Properties

Label 294.6.a.k.1.1
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -76.0000 q^{5} +36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -76.0000 q^{5} +36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} -304.000 q^{10} +650.000 q^{11} +144.000 q^{12} -762.000 q^{13} -684.000 q^{15} +256.000 q^{16} +556.000 q^{17} +324.000 q^{18} +2452.00 q^{19} -1216.00 q^{20} +2600.00 q^{22} -2950.00 q^{23} +576.000 q^{24} +2651.00 q^{25} -3048.00 q^{26} +729.000 q^{27} -674.000 q^{29} -2736.00 q^{30} +3024.00 q^{31} +1024.00 q^{32} +5850.00 q^{33} +2224.00 q^{34} +1296.00 q^{36} +7730.00 q^{37} +9808.00 q^{38} -6858.00 q^{39} -4864.00 q^{40} +17016.0 q^{41} +21836.0 q^{43} +10400.0 q^{44} -6156.00 q^{45} -11800.0 q^{46} +23940.0 q^{47} +2304.00 q^{48} +10604.0 q^{50} +5004.00 q^{51} -12192.0 q^{52} +15594.0 q^{53} +2916.00 q^{54} -49400.0 q^{55} +22068.0 q^{57} -2696.00 q^{58} -5608.00 q^{59} -10944.0 q^{60} -150.000 q^{61} +12096.0 q^{62} +4096.00 q^{64} +57912.0 q^{65} +23400.0 q^{66} -43784.0 q^{67} +8896.00 q^{68} -26550.0 q^{69} -39178.0 q^{71} +5184.00 q^{72} +23570.0 q^{73} +30920.0 q^{74} +23859.0 q^{75} +39232.0 q^{76} -27432.0 q^{78} -17892.0 q^{79} -19456.0 q^{80} +6561.00 q^{81} +68064.0 q^{82} -38972.0 q^{83} -42256.0 q^{85} +87344.0 q^{86} -6066.00 q^{87} +41600.0 q^{88} -6024.00 q^{89} -24624.0 q^{90} -47200.0 q^{92} +27216.0 q^{93} +95760.0 q^{94} -186352. q^{95} +9216.00 q^{96} -108430. q^{97} +52650.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) −76.0000 −1.35953 −0.679765 0.733430i \(-0.737918\pi\)
−0.679765 + 0.733430i \(0.737918\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) −304.000 −0.961332
\(11\) 650.000 1.61969 0.809845 0.586645i \(-0.199551\pi\)
0.809845 + 0.586645i \(0.199551\pi\)
\(12\) 144.000 0.288675
\(13\) −762.000 −1.25054 −0.625269 0.780410i \(-0.715011\pi\)
−0.625269 + 0.780410i \(0.715011\pi\)
\(14\) 0 0
\(15\) −684.000 −0.784925
\(16\) 256.000 0.250000
\(17\) 556.000 0.466608 0.233304 0.972404i \(-0.425046\pi\)
0.233304 + 0.972404i \(0.425046\pi\)
\(18\) 324.000 0.235702
\(19\) 2452.00 1.55825 0.779124 0.626870i \(-0.215664\pi\)
0.779124 + 0.626870i \(0.215664\pi\)
\(20\) −1216.00 −0.679765
\(21\) 0 0
\(22\) 2600.00 1.14529
\(23\) −2950.00 −1.16279 −0.581397 0.813620i \(-0.697493\pi\)
−0.581397 + 0.813620i \(0.697493\pi\)
\(24\) 576.000 0.204124
\(25\) 2651.00 0.848320
\(26\) −3048.00 −0.884263
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −674.000 −0.148821 −0.0744106 0.997228i \(-0.523708\pi\)
−0.0744106 + 0.997228i \(0.523708\pi\)
\(30\) −2736.00 −0.555026
\(31\) 3024.00 0.565168 0.282584 0.959243i \(-0.408808\pi\)
0.282584 + 0.959243i \(0.408808\pi\)
\(32\) 1024.00 0.176777
\(33\) 5850.00 0.935128
\(34\) 2224.00 0.329942
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 7730.00 0.928272 0.464136 0.885764i \(-0.346365\pi\)
0.464136 + 0.885764i \(0.346365\pi\)
\(38\) 9808.00 1.10185
\(39\) −6858.00 −0.721998
\(40\) −4864.00 −0.480666
\(41\) 17016.0 1.58088 0.790438 0.612542i \(-0.209853\pi\)
0.790438 + 0.612542i \(0.209853\pi\)
\(42\) 0 0
\(43\) 21836.0 1.80095 0.900476 0.434907i \(-0.143219\pi\)
0.900476 + 0.434907i \(0.143219\pi\)
\(44\) 10400.0 0.809845
\(45\) −6156.00 −0.453176
\(46\) −11800.0 −0.822219
\(47\) 23940.0 1.58081 0.790405 0.612585i \(-0.209870\pi\)
0.790405 + 0.612585i \(0.209870\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 10604.0 0.599853
\(51\) 5004.00 0.269396
\(52\) −12192.0 −0.625269
\(53\) 15594.0 0.762549 0.381275 0.924462i \(-0.375485\pi\)
0.381275 + 0.924462i \(0.375485\pi\)
\(54\) 2916.00 0.136083
\(55\) −49400.0 −2.20201
\(56\) 0 0
\(57\) 22068.0 0.899655
\(58\) −2696.00 −0.105233
\(59\) −5608.00 −0.209738 −0.104869 0.994486i \(-0.533442\pi\)
−0.104869 + 0.994486i \(0.533442\pi\)
\(60\) −10944.0 −0.392462
\(61\) −150.000 −0.00516139 −0.00258069 0.999997i \(-0.500821\pi\)
−0.00258069 + 0.999997i \(0.500821\pi\)
\(62\) 12096.0 0.399634
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 57912.0 1.70014
\(66\) 23400.0 0.661235
\(67\) −43784.0 −1.19159 −0.595797 0.803135i \(-0.703164\pi\)
−0.595797 + 0.803135i \(0.703164\pi\)
\(68\) 8896.00 0.233304
\(69\) −26550.0 −0.671339
\(70\) 0 0
\(71\) −39178.0 −0.922351 −0.461176 0.887309i \(-0.652572\pi\)
−0.461176 + 0.887309i \(0.652572\pi\)
\(72\) 5184.00 0.117851
\(73\) 23570.0 0.517669 0.258835 0.965922i \(-0.416662\pi\)
0.258835 + 0.965922i \(0.416662\pi\)
\(74\) 30920.0 0.656387
\(75\) 23859.0 0.489778
\(76\) 39232.0 0.779124
\(77\) 0 0
\(78\) −27432.0 −0.510530
\(79\) −17892.0 −0.322546 −0.161273 0.986910i \(-0.551560\pi\)
−0.161273 + 0.986910i \(0.551560\pi\)
\(80\) −19456.0 −0.339882
\(81\) 6561.00 0.111111
\(82\) 68064.0 1.11785
\(83\) −38972.0 −0.620951 −0.310476 0.950581i \(-0.600488\pi\)
−0.310476 + 0.950581i \(0.600488\pi\)
\(84\) 0 0
\(85\) −42256.0 −0.634368
\(86\) 87344.0 1.27346
\(87\) −6066.00 −0.0859220
\(88\) 41600.0 0.572647
