818423
\(944\) −5.72818e6 −0.209212
\(945\) 0 0
\(946\) 5.15898e6 0.187429
\(947\) 5.83773e6 0.211528 0.105764 0.994391i \(-0.466271\pi\)
0.105764 + 0.994391i \(0.466271\pi\)
\(948\) 4.83782e6 0.174835
\(949\) −6.57819e6 −0.237105
\(950\) −7.89069e6 −0.283665
\(951\) 8.66605e6 0.310720
\(952\) 0 0
\(953\) 1.59935e7 0.570443 0.285222 0.958462i \(-0.407933\pi\)
0.285222 + 0.958462i \(0.407933\pi\)
\(954\) 4.43841e6 0.157891
\(955\) −3.73357e6 −0.132469
\(956\) −1.30360e7 −0.461319
\(957\) 6.12841e6 0.216306
\(958\) −5.56998e6 −0.196083
\(959\) 0 0
\(960\) 165981. 0.00581274
\(961\) −2.85512e7 −0.997278
\(962\) −1.03889e6 −0.0361935
\(963\) 6.97526e6 0.242379
\(964\) 1.67621e7 0.580947
\(965\) 1.87478e6 0.0648087
\(966\) 0 0
\(967\) −4.65279e6 −0.160010 −0.0800050 0.996794i \(-0.525494\pi\)
−0.0800050 + 0.996794i \(0.525494\pi\)
\(968\) 9.44324e6 0.323916
\(969\) −190229. −0.00650829
\(970\) −2.74270e6 −0.0935942
\(971\) −2.17271e7 −0.739528 −0.369764 0.929126i \(-0.620561\pi\)
−0.369764 + 0.929126i \(0.620561\pi\)
\(972\) −944784. −0.0320750
\(973\) 0 0
\(974\) −3.93168e7 −1.32795
\(975\) 2.38845e6 0.0804646
\(976\) 3.24917e6 0.109181
\(977\) 2.27382e7 0.762113 0.381056 0.924552i \(-0.375560\pi\)
0.381056 + 0.924552i \(0.375560\pi\)
\(978\) 1.39027e6 0.0464786
\(979\) 1.07117e7 0.357190
\(980\) 0 0
\(981\) −5.35728e6 −0.177734
\(982\) 3.06902e7 1.01560
\(983\) 4.40870e7 1.45521 0.727607 0.685994i \(-0.240632\pi\)
0.727607 + 0.685994i \(0.240632\pi\)
\(984\) −471983. −0.0155396
\(985\) 2.66577e6 0.0875451
\(986\) 779823. 0.0255449
\(987\) 0 0
\(988\) −868964. −0.0283211
\(989\) 3.02750e7 0.984224
\(990\) −169501. −0.00549649
\(991\) 2.80292e7 0.906623 0.453312 0.891352i \(-0.350242\pi\)
0.453312 + 0.891352i \(0.350242\pi\)
\(992\) 285836. 0.00922226
\(993\) 2.03396e7 0.654589
\(994\) 0 0
\(995\) −4.80005e6 −0.153705
\(996\) 8.72279e6 0.278617
\(997\) 4.46315e7 1.42201 0.711006 0.703186i \(-0.248240\pi\)
0.711006 + 0.703186i \(0.248240\pi\)
\(998\) −1.35753e7 −0.431443
\(999\) −2.21506e6 −0.0702218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.n.1.2 2
3.2 odd 2 882.6.a.bu.1.1 2
7.2 even 3 294.6.e.z.67.1 4
7.3 odd 6 294.6.e.x.79.2 4
7.4 even 3 294.6.e.z.79.1 4
7.5 odd 6 294.6.e.x.67.2 4
7.6 odd 2 294.6.a.q.1.1 yes 2
21.20 even 2 882.6.a.bk.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.n.1.2 2 1.1 even 1 trivial
294.6.a.q.1.1 yes 2 7.6 odd 2
294.6.e.x.67.2 4 7.5 odd 6
294.6.e.x.79.2 4 7.3 odd 6
294.6.e.z.67.1 4 7.2 even 3
294.6.e.z.79.1 4 7.4 even 3
882.6.a.bk.1.2 2 21.20 even 2
882.6.a.bu.1.1 2 3.2 odd 2