Properties

Label 294.6.a.n
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 7\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} - 9 q^{3} + 16 q^{4} + (5 \beta - 54) q^{5} + 36 q^{6} - 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} - 9 q^{3} + 16 q^{4} + (5 \beta - 54) q^{5} + 36 q^{6} - 64 q^{8} + 81 q^{9} + ( - 20 \beta + 216) q^{10} + ( - 18 \beta + 62) q^{11} - 144 q^{12} + (45 \beta - 360) q^{13} + ( - 45 \beta + 486) q^{15} + 256 q^{16} + ( - 67 \beta + 630) q^{17} - 324 q^{18} + ( - 46 \beta - 180) q^{19} + (80 \beta - 864) q^{20} + (72 \beta - 248) q^{22} + ( - 54 \beta + 3262) q^{23} + 576 q^{24} + ( - 540 \beta + 2241) q^{25} + ( - 180 \beta + 1440) q^{26} - 729 q^{27} + (234 \beta + 3544) q^{29} + (180 \beta - 1944) q^{30} + (270 \beta - 2952) q^{31} - 1024 q^{32} + (162 \beta - 558) q^{33} + (268 \beta - 2520) q^{34} + 1296 q^{36} + (612 \beta - 3020) q^{37} + (184 \beta + 720) q^{38} + ( - 405 \beta + 3240) q^{39} + ( - 320 \beta + 3456) q^{40} + ( - 961 \beta + 8694) q^{41} + (1152 \beta - 304) q^{43} + ( - 288 \beta + 992) q^{44} + (405 \beta - 4374) q^{45} + (216 \beta - 13048) q^{46} + ( - 790 \beta + 15228) q^{47} - 2304 q^{48} + (2160 \beta - 8964) q^{50} + (603 \beta - 5670) q^{51} + (720 \beta - 5760) q^{52} + ( - 1584 \beta + 1982) q^{53} + 2916 q^{54} + (1282 \beta - 12168) q^{55} + (414 \beta + 1620) q^{57} + ( - 936 \beta - 14176) q^{58} + ( - 202 \beta - 20376) q^{59} + ( - 720 \beta + 7776) q^{60} + (1213 \beta + 684) q^{61} + ( - 1080 \beta + 11808) q^{62} + 4096 q^{64} + ( - 4230 \beta + 41490) q^{65} + ( - 648 \beta + 2232) q^{66} + ( - 4464 \beta - 8112) q^{67} + ( - 1072 \beta + 10080) q^{68} + (486 \beta - 29358) q^{69} + (6246 \beta - 1602) q^{71} - 5184 q^{72} + ( - 6563 \beta - 11988) q^{73} + ( - 2448 \beta + 12080) q^{74} + (4860 \beta - 20169) q^{75} + ( - 736 \beta - 2880) q^{76} + (1620 \beta - 12960) q^{78} + (756 \beta - 41080) q^{79} + (1280 \beta - 13824) q^{80} + 6561 q^{81} + (3844 \beta - 34776) q^{82} + (2656 \beta - 86868) q^{83} + (6768 \beta - 66850) q^{85} + ( - 4608 \beta + 1216) q^{86} + ( - 2106 \beta - 31896) q^{87} + (1152 \beta - 3968) q^{88} + (817 \beta - 100278) q^{89} + ( - 1620 \beta + 17496) q^{90} + ( - 864 \beta + 52192) q^{92} + ( - 2430 \beta + 26568) q^{93} + (3160 \beta - 60912) q^{94} + (1584 \beta - 12820) q^{95} + 9216 q^{96} + ( - 2659 \beta - 125964) q^{97} + ( - 1458 \beta + 5022) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} - 128 q^{8} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} - 18 q^{3} + 32 q^{4} - 108 q^{5} + 72 q^{6} - 128 q^{8} + 162 q^{9} + 432 q^{10} + 124 q^{11} - 288 q^{12} - 720 q^{13} + 972 q^{15} + 512 q^{16} + 1260 q^{17} - 648 q^{18} - 360 q^{19} - 1728 q^{20} - 496 q^{22} + 6524 q^{23} + 1152 q^{24} + 4482 q^{25} + 2880 q^{26} - 1458 q^{27} + 7088 q^{29} - 3888 q^{30} - 5904 q^{31} - 2048 q^{32} - 1116 q^{33} - 5040 q^{34} + 2592 q^{36} - 6040 q^{37} + 1440 q^{38} + 6480 q^{39} + 6912 q^{40} + 