\(89\) −6024.00 −0.0806139 −0.0403070 0.999187i \(-0.512834\pi\)
−0.0403070 + 0.999187i \(0.512834\pi\)
\(90\) −24624.0 −0.320444
\(91\) 0 0
\(92\) −47200.0 −0.581397
\(93\) 27216.0 0.326300
\(94\) 95760.0 1.11780
\(95\) −186352. −2.11848
\(96\) 9216.00 0.102062
\(97\) −108430. −1.17009 −0.585046 0.811000i \(-0.698924\pi\)
−0.585046 + 0.811000i \(0.698924\pi\)
\(98\) 0 0
\(99\) 52650.0 0.539896
\(100\) 42416.0 0.424160
\(101\) 70424.0 0.686938 0.343469 0.939164i \(-0.388398\pi\)
0.343469 + 0.939164i \(0.388398\pi\)
\(102\) 20016.0 0.190492
\(103\) 31552.0 0.293045 0.146522 0.989207i \(-0.453192\pi\)
0.146522 + 0.989207i \(0.453192\pi\)
\(104\) −48768.0 −0.442132
\(105\) 0 0
\(106\) 62376.0 0.539204
\(107\) 108282. 0.914317 0.457159 0.889385i \(-0.348867\pi\)
0.457159 + 0.889385i \(0.348867\pi\)
\(108\) 11664.0 0.0962250
\(109\) −72146.0 −0.581629 −0.290814 0.956779i \(-0.593926\pi\)
−0.290814 + 0.956779i \(0.593926\pi\)
\(110\) −197600. −1.55706
\(111\) 69570.0 0.535938
\(112\) 0 0
\(113\) 220906. 1.62746 0.813732 0.581240i \(-0.197432\pi\)
0.813732 + 0.581240i \(0.197432\pi\)
\(114\) 88272.0 0.636152
\(115\) 224200. 1.58085
\(116\) −10784.0 −0.0744106
\(117\) −61722.0 −0.416846
\(118\) −22432.0 −0.148307
\(119\) 0 0
\(120\) −43776.0 −0.277513
\(121\) 261449. 1.62339
\(122\) −600.000 −0.00364965
\(123\) 153144. 0.912719
\(124\) 48384.0 0.282584
\(125\) 36024.0 0.206213
\(126\) 0 0
\(127\) −239652. −1.31847 −0.659237 0.751935i \(-0.729121\pi\)
−0.659237 + 0.751935i \(0.729121\pi\)
\(128\) 16384.0 0.0883883
\(129\) 196524. 1.03978
\(130\) 231648. 1.20218
\(131\) 274172. 1.39587 0.697935 0.716161i \(-0.254103\pi\)
0.697935 + 0.716161i \(0.254103\pi\)
\(132\) 93600.0 0.467564
\(133\) 0 0
\(134\) −175136. −0.842584
\(135\) −55404.0 −0.261642
\(136\) 35584.0 0.164971
\(137\) −391154. −1.78052 −0.890259 0.455455i \(-0.849477\pi\)
−0.890259 + 0.455455i \(0.849477\pi\)
\(138\) −106200. −0.474708
\(139\) −339364. −1.48980 −0.744901 0.667175i \(-0.767503\pi\)
−0.744901 + 0.667175i \(0.767503\pi\)
\(140\) 0 0
\(141\) 215460. 0.912681
\(142\) −156712. −0.652201
\(143\) −495300. −2.02548
\(144\) 20736.0 0.0833333
\(145\) 51224.0 0.202327
\(146\) 94280.0 0.366047
\(147\) 0 0
\(148\) 123680. 0.464136
\(149\) −29334.0 −0.108244 −0.0541222 0.998534i \(-0.517236\pi\)
−0.0541222 + 0.998534i \(0.517236\pi\)
\(150\) 95436.0 0.346325
\(151\) 71608.0 0.255575 0.127788 0.991802i \(-0.459212\pi\)
0.127788 + 0.991802i \(0.459212\pi\)
\(152\) 156928. 0.550924
\(153\) 45036.0 0.155536
\(154\) 0 0
\(155\) −229824. −0.768362
\(156\) −109728. −0.360999
\(157\) −296318. −0.959420 −0.479710 0.877427i \(-0.659258\pi\)
−0.479710 + 0.877427i \(0.659258\pi\)
\(158\) −71568.0 −0.228074
\(159\) 140346. 0.440258
\(160\) −77824.0 −0.240333
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) −480400. −1.41623 −0.708115 0.706097i \(-0.750454\pi\)
−0.708115 + 0.706097i \(0.750454\pi\)
\(164\) 272256. 0.790438
\(165\) −444600. −1.27133
\(166\) −155888. −0.439079
\(167\) −160180. −0.444444 −0.222222 0.974996i \(-0.571331\pi\)
−0.222222 + 0.974996i \(0.571331\pi\)
\(168\) 0 0
\(169\) 209351. 0.563843
\(170\) −169024. −0.448566
\(171\) 198612. 0.519416
\(172\) 349376. 0.900476
\(173\) 8984.00 0.0228220 0.0114110 0.999935i \(-0.496368\pi\)
0.0114110 + 0.999935i \(0.496368\pi\)
\(174\) −24264.0 −0.0607560
\(175\) 0 0
\(176\) 166400. 0.404922
\(177\) −50472.0 −0.121093
\(178\) −24096.0 −0.0570026
\(179\) 182886. 0.426627 0.213313 0.976984i \(-0.431575\pi\)
0.213313 + 0.976984i \(0.431575\pi\)
\(180\) −98496.0 −0.226588
\(181\) −138330. −0.313848 −0.156924 0.987611i \(-0.550158\pi\)
−0.156924 + 0.987611i \(0.550158\pi\)
\(182\) 0 0
\(183\) −1350.00 −0.00297993
\(184\) −188800. −0.411109
\(185\) −587480. −1.26201
\(186\) 108864. 0.230729
\(187\) 361400. 0.755760
\(188\) 383040. 0.790405
\(189\) 0 0
\(190\) −745408. −1.49799
\(191\) 327222. 0.649021 0.324511 0.945882i \(-0.394800\pi\)
0.324511 + 0.945882i \(0.394800\pi\)
\(192\) 36864.0 0.0721688
\(193\) 786902. 1.52064 0.760322 0.649547i \(-0.225041\pi\)
0.760322 + 0.649547i \(0.225041\pi\)
\(194\) −433720. −0.827380
\(195\) 521208. 0.981577
\(196\) 0 0
\(197\) 423098. 0.776740 0.388370 0.921504i \(-0.373038\pi\)
0.388370 + 0.921504i \(0.373038\pi\)
\(198\) 210600. 0.381764
\(199\) −1.02392e6 −1.83288 −0.916439 0.400175i \(-0.868949\pi\)
−0.916439 + 0.400175i \(0.868949\pi\)
\(200\) 169664. 0.299926
\(201\) −394056. −0.687967
\(202\) 281696. 0.485738
\(203\) 0 0
\(204\) 80064.0 0.134698
\(205\) −1.29322e6 −2.14925
\(206\) 126208. 0.207214
\(207\) −238950. −0.387598
\(208\) −195072. −0.312634
\(209\) 1.59380e6 2.52388
\(210\) 0 0
\(211\) 461516. 0.713642 0.356821 0.934173i \(-0.383861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(212\) 249504. 0.381275
\(213\) −352602. −0.532520
\(214\) 433128. 0.646520
\(215\) −1.65954e6 −2.44845
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) −288584. −0.411274
\(219\) 212130. 0.298877
