Properties

Label 294.6.a.k
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} + 9 q^{3} + 16 q^{4} - 76 q^{5} + 36 q^{6} + 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} + 9 q^{3} + 16 q^{4} - 76 q^{5} + 36 q^{6} + 64 q^{8} + 81 q^{9} - 304 q^{10} + 650 q^{11} + 144 q^{12} - 762 q^{13} - 684 q^{15} + 256 q^{16} + 556 q^{17} + 324 q^{18} + 2452 q^{19} - 1216 q^{20} + 2600 q^{22} - 2950 q^{23} + 576 q^{24} + 2651 q^{25} - 3048 q^{26} + 729 q^{27} - 674 q^{29} - 2736 q^{30} + 3024 q^{31} + 1024 q^{32} + 5850 q^{33} + 2224 q^{34} + 1296 q^{36} + 7730 q^{37} + 9808 q^{38} - 6858 q^{39} - 4864 q^{40} + 17016 q^{41} + 21836 q^{43} + 10400 q^{44} - 6156 q^{45} - 11800 q^{46} + 23940 q^{47} + 2304 q^{48} + 10604 q^{50} + 5004 q^{51} - 12192 q^{52} + 15594 q^{53} + 2916 q^{54} - 49400 q^{55} + 22068 q^{57} - 2696 q^{58} - 5608 q^{59} - 10944 q^{60} - 150 q^{61} + 12096 q^{62} + 4096 q^{64} + 57912 q^{65} + 23400 q^{66} - 43784 q^{67} + 8896 q^{68} - 26550 q^{69} - 39178 q^{71} + 5184 q^{72} + 23570 q^{73} + 30920 q^{74} + 23859 q^{75} + 39232 q^{76} - 27432 q^{78} - 17892 q^{79} - 19456 q^{80} + 6561 q^{81} + 68064 q^{82} - 38972 q^{83} - 42256 q^{85} + 87344 q^{86} - 6066 q^{87} + 41600 q^{88} - 6024 q^{89} - 24624 q^{90} - 47200 q^{92} + 27216 q^{93} + 95760 q^{94} - 186352 q^{95} + 9216 q^{96} - 108430 q^{97} + 52650 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 9.00000 16.0000 −76.0000 36.0000 0 64.0000 81.0000 −304.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.k 1
3.b odd 2 1 882.6.a.j 1
7.b odd 2 1 42.6.a.e 1
7.c even 3 2 294.6.e.c 2
7.d odd 6 2 294.6.e.d 2
21.c even 2 1 126.6.a.a 1
28.d even 2 1 336.6.a.q 1
35.c odd 2 1 1050.6.a.f 1
35.f even 4 2 1050.6.g.h 2
84.h odd 2 1 1008.6.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.e 1 7.b odd 2 1
126.6.a.a 1 21.c even 2 1
294.6.a.k 1 1.a even 1 1 trivial
294.6.e.c 2 7.c even 3 2
294.6.e.d 2 7.d odd 6 2
336.6.a.q 1 28.d even 2 1
882.6.a.j 1 3.b odd 2 1
1008.6.a.d 1 84.h odd 2 1
1050.6.a.f 1 35.c odd 2 1
1050.6.g.h 2 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5} + 76 \) Copy content Toggle raw display
\( T_{11} - 650 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T - 9 \) Copy content Toggle raw display
$5$ \( T + 76 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 650 \) Copy content Toggle raw display
$13$ \( T + 762 \) Copy content Toggle raw display
$17$ \( T - 556 \) Copy content Toggle raw display
$19$ \( T - 2452 \) Copy content Toggle raw display
$23$ \( T + 2950 \) Copy content Toggle raw display
$29$ \( T + 674 \) Copy content Toggle raw display
$31$ \( T - 3024 \) Copy content Toggle raw display
$37$ \( T - 7730 \) Copy content Toggle raw display
$41$ \( T - 17016 \) Copy content Toggle raw display
$43$ \( T - 21836 \) Copy content Toggle raw display
$47$ \( T - 23940 \) Copy content Toggle raw display
$53$ \( T - 15594 \) Copy content Toggle raw display
$59$ \( T + 5608 \) Copy content Toggle raw display
$61$ \( T + 150 \) Copy content Toggle raw display
$67$ \( T + 43784 \) Copy content Toggle raw display
$71$ \( T + 39178 \) Copy content Toggle raw display
$73$ \( T - 23570 \) Copy content Toggle raw display
$79$ \( T + 17892 \) Copy content Toggle raw display
$83$ \( T + 38972 \) Copy content Toggle raw display
$89$ \( T + 6024 \) Copy content Toggle raw display
$97$ \( T + 108430 \) Copy content Toggle raw display
show more
show less