Properties

Label 294.6.a.j.1.1
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +6.00000 q^{5} -36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +6.00000 q^{5} -36.0000 q^{6} +64.0000 q^{8} +81.0000 q^{9} +24.0000 q^{10} -666.000 q^{11} -144.000 q^{12} +559.000 q^{13} -54.0000 q^{15} +256.000 q^{16} +1740.00 q^{17} +324.000 q^{18} -1157.00 q^{19} +96.0000 q^{20} -2664.00 q^{22} -3468.00 q^{23} -576.000 q^{24} -3089.00 q^{25} +2236.00 q^{26} -729.000 q^{27} +3372.00 q^{29} -216.000 q^{30} -6293.00 q^{31} +1024.00 q^{32} +5994.00 q^{33} +6960.00 q^{34} +1296.00 q^{36} +3131.00 q^{37} -4628.00 q^{38} -5031.00 q^{39} +384.000 q^{40} +4866.00 q^{41} -11407.0 q^{43} -10656.0 q^{44} +486.000 q^{45} -13872.0 q^{46} -2310.00 q^{47} -2304.00 q^{48} -12356.0 q^{50} -15660.0 q^{51} +8944.00 q^{52} -28296.0 q^{53} -2916.00 q^{54} -3996.00 q^{55} +10413.0 q^{57} +13488.0 q^{58} -20544.0 q^{59} -864.000 q^{60} +4630.00 q^{61} -25172.0 q^{62} +4096.00 q^{64} +3354.00 q^{65} +23976.0 q^{66} -18745.0 q^{67} +27840.0 q^{68} +31212.0 q^{69} -38226.0 q^{71} +5184.00 q^{72} -70589.0 q^{73} +12524.0 q^{74} +27801.0 q^{75} -18512.0 q^{76} -20124.0 q^{78} -62293.0 q^{79} +1536.00 q^{80} +6561.00 q^{81} +19464.0 q^{82} -79818.0 q^{83} +10440.0 q^{85} -45628.0 q^{86} -30348.0 q^{87} -42624.0 q^{88} +18120.0 q^{89} +1944.00 q^{90} -55488.0 q^{92} +56637.0 q^{93} -9240.00 q^{94} -6942.00 q^{95} -9216.00 q^{96} -124754. q^{97} -53946.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −9.00000 −0.577350
\(4\) 16.0000 0.500000
\(5\) 6.00000 0.107331 0.0536656 0.998559i \(-0.482909\pi\)
0.0536656 + 0.998559i \(0.482909\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) 24.0000 0.0758947
\(11\) −666.000 −1.65956 −0.829779 0.558092i \(-0.811534\pi\)
−0.829779 + 0.558092i \(0.811534\pi\)
\(12\) −144.000 −0.288675
\(13\) 559.000 0.917389 0.458694 0.888594i \(-0.348317\pi\)
0.458694 + 0.888594i \(0.348317\pi\)
\(14\) 0 0
\(15\) −54.0000 −0.0619677
\(16\) 256.000 0.250000
\(17\) 1740.00 1.46025 0.730125 0.683314i \(-0.239462\pi\)
0.730125 + 0.683314i \(0.239462\pi\)
\(18\) 324.000 0.235702
\(19\) −1157.00 −0.735274 −0.367637 0.929969i \(-0.619833\pi\)
−0.367637 + 0.929969i \(0.619833\pi\)
\(20\) 96.0000 0.0536656
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) −3468.00 −1.36697 −0.683486 0.729964i \(-0.739537\pi\)
−0.683486 + 0.729964i \(0.739537\pi\)
\(24\) −576.000 −0.204124
\(25\) −3089.00 −0.988480
\(26\) 2236.00 0.648692
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 3372.00 0.744548 0.372274 0.928123i \(-0.378578\pi\)
0.372274 + 0.928123i \(0.378578\pi\)
\(30\) −216.000 −0.0438178
\(31\) −6293.00 −1.17613 −0.588063 0.808815i \(-0.700109\pi\)
−0.588063 + 0.808815i \(0.700109\pi\)
\(32\) 1024.00 0.176777