\(220\) −790400. −1.10101
\(221\) −423672. −0.583511
\(222\) 278280. 0.378965
\(223\) −995048. −1.33993 −0.669965 0.742393i \(-0.733691\pi\)
−0.669965 + 0.742393i \(0.733691\pi\)
\(224\) 0 0
\(225\) 214731. 0.282773
\(226\) 883624. 1.15079
\(227\) 95568.0 0.123097 0.0615486 0.998104i \(-0.480396\pi\)
0.0615486 + 0.998104i \(0.480396\pi\)
\(228\) 353088. 0.449827
\(229\) 1.04409e6 1.31567 0.657836 0.753161i \(-0.271472\pi\)
0.657836 + 0.753161i \(0.271472\pi\)
\(230\) 896800. 1.11783
\(231\) 0 0
\(232\) −43136.0 −0.0526163
\(233\) −1.16941e6 −1.41116 −0.705581 0.708629i \(-0.749314\pi\)
−0.705581 + 0.708629i \(0.749314\pi\)
\(234\) −246888. −0.294754
\(235\) −1.81944e6 −2.14916
\(236\) −89728.0 −0.104869
\(237\) −161028. −0.186222
\(238\) 0 0
\(239\) −27342.0 −0.0309625 −0.0154812 0.999880i \(-0.504928\pi\)
−0.0154812 + 0.999880i \(0.504928\pi\)
\(240\) −175104. −0.196231
\(241\) 907714. 1.00671 0.503357 0.864078i \(-0.332098\pi\)
0.503357 + 0.864078i \(0.332098\pi\)
\(242\) 1.04580e6 1.14791
\(243\) 59049.0 0.0641500
\(244\) −2400.00 −0.00258069
\(245\) 0 0
\(246\) 612576. 0.645390
\(247\) −1.86842e6 −1.94865
\(248\) 193536. 0.199817
\(249\) −350748. −0.358506
\(250\) 144096. 0.145815
\(251\) −44088.0 −0.0441709 −0.0220854 0.999756i \(-0.507031\pi\)
−0.0220854 + 0.999756i \(0.507031\pi\)
\(252\) 0 0
\(253\) −1.91750e6 −1.88336
\(254\) −958608. −0.932302
\(255\) −380304. −0.366252
\(256\) 65536.0 0.0625000
\(257\) 829200. 0.783117 0.391558 0.920153i \(-0.371936\pi\)
0.391558 + 0.920153i \(0.371936\pi\)
\(258\) 786096. 0.735235
\(259\) 0 0
\(260\) 926592. 0.850071
\(261\) −54594.0 −0.0496071
\(262\) 1.09669e6 0.987029
\(263\) 1.31947e6 1.17627 0.588137 0.808761i \(-0.299861\pi\)
0.588137 + 0.808761i \(0.299861\pi\)
\(264\) 374400. 0.330618
\(265\) −1.18514e6 −1.03671
\(266\) 0 0
\(267\) −54216.0 −0.0465425
\(268\) −700544. −0.595797
\(269\) 783788. 0.660416 0.330208 0.943908i \(-0.392881\pi\)
0.330208 + 0.943908i \(0.392881\pi\)
\(270\) −221616. −0.185009
\(271\) −955080. −0.789981 −0.394990 0.918685i \(-0.629252\pi\)
−0.394990 + 0.918685i \(0.629252\pi\)
\(272\) 142336. 0.116652
\(273\) 0 0
\(274\) −1.56462e6 −1.25902
\(275\) 1.72315e6 1.37401
\(276\) −424800. −0.335669
\(277\) 1.91273e6 1.49780 0.748901 0.662682i \(-0.230582\pi\)
0.748901 + 0.662682i \(0.230582\pi\)
\(278\) −1.35746e6 −1.05345
\(279\) 244944. 0.188389
\(280\) 0 0
\(281\) −1.02620e6 −0.775295 −0.387648 0.921808i \(-0.626712\pi\)
−0.387648 + 0.921808i \(0.626712\pi\)
\(282\) 861840. 0.645363
\(283\) −1.74668e6 −1.29642 −0.648211 0.761461i \(-0.724482\pi\)
−0.648211 + 0.761461i \(0.724482\pi\)
\(284\) −626848. −0.461176
\(285\) −1.67717e6 −1.22311
\(286\) −1.98120e6 −1.43223
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) −1.11072e6 −0.782277
\(290\) 204896. 0.143067
\(291\) −975870. −0.675553
\(292\) 377120. 0.258835
\(293\) −2.23212e6 −1.51897 −0.759484 0.650526i \(-0.774548\pi\)
−0.759484 + 0.650526i \(0.774548\pi\)
\(294\) 0 0
\(295\) 426208. 0.285146
\(296\) 494720. 0.328194
\(297\) 473850. 0.311709
\(298\) −117336. −0.0765404
\(299\) 2.24790e6 1.45412
\(300\) 381744. 0.244889
\(301\) 0 0
\(302\) 286432. 0.180719
\(303\) 633816. 0.396604
\(304\) 627712. 0.389562
\(305\) 11400.0 0.00701706
\(306\) 180144. 0.109981
\(307\) −1.85324e6 −1.12224 −0.561119 0.827735i \(-0.689629\pi\)
−0.561119 + 0.827735i \(0.689629\pi\)
\(308\) 0 0
\(309\) 283968. 0.169189
\(310\) −919296. −0.543314
\(311\) 450956. 0.264383 0.132191 0.991224i \(-0.457799\pi\)
0.132191 + 0.991224i \(0.457799\pi\)
\(312\) −438912. −0.255265
\(313\) −1.60263e6 −0.924642 −0.462321 0.886713i \(-0.652983\pi\)
−0.462321 + 0.886713i \(0.652983\pi\)
\(314\) −1.18527e6 −0.678413
\(315\) 0 0
\(316\) −286272. −0.161273
\(317\) −20862.0 −0.0116602 −0.00583012 0.999983i \(-0.501856\pi\)
−0.00583012 + 0.999983i \(0.501856\pi\)
\(318\) 561384. 0.311309
\(319\) −438100. −0.241044
\(320\) −311296. −0.169941
\(321\) 974538. 0.527881
\(322\) 0 0
\(323\) 1.36331e6 0.727091
\(324\) 104976. 0.0555556
\(325\) −2.02006e6 −1.06086
\(326\) −1.92160e6 −1.00143
\(327\) −649314. −0.335804
\(328\) 1.08902e6 0.558924
\(329\) 0 0
\(330\) −1.77840e6 −0.898969
\(331\) 2.07621e6 1.04160 0.520801 0.853678i \(-0.325633\pi\)
0.520801 + 0.853678i \(0.325633\pi\)
\(332\) −623552. −0.310476
\(333\) 626130. 0.309424
\(334\) −640720. −0.314269
\(335\) 3.32758e6 1.62001
\(336\) 0 0
\(337\) 1.20508e6 0.578019 0.289009 0.957326i \(-0.406674\pi\)
0.289009 + 0.957326i \(0.406674\pi\)
\(338\) 837404. 0.398697
\(339\) 1.98815e6 0.939617
\(340\) −676096. −0.317184
\(341\) 1.96560e6 0.915396
\(342\) 794448. 0.367282
\(343\) 0 0
\(344\) 1.39750e6 0.636732
\(345\) 2.01780e6 0.912705
\(346\) 35936.0 0.0161376
\(347\) −876642. −0.390840 −0.195420 0.980720i \(-0.562607\pi\)
−0.195420 + 0.980720i \(0.562607\pi\)
\(348\) −97056.0 −0.0429610
\(349\) 1.29593e6 0.569532 0.284766 0.958597i \(-0.408084\pi\)
0.284766 + 0.958597i \(0.408084\pi\)
\(350\) 0 0