17388 q^{41} - 608 q^{43} + 1984 q^{44} - 8748 q^{45} - 26096 q^{46} + 30456 q^{47} - 4608 q^{48} - 17928 q^{50} - 11340 q^{51} - 11520 q^{52} + 3964 q^{53} + 5832 q^{54} - 24336 q^{55} + 3240 q^{57} - 28352 q^{58} - 40752 q^{59} + 15552 q^{60} + 1368 q^{61} + 23616 q^{62} + 8192 q^{64} + 82980 q^{65} + 4464 q^{66} - 16224 q^{67} + 20160 q^{68} - 58716 q^{69} - 3204 q^{71} - 10368 q^{72} - 23976 q^{73} + 24160 q^{74} - 40338 q^{75} - 5760 q^{76} - 25920 q^{78} - 82160 q^{79} - 27648 q^{80} + 13122 q^{81} - 69552 q^{82} - 173736 q^{83} - 133700 q^{85} + 2432 q^{86} - 63792 q^{87} - 7936 q^{88} - 200556 q^{89} + 34992 q^{90} + 104384 q^{92} + 53136 q^{93} - 121824 q^{94} - 25640 q^{95} + 18432 q^{96} - 251928 q^{97} + 10044 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−4.00000 −9.00000 16.0000 −103.497 36.0000 0 −64.0000 81.0000 413.990
1.2 −4.00000 −9.00000 16.0000 −4.50253 36.0000 0 −64.0000 81.0000 18.0101
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.n 2
3.b odd 2 1 882.6.a.bu 2
7.b odd 2 1 294.6.a.q yes 2
7.c even 3 2 294.6.e.z 4
7.d odd 6 2 294.6.e.x 4
21.c even 2 1 882.6.a.bk 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.n 2 1.a even 1 1 trivial
294.6.a.q yes 2 7.b odd 2 1
294.6.e.x 4 7.d odd 6 2
294.6.e.z 4 7.c even 3 2
882.6.a.bk 2 21.c even 2 1
882.6.a.bu 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5}^{2} + 108T_{5} + 466 \) Copy content Toggle raw display
\( T_{11}^{2} - 124T_{11} - 27908 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 108T + 466 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 124T - 27908 \) Copy content Toggle raw display
$13$ \( T^{2} + 720T - 68850 \) Copy content Toggle raw display
$17$ \( T^{2} - 1260T - 43022 \) Copy content Toggle raw display
$19$ \( T^{2} + 360T - 174968 \) Copy content Toggle raw display
$23$ \( T^{2} - 6524 T + 10354876 \) Copy content Toggle raw display
$29$ \( T^{2} - 7088 T + 7193848 \) Copy content Toggle raw display
$31$ \( T^{2} + 5904 T + 1570104 \) Copy content Toggle raw display
$37$ \( T^{2} + 6040 T - 27584912 \) Copy content Toggle raw display
$41$ \( T^{2} - 17388 T - 14919422 \) Copy content Toggle raw display
$43$ \( T^{2} + 608 T - 129963776 \) Copy content Toggle raw display
$47$ \( T^{2} - 30456 T + 170730184 \) Copy content Toggle raw display
$53$ \( T^{2} - 3964 T - 241959164 \) Copy content Toggle raw display
$59$ \( T^{2} + 40752 T + 411182584 \) Copy content Toggle raw display
$61$ \( T^{2} - 1368 T - 143726306 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1887070464 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 3820660164 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 4077438818 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1631555872 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 6854724496 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 9990263362 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 15174041758 \) Copy content Toggle raw display
show more
show less