\(33\) 5994.00 0.958146
\(34\) 6960.00 1.03255
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 3131.00 0.375992 0.187996 0.982170i \(-0.439801\pi\)
0.187996 + 0.982170i \(0.439801\pi\)
\(38\) −4628.00 −0.519917
\(39\) −5031.00 −0.529655
\(40\) 384.000 0.0379473
\(41\) 4866.00 0.452077 0.226039 0.974118i \(-0.427422\pi\)
0.226039 + 0.974118i \(0.427422\pi\)
\(42\) 0 0
\(43\) −11407.0 −0.940806 −0.470403 0.882452i \(-0.655892\pi\)
−0.470403 + 0.882452i \(0.655892\pi\)
\(44\) −10656.0 −0.829779
\(45\) 486.000 0.0357771
\(46\) −13872.0 −0.966595
\(47\) −2310.00 −0.152534 −0.0762671 0.997087i \(-0.524300\pi\)
−0.0762671 + 0.997087i \(0.524300\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) −12356.0 −0.698961
\(51\) −15660.0 −0.843075
\(52\) 8944.00 0.458694
\(53\) −28296.0 −1.38368 −0.691840 0.722051i \(-0.743199\pi\)
−0.691840 + 0.722051i \(0.743199\pi\)
\(54\) −2916.00 −0.136083
\(55\) −3996.00 −0.178122
\(56\) 0 0
\(57\) 10413.0 0.424511
\(58\) 13488.0 0.526475
\(59\) −20544.0 −0.768343 −0.384171 0.923262i \(-0.625513\pi\)
−0.384171 + 0.923262i \(0.625513\pi\)
\(60\) −864.000 −0.0309839
\(61\) 4630.00 0.159315 0.0796575 0.996822i \(-0.474617\pi\)
0.0796575 + 0.996822i \(0.474617\pi\)
\(62\) −25172.0 −0.831646
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 3354.00 0.0984645
\(66\) 23976.0 0.677512
\(67\) −18745.0 −0.510151 −0.255075 0.966921i \(-0.582100\pi\)
−0.255075 + 0.966921i \(0.582100\pi\)
\(68\) 27840.0 0.730125
\(69\) 31212.0 0.789221
\(70\) 0 0
\(71\) −38226.0 −0.899939 −0.449969 0.893044i \(-0.648565\pi\)
−0.449969 + 0.893044i \(0.648565\pi\)
\(72\) 5184.00 0.117851
\(73\) −70589.0 −1.55035 −0.775175 0.631746i \(-0.782338\pi\)
−0.775175 + 0.631746i \(0.782338\pi\)
\(74\) 12524.0 0.265867
\(75\) 27801.0 0.570699
\(76\) −18512.0 −0.367637
\(77\) 0 0
\(78\) −20124.0 −0.374522
\(79\) −62293.0 −1.12298 −0.561489 0.827484i \(-0.689771\pi\)
−0.561489 + 0.827484i \(0.689771\pi\)
\(80\) 1536.00 0.0268328
\(81\) 6561.00 0.111111
\(82\) 19464.0 0.319667
\(83\) −79818.0 −1.27176 −0.635881 0.771787i \(-0.719363\pi\)
−0.635881 + 0.771787i \(0.719363\pi\)
\(84\) 0 0
\(85\) 10440.0 0.156730
\(86\) −45628.0 −0.665251
\(87\) −30348.0 −0.429865
\(88\) −42624.0 −0.586742
\(89\) 18120.0 0.242484 0.121242 0.992623i \(-0.461312\pi\)
0.121242 + 0.992623i \(0.461312\pi\)
\(90\) 1944.00 0.0252982
\(91\) 0 0
\(92\) −55488.0 −0.683486
\(93\) 56637.0 0.679036
\(94\) −9240.00 −0.107858
\(95\) −6942.00 −0.0789179
\(96\) −9216.00 −0.102062
\(97\) −124754. −1.34625 −0.673124 0.739530i \(-0.735048\pi\)
−0.673124 + 0.739530i \(0.735048\pi\)
\(98\) 0 0
\(99\) −53946.0 −0.553186
\(100\) −49424.0 −0.494240
\(101\) 93390.0 0.910955 0.455478 0.890247i \(-0.349469\pi\)
0.455478 + 0.890247i \(0.349469\pi\)