\(351\) −555498. −0.240666
\(352\) 665600. 0.286323
\(353\) 3.99040e6 1.70443 0.852215 0.523192i \(-0.175259\pi\)
0.852215 + 0.523192i \(0.175259\pi\)
\(354\) −201888. −0.0856253
\(355\) 2.97753e6 1.25396
\(356\) −96384.0 −0.0403070
\(357\) 0 0
\(358\) 731544. 0.301671
\(359\) 4.06452e6 1.66446 0.832229 0.554432i \(-0.187064\pi\)
0.832229 + 0.554432i \(0.187064\pi\)
\(360\) −393984. −0.160222
\(361\) 3.53620e6 1.42814
\(362\) −553320. −0.221924
\(363\) 2.35304e6 0.937266
\(364\) 0 0
\(365\) −1.79132e6 −0.703787
\(366\) −5400.00 −0.00210713
\(367\) 1.67243e6 0.648162 0.324081 0.946029i \(-0.394945\pi\)
0.324081 + 0.946029i \(0.394945\pi\)
\(368\) −755200. −0.290698
\(369\) 1.37830e6 0.526959
\(370\) −2.34992e6 −0.892378
\(371\) 0 0
\(372\) 435456. 0.163150
\(373\) 3.16769e6 1.17888 0.589441 0.807812i \(-0.299348\pi\)
0.589441 + 0.807812i \(0.299348\pi\)
\(374\) 1.44560e6 0.534403
\(375\) 324216. 0.119057
\(376\) 1.53216e6 0.558901
\(377\) 513588. 0.186106
\(378\) 0 0
\(379\) −4.20388e6 −1.50332 −0.751662 0.659548i \(-0.770748\pi\)
−0.751662 + 0.659548i \(0.770748\pi\)
\(380\) −2.98163e6 −1.05924
\(381\) −2.15687e6 −0.761222
\(382\) 1.30889e6 0.458927
\(383\) 342616. 0.119347 0.0596734 0.998218i \(-0.480994\pi\)
0.0596734 + 0.998218i \(0.480994\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 3.14761e6 1.07526
\(387\) 1.76872e6 0.600317
\(388\) −1.73488e6 −0.585046
\(389\) −3.83959e6 −1.28650 −0.643252 0.765654i \(-0.722415\pi\)
−0.643252 + 0.765654i \(0.722415\pi\)
\(390\) 2.08483e6 0.694080
\(391\) −1.64020e6 −0.542569
\(392\) 0 0
\(393\) 2.46755e6 0.805906
\(394\) 1.69239e6 0.549238
\(395\) 1.35979e6 0.438510
\(396\) 842400. 0.269948
\(397\) −3.43894e6 −1.09509 −0.547543 0.836777i \(-0.684437\pi\)
−0.547543 + 0.836777i \(0.684437\pi\)
\(398\) −4.09568e6 −1.29604
\(399\) 0 0
\(400\) 678656. 0.212080
\(401\) −3.89421e6 −1.20937 −0.604684 0.796466i \(-0.706701\pi\)
−0.604684 + 0.796466i \(0.706701\pi\)
\(402\) −1.57622e6 −0.486466
\(403\) −2.30429e6 −0.706764
\(404\) 1.12678e6 0.343469
\(405\) −498636. −0.151059
\(406\) 0 0
\(407\) 5.02450e6 1.50351
\(408\) 320256. 0.0952460
\(409\) 1.64679e6 0.486778 0.243389 0.969929i \(-0.421741\pi\)
0.243389 + 0.969929i \(0.421741\pi\)
\(410\) −5.17286e6 −1.51975
\(411\) −3.52039e6 −1.02798
\(412\) 504832. 0.146522
\(413\) 0 0
\(414\) −955800. −0.274073
\(415\) 2.96187e6 0.844201
\(416\) −780288. −0.221066
\(417\) −3.05428e6 −0.860138
\(418\) 6.37520e6 1.78465
\(419\) 1.67659e6 0.466544 0.233272 0.972412i \(-0.425057\pi\)
0.233272 + 0.972412i \(0.425057\pi\)
\(420\) 0 0
\(421\) −566742. −0.155840 −0.0779202 0.996960i \(-0.524828\pi\)
−0.0779202 + 0.996960i \(0.524828\pi\)
\(422\) 1.84606e6 0.504621
\(423\) 1.93914e6 0.526936
\(424\) 998016. 0.269602
\(425\) 1.47396e6 0.395833
\(426\) −1.41041e6 −0.376548
\(427\) 0 0
\(428\) 1.73251e6 0.457159
\(429\) −4.45770e6 −1.16941
\(430\) −6.63814e6 −1.73131
\(431\) 6.68468e6 1.73335 0.866677 0.498870i \(-0.166251\pi\)
0.866677 + 0.498870i \(0.166251\pi\)
\(432\) 186624. 0.0481125
\(433\) −6.91337e6 −1.77203 −0.886013 0.463661i \(-0.846536\pi\)
−0.886013 + 0.463661i \(0.846536\pi\)
\(434\) 0 0
\(435\) 461016. 0.116813
\(436\) −1.15434e6 −0.290814
\(437\) −7.23340e6 −1.81192
\(438\) 848520. 0.211338
\(439\) 4.56281e6 1.12998 0.564990 0.825098i \(-0.308880\pi\)
0.564990 + 0.825098i \(0.308880\pi\)
\(440\) −3.16160e6 −0.778530
\(441\) 0 0
\(442\) −1.69469e6 −0.412605
\(443\) 4.59760e6 1.11307 0.556534 0.830825i \(-0.312131\pi\)
0.556534 + 0.830825i \(0.312131\pi\)
\(444\) 1.11312e6 0.267969
\(445\) 457824. 0.109597
\(446\) −3.98019e6 −0.947473
\(447\) −264006. −0.0624950
\(448\) 0 0
\(449\) 1.70658e6 0.399494 0.199747 0.979848i \(-0.435988\pi\)
0.199747 + 0.979848i \(0.435988\pi\)
\(450\) 858924. 0.199951
\(451\) 1.10604e7 2.56053
\(452\) 3.53450e6 0.813732
\(453\) 644472. 0.147557
\(454\) 382272. 0.0870428
\(455\) 0 0
\(456\) 1.41235e6 0.318076
\(457\) −6.93916e6 −1.55423 −0.777117 0.629356i \(-0.783319\pi\)
−0.777117 + 0.629356i \(0.783319\pi\)
\(458\) 4.17634e6 0.930320
\(459\) 405324. 0.0897988
\(460\) 3.58720e6 0.790426
\(461\) 2.61805e6 0.573753 0.286877 0.957968i \(-0.407383\pi\)
0.286877 + 0.957968i \(0.407383\pi\)
\(462\) 0 0
\(463\) 7.13602e6 1.54705 0.773524 0.633767i \(-0.218492\pi\)
0.773524 + 0.633767i \(0.218492\pi\)
\(464\) −172544. −0.0372053
\(465\) −2.06842e6 −0.443614
\(466\) −4.67764e6 −0.997843
\(467\) 2.17398e6 0.461278 0.230639 0.973039i \(-0.425918\pi\)
0.230639 + 0.973039i \(0.425918\pi\)
\(468\) −987552. −0.208423
\(469\) 0 0
\(470\) −7.27776e6 −1.51968
\(471\) −2.66686e6 −0.553922
\(472\) −358912. −0.0741537
\(473\) 1.41934e7 2.91698
\(474\) −644112. −0.131679
\(475\) 6.50025e6 1.32189
\(476\) 0 0
\(477\) 1.26311e6 0.254183
\(478\) −109368. −0.0218938
\(479\) 4.63294e6 0.922609 0.461305 0.887242i \(-0.347381\pi\)
0.461305 + 0.887242i \(0.347381\pi\)
\(480\) −700416. −0.138756
\(481\) −5.89026e6 −1.16084
\(482\) 3.63086e6 0.711855
\(483\) 0 0
\(484\) 4.18318e6 0.811696
\(485\) 8.24068e6 1.59077
\(486\) 236196. 0.0453609
\(487\) −4.56645e6 −0.872481 −0.436241 0.899830i \(-0.643690\pi\)
−0.436241 + 0.899830i \(0.643690\pi\)
\(488\) −9600.00 −0.00182483
\(489\) −4.32360e6 −0.817661
\(490\) 0 0
\(491\) −5.31429e6 −0.994813 −0.497407 0.867518i \(-0.665714\pi\)
−0.497407 + 0.867518i \(0.665714\pi\)
\(492\) 2.45030e6 0.456360
\(493\) −374744. −0.0694412
\(494\) −7.47370e6 −1.37790
\(495\) −4.00140e6 −0.734005
\(496\) 774144. 0.141292
\(497\) 0 0
\(498\) −1.40299e6 −0.253502
\(499\) −2.46314e6 −0.442831 −0.221415 0.975180i \(-0.571068\pi\)
−0.221415 + 0.975180i \(0.571068\pi\)
\(500\) 576384. 0.103107
\(501\) −1.44162e6 −0.256600
\(502\) −176352. −0.0312335
\(503\) −2.79924e6 −0.493310 −0.246655 0.969103i \(-0.579331\pi\)
−0.246655 + 0.969103i \(0.579331\pi\)
\(504\) 0 0
\(505\) −5.35222e6 −0.933912
\(506\) −7.67000e6 −1.33174
\(507\) 1.88416e6 0.325535
\(508\) −3.83443e6 −0.659237
\(509\) −1.99914e6 −0.342018 −0.171009 0.985269i \(-0.554703\pi\)
−0.171009 + 0.985269i \(0.554703\pi\)
\(510\) −1.52122e6 −0.258980
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 1.78751e6 0.299885
\(514\) 3.31680e6 0.553747
\(515\) −2.39795e6 −0.398403
\(516\) 3.14438e6 0.519890
\(517\) 1.55610e7 2.56042
\(518\) 0 0
\(519\) 80856.0 0.0131763
\(520\) 3.70637e6 0.601091
\(521\) −3.52160e6 −0.568390 −0.284195 0.958767i \(-0.591726\pi\)
−0.284195 + 0.958767i \(0.591726\pi\)
\(522\) −218376. −0.0350775
\(523\) −2.60685e6 −0.416737 −0.208369 0.978050i \(-0.566815\pi\)
−0.208369 + 0.978050i \(0.566815\pi\)
\(524\) 4.38675e6 0.697935
\(525\) 0 0
\(526\) 5.27786e6 0.831752
\(527\) 1.68134e6 0.263712
\(528\) 1.49760e6 0.233782
\(529\) 2.26616e6 0.352088
\(530\) −4.74058e6 −0.733063
\(531\) −454248. −0.0699128
\(532\) 0 0
\(533\) −1.29662e7 −1.97694
\(534\) −216864. −0.0329105
\(535\) −8.22943e6 −1.24304
\(536\) −2.80218e6 −0.421292
\(537\) 1.64597e6 0.246313
\(538\) 3.13515e6 0.466985
\(539\) 0 0
\(540\) −886464. −0.130821
\(541\) −1.37441e6 −0.201894 −0.100947 0.994892i \(-0.532187\pi\)
−0.100947 + 0.994892i \(0.532187\pi\)
\(542\) −3.82032e6 −0.558601
\(543\) −1.24497e6 −0.181200
\(544\) 569344. 0.0824855
\(545\) 5.48310e6 0.790742
\(546\) 0 0
\(547\) −8.78398e6 −1.25523 −0.627614 0.778524i \(-0.715968\pi\)
−0.627614 + 0.778524i \(0.715968\pi\)
\(548\) −6.25846e6 −0.890259
\(549\) −12150.0 −0.00172046
\(550\) 6.89260e6 0.971575
\(551\) −1.65265e6 −0.231900
\(552\) −1.69920e6 −0.237354
\(553\) 0 0
\(554\) 7.65092e6 1.05911
\(555\) −5.28732e6 −0.728623
\(556\) −5.42982e6 −0.744901
\(557\) 6.29262e6 0.859396 0.429698 0.902973i \(-0.358620\pi\)
0.429698 + 0.902973i \(0.358620\pi\)
\(558\) 979776. 0.133211
\(559\) −1.66390e7 −2.25216
\(560\) 0 0
\(561\) 3.25260e6 0.436338
\(562\) −4.10481e6 −0.548216
\(563\) −4.86582e6 −0.646971 −0.323485 0.946233i \(-0.604855\pi\)
−0.323485 + 0.946233i \(0.604855\pi\)
\(564\) 3.44736e6 0.456340
\(565\) −1.67889e7 −2.21259
\(566\) −6.98670e6 −0.916709
\(567\) 0 0
\(568\) −2.50739e6 −0.326100
\(569\) −4.46383e6 −0.577998 −0.288999 0.957329i \(-0.593322\pi\)
−0.288999 + 0.957329i \(0.593322\pi\)
\(570\) −6.70867e6 −0.864867
\(571\) 8.17054e6 1.04872 0.524361 0.851496i \(-0.324304\pi\)
0.524361 + 0.851496i \(0.324304\pi\)
\(572\) −7.92480e6 −1.01274
\(573\) 2.94500e6 0.374713
\(574\) 0 0
\(575\) −7.82045e6 −0.986421
\(576\) 331776. 0.0416667
\(577\) 5.50343e6 0.688167 0.344084 0.938939i \(-0.388190\pi\)
0.344084 + 0.938939i \(0.388190\pi\)
\(578\) −4.44288e6 −0.553153
\(579\) 7.08212e6 0.877944
\(580\) 819584. 0.101163
\(581\) 0 0
\(582\) −3.90348e6 −0.477688
\(583\) 1.01361e7 1.23509
\(584\) 1.50848e6 0.183024
\(585\) 4.69087e6 0.566714
\(586\) −8.92848e6 −1.07407
\(587\) −8.14251e6 −0.975356 −0.487678 0.873024i \(-0.662156\pi\)
−0.487678 + 0.873024i \(0.662156\pi\)
\(588\) 0 0
\(589\) 7.41485e6 0.880672
\(590\) 1.70483e6 0.201628
\(591\) 3.80788e6 0.448451
\(592\) 1.97888e6 0.232068
\(593\) 2.73136e6 0.318964 0.159482 0.987201i \(-0.449018\pi\)
0.159482 + 0.987201i \(0.449018\pi\)
\(594\) 1.89540e6 0.220412
\(595\) 0 0
\(596\) −469344. −0.0541222
\(597\) −9.21528e6 −1.05821
\(598\) 8.99160e6 1.02822
\(599\) 1.23733e6 0.140902 0.0704510 0.997515i \(-0.477556\pi\)
0.0704510 + 0.997515i \(0.477556\pi\)
\(600\) 1.52698e6 0.173163
\(601\) 1.59756e7 1.80414 0.902071 0.431587i \(-0.142046\pi\)
0.902071 + 0.431587i \(0.142046\pi\)
\(602\) 0 0
\(603\) −3.54650e6 −0.397198
\(604\) 1.14573e6 0.127788
\(605\) −1.98701e7 −2.20705
\(606\) 2.53526e6 0.280441
\(607\) 1.88275e6 0.207406 0.103703 0.994608i \(-0.466931\pi\)
0.103703 + 0.994608i \(0.466931\pi\)
\(608\) 2.51085e6 0.275462
\(609\) 0 0
\(610\) 45600.0 0.00496181
\(611\) −1.82423e7 −1.97686
\(612\) 720576. 0.0777681
\(613\) −9.82804e6 −1.05637 −0.528185 0.849130i \(-0.677127\pi\)
−0.528185 + 0.849130i \(0.677127\pi\)
\(614\) −7.41294e6 −0.793542
\(615\) −1.16389e7 −1.24087
\(616\) 0 0
\(617\) −8.21262e6 −0.868498 −0.434249 0.900793i \(-0.642986\pi\)
−0.434249 + 0.900793i \(0.642986\pi\)
\(618\) 1.13587e6 0.119635
\(619\) −6.98465e6 −0.732686 −0.366343 0.930480i \(-0.619390\pi\)
−0.366343 + 0.930480i \(0.619390\pi\)
\(620\) −3.67718e6 −0.384181
\(621\) −2.15055e6 −0.223780
\(622\) 1.80382e6 0.186947
\(623\) 0 0
\(624\) −1.75565e6 −0.180499
\(625\) −1.10222e7 −1.12867
\(626\) −6.41054e6 −0.653820
\(627\) 1.43442e7 1.45716
\(628\) −4.74109e6 −0.479710
\(629\) 4.29788e6 0.433139
\(630\) 0 0
\(631\) 1.26789e7 1.26767 0.633837 0.773467i \(-0.281479\pi\)
0.633837 + 0.773467i \(0.281479\pi\)
\(632\) −1.14509e6 −0.114037
\(633\) 4.15364e6 0.412022
\(634\) −83448.0 −0.00824504
\(635\) 1.82136e7 1.79250
\(636\) 2.24554e6 0.220129
\(637\) 0 0
\(638\) −1.75240e6 −0.170444
\(639\) −3.17342e6 −0.307450
\(640\) −1.24518e6 −0.120167
\(641\) −1.40324e7 −1.34892 −0.674460 0.738311i \(-0.735624\pi\)
−0.674460 + 0.738311i \(0.735624\pi\)
\(642\) 3.89815e6 0.373268
\(643\) −1.30368e6 −0.124349 −0.0621745 0.998065i \(-0.519804\pi\)
−0.0621745 + 0.998065i \(0.519804\pi\)
\(644\) 0 0
\(645\) −1.49358e7 −1.41361
\(646\) 5.45325e6 0.514131
\(647\) −1.57110e6 −0.147551 −0.0737757 0.997275i \(-0.523505\pi\)
−0.0737757 + 0.997275i \(0.523505\pi\)
\(648\) 419904. 0.0392837
\(649\) −3.64520e6 −0.339711
\(650\) −8.08025e6 −0.750138
\(651\) 0 0
\(652\) −7.68640e6 −0.708115
\(653\) −8.34115e6 −0.765496 −0.382748 0.923853i \(-0.625022\pi\)
−0.382748 + 0.923853i \(0.625022\pi\)
\(654\) −2.59726e6 −0.237449
\(655\) −2.08371e7 −1.89773
\(656\) 4.35610e6 0.395219
\(657\) 1.90917e6 0.172556
\(658\) 0 0
\(659\) 6.18334e6 0.554638 0.277319 0.960778i \(-0.410554\pi\)
0.277319 + 0.960778i \(0.410554\pi\)
\(660\) −7.11360e6 −0.635667
\(661\) −928966. −0.0826982 −0.0413491 0.999145i \(-0.513166\pi\)
−0.0413491 + 0.999145i \(0.513166\pi\)
\(662\) 8.30485e6 0.736524
\(663\) −3.81305e6 −0.336890
\(664\) −2.49421e6 −0.219539
\(665\) 0 0
\(666\) 2.50452e6 0.218796
\(667\) 1.98830e6 0.173048
\(668\) −2.56288e6 −0.222222
\(669\) −8.95543e6 −0.773609
\(670\) 1.33103e7 1.14552
\(671\) −97500.0 −0.00835985
\(672\) 0 0
\(673\) 1.79131e7 1.52452 0.762259 0.647272i \(-0.224090\pi\)
0.762259 + 0.647272i \(0.224090\pi\)
\(674\) 4.82033e6 0.408721
\(675\) 1.93258e6 0.163259
\(676\) 3.34962e6 0.281922
\(677\) 4.96397e6 0.416253 0.208126 0.978102i \(-0.433263\pi\)
0.208126 + 0.978102i \(0.433263\pi\)
\(678\) 7.95262e6 0.664409
\(679\) 0 0
\(680\) −2.70438e6 −0.224283
\(681\) 860112. 0.0710701
\(682\) 7.86240e6 0.647283
\(683\) 89526.0 0.00734340 0.00367170 0.999993i \(-0.498831\pi\)
0.00367170 + 0.999993i \(0.498831\pi\)
\(684\) 3.17779e6 0.259708
\(685\) 2.97277e7 2.42067
\(686\) 0 0
\(687\) 9.39677e6 0.759603
\(688\) 5.59002e6 0.450238
\(689\) −1.18826e7 −0.953596
\(690\) 8.07120e6 0.645380
\(691\) 142396. 0.0113450 0.00567248 0.999984i \(-0.498194\pi\)
0.00567248 + 0.999984i \(0.498194\pi\)
\(692\) 143744. 0.0114110
\(693\) 0 0
\(694\) −3.50657e6 −0.276365
\(695\) 2.57917e7 2.02543
\(696\) −388224. −0.0303780
\(697\) 9.46090e6 0.737650
\(698\) 5.18372e6 0.402720
\(699\) −1.05247e7 −0.814735
\(700\) 0 0
\(701\) 1.03935e7 0.798852 0.399426 0.916765i \(-0.369209\pi\)
0.399426 + 0.916765i \(0.369209\pi\)
\(702\) −2.22199e6 −0.170177
\(703\) 1.89540e7 1.44648
\(704\) 2.66240e6 0.202461
\(705\) −1.63750e7 −1.24082
\(706\) 1.59616e7 1.20521
\(707\) 0 0
\(708\) −807552. −0.0605463
\(709\) 4.65503e6 0.347782 0.173891 0.984765i \(-0.444366\pi\)
0.173891 + 0.984765i \(0.444366\pi\)
\(710\) 1.19101e7 0.886686
\(711\) −1.44925e6 −0.107515
\(712\) −385536. −0.0285013
\(713\) −8.92080e6 −0.657173
\(714\) 0 0
\(715\) 3.76428e7 2.75370
\(716\) 2.92618e6 0.213313
\(717\) −246078. −0.0178762
\(718\) 1.62581e7 1.17695
\(719\) 6.72134e6 0.484880 0.242440 0.970166i \(-0.422052\pi\)
0.242440 + 0.970166i \(0.422052\pi\)
\(720\) −1.57594e6 −0.113294
\(721\) 0 0
\(722\) 1.41448e7 1.00984
\(723\) 8.16943e6 0.581227
\(724\) −2.21328e6 −0.156924
\(725\) −1.78677e6 −0.126248
\(726\) 9.41216e6 0.662747
\(727\) 1.24076e7 0.870670 0.435335 0.900269i \(-0.356630\pi\)
0.435335 + 0.900269i \(0.356630\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −7.16528e6 −0.497652
\(731\) 1.21408e7 0.840339
\(732\) −21600.0 −0.00148996
\(733\) −1.35958e7 −0.934641 −0.467321 0.884088i \(-0.654781\pi\)
−0.467321 + 0.884088i \(0.654781\pi\)
\(734\) 6.68973e6 0.458319
\(735\) 0 0
\(736\) −3.02080e6 −0.205555
\(737\) −2.84596e7 −1.93001
\(738\) 5.51318e6 0.372616
\(739\) 2.56819e6 0.172988 0.0864941 0.996252i \(-0.472434\pi\)
0.0864941 + 0.996252i \(0.472434\pi\)
\(740\) −9.39968e6 −0.631006
\(741\) −1.68158e7 −1.12505
\(742\) 0 0
\(743\) −2.02133e7 −1.34327 −0.671637 0.740880i \(-0.734409\pi\)
−0.671637 + 0.740880i \(0.734409\pi\)
\(744\) 1.74182e6 0.115364
\(745\) 2.22938e6 0.147161
\(746\) 1.26707e7 0.833595
\(747\) −3.15673e6 −0.206984
\(748\) 5.78240e6 0.377880
\(749\) 0 0
\(750\) 1.29686e6 0.0841863
\(751\) 7.04813e6 0.456010 0.228005 0.973660i \(-0.426780\pi\)
0.228005 + 0.973660i \(0.426780\pi\)
\(752\) 6.12864e6 0.395202
\(753\) −396792. −0.0255021
\(754\) 2.05435e6 0.131597
\(755\) −5.44221e6 −0.347462
\(756\) 0 0
\(757\) −2.04120e7 −1.29463 −0.647315 0.762223i \(-0.724108\pi\)
−0.647315 + 0.762223i \(0.724108\pi\)
\(758\) −1.68155e7 −1.06301
\(759\) −1.72575e7 −1.08736
\(760\) −1.19265e7 −0.748997
\(761\) 5.07974e6 0.317965 0.158983 0.987281i \(-0.449179\pi\)
0.158983 + 0.987281i \(0.449179\pi\)
\(762\) −8.62747e6 −0.538265
\(763\) 0 0
\(764\) 5.23555e6 0.324511
\(765\) −3.42274e6 −0.211456
\(766\) 1.37046e6 0.0843909
\(767\) 4.27330e6 0.262286
\(768\) 589824. 0.0360844
\(769\) −2.33898e7 −1.42630 −0.713149 0.701012i \(-0.752732\pi\)
−0.713149 + 0.701012i \(0.752732\pi\)
\(770\) 0 0
\(771\) 7.46280e6 0.452133
\(772\) 1.25904e7 0.760322
\(773\) 1.11253e6 0.0669672 0.0334836 0.999439i \(-0.489340\pi\)
0.0334836 + 0.999439i \(0.489340\pi\)
\(774\) 7.07486e6 0.424488
\(775\) 8.01662e6 0.479443
\(776\) −6.93952e6 −0.413690
\(777\) 0 0
\(778\) −1.53584e7 −0.909696
\(779\) 4.17232e7 2.46340
\(780\) 8.33933e6 0.490789
\(781\) −2.54657e7 −1.49392
\(782\) −6.56080e6 −0.383654
\(783\) −491346. −0.0286407
\(784\) 0 0
\(785\) 2.25202e7 1.30436
\(786\) 9.87019e6 0.569861
\(787\) −2.00812e6 −0.115572 −0.0577859 0.998329i \(-0.518404\pi\)
−0.0577859 + 0.998329i \(0.518404\pi\)
\(788\) 6.76957e6 0.388370
\(789\) 1.18752e7 0.679123
\(790\) 5.43917e6 0.310074
\(791\) 0 0
\(792\) 3.36960e6 0.190882
\(793\) 114300. 0.00645451
\(794\) −1.37558e7 −0.774343
\(795\) −1.06663e7 −0.598544
\(796\) −1.63827e7 −0.916439
\(797\) −3.00897e7 −1.67792 −0.838961 0.544191i \(-0.816837\pi\)
−0.838961 + 0.544191i \(0.816837\pi\)
\(798\) 0 0
\(799\) 1.33106e7 0.737619
\(800\) 2.71462e6 0.149963
\(801\) −487944. −0.0268713
\(802\) −1.55768e7 −0.855152
\(803\) 1.53205e7 0.838463
\(804\) −6.30490e6 −0.343984
\(805\) 0 0
\(806\) −9.21715e6 −0.499757
\(807\) 7.05409e6 0.381292
\(808\) 4.50714e6 0.242869
\(809\) −1.88207e6 −0.101103 −0.0505515 0.998721i \(-0.516098\pi\)
−0.0505515 + 0.998721i \(0.516098\pi\)
\(810\) −1.99454e6 −0.106815
\(811\) −4.88220e6 −0.260654 −0.130327 0.991471i \(-0.541603\pi\)
−0.130327 + 0.991471i \(0.541603\pi\)
\(812\) 0 0
\(813\) −8.59572e6 −0.456096
\(814\) 2.00980e7 1.06314
\(815\) 3.65104e7 1.92541
\(816\) 1.28102e6 0.0673491
\(817\) 5.35419e7 2.80633
\(818\) 6.58718e6 0.344204
\(819\) 0 0
\(820\) −2.06915e7 −1.07462
\(821\) 8.37096e6 0.433429 0.216714 0.976235i \(-0.430466\pi\)
0.216714 + 0.976235i \(0.430466\pi\)
\(822\) −1.40815e7 −0.726893
\(823\) −2.02090e7 −1.04003 −0.520015 0.854157i \(-0.674074\pi\)
−0.520015 + 0.854157i \(0.674074\pi\)
\(824\) 2.01933e6 0.103607
\(825\) 1.55084e7 0.793288
\(826\) 0 0
\(827\) −1.31059e7 −0.666352 −0.333176 0.942865i \(-0.608120\pi\)
−0.333176 + 0.942865i \(0.608120\pi\)
\(828\) −3.82320e6 −0.193799
\(829\) −3.18667e7 −1.61046 −0.805232 0.592960i \(-0.797959\pi\)
−0.805232 + 0.592960i \(0.797959\pi\)
\(830\) 1.18475e7 0.596941
\(831\) 1.72146e7 0.864756
\(832\) −3.12115e6 −0.156317
\(833\) 0 0
\(834\) −1.22171e7 −0.608209
\(835\) 1.21737e7 0.604235
\(836\) 2.55008e7 1.26194
\(837\) 2.20450e6 0.108767
\(838\) 6.70637e6 0.329896
\(839\) −9.94742e6 −0.487872 −0.243936 0.969791i \(-0.578439\pi\)
−0.243936 + 0.969791i \(0.578439\pi\)
\(840\) 0 0
\(841\) −2.00569e7 −0.977852
\(842\) −2.26697e6 −0.110196
\(843\) −9.23582e6 −0.447617
\(844\) 7.38426e6 0.356821
\(845\) −1.59107e7 −0.766561
\(846\) 7.75656e6 0.372600
\(847\) 0 0
\(848\) 3.99206e6 0.190637
\(849\) −1.57201e7 −0.748489
\(850\) 5.89582e6 0.279896
\(851\) −2.28035e7 −1.07939
\(852\) −5.64163e6 −0.266260
\(853\) 6.52611e6 0.307102 0.153551 0.988141i \(-0.450929\pi\)
0.153551 + 0.988141i \(0.450929\pi\)
\(854\) 0 0
\(855\) −1.50945e7 −0.706161
\(856\) 6.93005e6 0.323260
\(857\) 8.76238e6 0.407540 0.203770 0.979019i \(-0.434681\pi\)
0.203770 + 0.979019i \(0.434681\pi\)
\(858\) −1.78308e7 −0.826899
\(859\) −6.47942e6 −0.299608 −0.149804 0.988716i \(-0.547864\pi\)
−0.149804 + 0.988716i \(0.547864\pi\)
\(860\) −2.65526e7 −1.22422
\(861\) 0 0
\(862\) 2.67387e7 1.22567
\(863\) −1.83417e7 −0.838323 −0.419162 0.907912i \(-0.637676\pi\)
−0.419162 + 0.907912i \(0.637676\pi\)
\(864\) 746496. 0.0340207
\(865\) −682784. −0.0310272
\(866\) −2.76535e7 −1.25301
\(867\) −9.99649e6 −0.451648
\(868\) 0 0
\(869\) −1.16298e7 −0.522424
\(870\) 1.84406e6 0.0825996
\(871\) 3.33634e7 1.49013
\(872\) −4.61734e6 −0.205637
\(873\) −8.78283e6 −0.390031
\(874\) −2.89336e7 −1.28122
\(875\) 0 0
\(876\) 3.39408e6 0.149438
\(877\) 2.69065e7 1.18129 0.590647 0.806930i \(-0.298873\pi\)
0.590647 + 0.806930i \(0.298873\pi\)
\(878\) 1.82512e7 0.799017
\(879\) −2.00891e7 −0.876976
\(880\) −1.26464e7 −0.550504
\(881\) 1.52174e7 0.660542 0.330271 0.943886i \(-0.392860\pi\)
0.330271 + 0.943886i \(0.392860\pi\)
\(882\) 0 0
\(883\) −2.61520e7 −1.12877 −0.564383 0.825513i \(-0.690886\pi\)
−0.564383 + 0.825513i \(0.690886\pi\)
\(884\) −6.77875e6 −0.291756
\(885\) 3.83587e6 0.164629
\(886\) 1.83904e7 0.787058
\(887\) 1.08021e7 0.460997 0.230499 0.973073i \(-0.425964\pi\)
0.230499 + 0.973073i \(0.425964\pi\)
\(888\) 4.45248e6 0.189483
\(889\) 0 0
\(890\) 1.83130e6 0.0774968
\(891\) 4.26465e6 0.179965
\(892\) −1.59208e7 −0.669965
\(893\) 5.87009e7 2.46329
\(894\) −1.05602e6 −0.0441906
\(895\) −1.38993e7 −0.580011
\(896\) 0 0
\(897\) 2.02311e7 0.839534
\(898\) 6.82631e6 0.282485
\(899\) −2.03818e6 −0.0841090
\(900\) 3.43570e6 0.141387
\(901\) 8.67026e6 0.355812
\(902\) 4.42416e7 1.81057
\(903\) 0 0
\(904\) 1.41380e7 0.575395
\(905\) 1.05131e7 0.426686
\(906\) 2.57789e6 0.104338
\(907\) −9.84167e6 −0.397238 −0.198619 0.980077i \(-0.563646\pi\)
−0.198619 + 0.980077i \(0.563646\pi\)
\(908\) 1.52909e6 0.0615486
\(909\) 5.70434e6 0.228979
\(910\) 0 0
\(911\) 2.72509e7 1.08789 0.543945 0.839121i \(-0.316930\pi\)
0.543945 + 0.839121i \(0.316930\pi\)
\(912\) 5.64941e6 0.224914
\(913\) −2.53318e7 −1.00575
\(914\) −2.77566e7 −1.09901
\(915\) 102600. 0.00405130
\(916\) 1.67054e7 0.657836
\(917\) 0 0
\(918\) 1.62130e6 0.0634974
\(919\) 2.86432e7 1.11875 0.559374 0.828916i \(-0.311042\pi\)
0.559374 + 0.828916i \(0.311042\pi\)
\(920\) 1.43488e7 0.558915
\(921\) −1.66791e7 −0.647924
\(922\) 1.04722e7 0.405705
\(923\) 2.98536e7 1.15343
\(924\) 0 0
\(925\) 2.04922e7 0.787472
\(926\) 2.85441e7 1.09393
\(927\) 2.55571e6 0.0976816
\(928\) −690176. −0.0263081
\(929\) −6.78492e6 −0.257932 −0.128966 0.991649i \(-0.541166\pi\)
−0.128966 + 0.991649i \(0.541166\pi\)
\(930\) −8.27366e6 −0.313683
\(931\) 0 0
\(932\) −1.87106e7 −0.705581
\(933\) 4.05860e6 0.152641
\(934\) 8.69590e6 0.326173
\(935\) −2.74664e7 −1.02748
\(936\) −3.95021e6 −0.147377
\(937\) −3.00308e7 −1.11742 −0.558712 0.829362i \(-0.688704\pi\)
−0.558712 + 0.829362i \(0.688704\pi\)
\(938\) 0 0
\(939\) −1.44237e7 −0.533842
\(940\) −2.91110e7 −1.07458
\(941\) −2.30725e7 −0.849415 −0.424707 0.905331i \(-0.639623\pi\)
−0.424707 + 0.905331i \(0.639623\pi\)
\(942\) −1.06674e7 −0.391682
\(943\) −5.01972e7 −1.83823
\(944\) −1.43565e6 −0.0524346
\(945\) 0 0
\(946\) 5.67736e7 2.06262
\(947\) 2.71433e7 0.983531 0.491765 0.870728i \(-0.336352\pi\)
0.491765 + 0.870728i \(0.336352\pi\)
\(948\) −2.57645e6 −0.0931109
\(949\) −1.79603e7 −0.647365
\(950\) 2.60010e7 0.934719
\(951\) −187758. −0.00673205
\(952\) 0 0
\(953\) −1.61552e7 −0.576209 −0.288104 0.957599i \(-0.593025\pi\)
−0.288104 + 0.957599i \(0.593025\pi\)
\(954\) 5.05246e6 0.179735
\(955\) −2.48689e7 −0.882364
\(956\) −437472. −0.0154812
\(957\) −3.94290e6 −0.139167
\(958\) 1.85318e7 0.652383
\(959\) 0 0
\(960\) −2.80166e6 −0.0981156
\(961\) −1.94846e7 −0.680585
\(962\) −2.35610e7 −0.820837
\(963\) 8.77084e6 0.304772
\(964\) 1.45234e7 0.503357
\(965\) −5.98046e7 −2.06736
\(966\) 0 0
\(967\) −3.80323e7 −1.30793 −0.653967 0.756523i \(-0.726897\pi\)
−0.653967 + 0.756523i \(0.726897\pi\)
\(968\) 1.67327e7 0.573956
\(969\) 1.22698e7 0.419786
\(970\) 3.29627e7 1.12485
\(971\) 2.23104e7 0.759379 0.379689 0.925114i \(-0.376031\pi\)
0.379689 + 0.925114i \(0.376031\pi\)
\(972\) 944784. 0.0320750
\(973\) 0 0
\(974\) −1.82658e7 −0.616937
\(975\) −1.81806e7 −0.612485
\(976\) −38400.0 −0.00129035
\(977\) 3.06930e7 1.02873 0.514367 0.857570i \(-0.328027\pi\)
0.514367 + 0.857570i \(0.328027\pi\)
\(978\) −1.72944e7 −0.578174
\(979\) −3.91560e6 −0.130569
\(980\) 0 0
\(981\) −5.84383e6 −0.193876
\(982\) −2.12572e7 −0.703439
\(983\) 1.52706e7 0.504048 0.252024 0.967721i \(-0.418904\pi\)
0.252024 + 0.967721i \(0.418904\pi\)
\(984\) 9.80122e6 0.322695
\(985\) −3.21554e7 −1.05600
\(986\) −1.49898e6 −0.0491024
\(987\) 0 0
\(988\) −2.98948e7 −0.974323
\(989\) −6.44162e7 −2.09413
\(990\) −1.60056e7 −0.519020
\(991\) 3.16279e7 1.02303 0.511513 0.859276i \(-0.329085\pi\)
0.511513 + 0.859276i \(0.329085\pi\)
\(992\) 3.09658e6 0.0999085
\(993\) 1.86859e7 0.601369
\(994\) 0 0
\(995\) 7.78179e7 2.49185
\(996\) −5.61197e6 −0.179253
\(997\) 3.55842e7 1.13376 0.566878 0.823802i \(-0.308151\pi\)
0.566878 + 0.823802i \(0.308151\pi\)
\(998\) −9.85256e6 −0.313129
\(999\) 5.63517e6 0.178646
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.k.1.1 1
3.2 odd 2 882.6.a.j.1.1 1
7.2 even 3 294.6.e.c.67.1 2
7.3 odd 6 294.6.e.d.79.1 2
7.4 even 3 294.6.e.c.79.1 2
7.5 odd 6 294.6.e.d.67.1 2
7.6 odd 2 42.6.a.e.1.1 1
21.20 even 2 126.6.a.a.1.1 1
28.27 even 2 336.6.a.q.1.1 1
35.13 even 4 1050.6.g.h.799.1 2
35.27 even 4 1050.6.g.h.799.2 2
35.34 odd 2 1050.6.a.f.1.1 1
84.83 odd 2 1008.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.e.1.1 1 7.6 odd 2
126.6.a.a.1.1 1 21.20 even 2
294.6.a.k.1.1 1 1.1 even 1 trivial
294.6.e.c.67.1 2 7.2 even 3
294.6.e.c.79.1 2 7.4 even 3
294.6.e.d.67.1 2 7.5 odd 6
294.6.e.d.79.1 2 7.3 odd 6
336.6.a.q.1.1 1 28.27 even 2
882.6.a.j.1.1 1 3.2 odd 2
1008.6.a.d.1.1 1 84.83 odd 2
1050.6.a.f.1.1 1 35.34 odd 2
1050.6.g.h.799.1 2 35.13 even 4
1050.6.g.h.799.2 2 35.27 even 4