\(102\) −62640.0 −0.596144
\(103\) 167731. 1.55783 0.778915 0.627129i \(-0.215770\pi\)
0.778915 + 0.627129i \(0.215770\pi\)
\(104\) 35776.0 0.324346
\(105\) 0 0
\(106\) −113184. −0.978409
\(107\) 69180.0 0.584146 0.292073 0.956396i \(-0.405655\pi\)
0.292073 + 0.956396i \(0.405655\pi\)
\(108\) −11664.0 −0.0962250
\(109\) −219559. −1.77005 −0.885024 0.465546i \(-0.845858\pi\)
−0.885024 + 0.465546i \(0.845858\pi\)
\(110\) −15984.0 −0.125952
\(111\) −28179.0 −0.217079
\(112\) 0 0
\(113\) −39354.0 −0.289930 −0.144965 0.989437i \(-0.546307\pi\)
−0.144965 + 0.989437i \(0.546307\pi\)
\(114\) 41652.0 0.300174
\(115\) −20808.0 −0.146719
\(116\) 53952.0 0.372274
\(117\) 45279.0 0.305796
\(118\) −82176.0 −0.543300
\(119\) 0 0
\(120\) −3456.00 −0.0219089
\(121\) 282505. 1.75413
\(122\) 18520.0 0.112653
\(123\) −43794.0 −0.261007
\(124\) −100688. −0.588063
\(125\) −37284.0 −0.213426
\(126\) 0 0
\(127\) 317093. 1.74453 0.872263 0.489037i \(-0.162652\pi\)
0.872263 + 0.489037i \(0.162652\pi\)
\(128\) 16384.0 0.0883883
\(129\) 102663. 0.543175
\(130\) 13416.0 0.0696249
\(131\) 154830. 0.788273 0.394137 0.919052i \(-0.371044\pi\)
0.394137 + 0.919052i \(0.371044\pi\)
\(132\) 95904.0 0.479073
\(133\) 0 0
\(134\) −74980.0 −0.360731
\(135\) −4374.00 −0.0206559
\(136\) 111360. 0.516276
\(137\) 67332.0 0.306493 0.153246 0.988188i \(-0.451027\pi\)
0.153246 + 0.988188i \(0.451027\pi\)
\(138\) 124848. 0.558064
\(139\) 365215. 1.60329 0.801644 0.597802i \(-0.203959\pi\)
0.801644 + 0.597802i \(0.203959\pi\)
\(140\) 0 0
\(141\) 20790.0 0.0880657
\(142\) −152904. −0.636353
\(143\) −372294. −1.52246
\(144\) 20736.0 0.0833333
\(145\) 20232.0 0.0799133
\(146\) −282356. −1.09626
\(147\) 0 0
\(148\) 50096.0 0.187996
\(149\) −168060. −0.620153 −0.310076 0.950712i \(-0.600355\pi\)
−0.310076 + 0.950712i \(0.600355\pi\)
\(150\) 111204. 0.403545
\(151\) 153536. 0.547984 0.273992 0.961732i \(-0.411656\pi\)
0.273992 + 0.961732i \(0.411656\pi\)
\(152\) −74048.0 −0.259959
\(153\) 140940. 0.486750
\(154\) 0 0
\(155\) −37758.0 −0.126235
\(156\) −80496.0 −0.264827
\(157\) −202418. −0.655390 −0.327695 0.944784i \(-0.606272\pi\)
−0.327695 + 0.944784i \(0.606272\pi\)
\(158\) −249172. −0.794066
\(159\) 254664. 0.798867
\(160\) 6144.00 0.0189737
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) −179764. −0.529949 −0.264974 0.964255i \(-0.585363\pi\)
−0.264974 + 0.964255i \(0.585363\pi\)
\(164\) 77856.0 0.226039
\(165\) 35964.0 0.102839
\(166\) −319272. −0.899271
\(167\) −217302. −0.602938 −0.301469 0.953476i \(-0.597477\pi\)
−0.301469 + 0.953476i \(0.597477\pi\)
\(168\) 0 0
\(169\) −58812.0 −0.158398
\(170\) 41760.0 0.110825
\(171\) −93717.0 −0.245091
\(172\) −182512. −0.470403
\(173\) 73980.0 0.187931 0.0939656 0.995575i \(-0.470046\pi\)
0.0939656 + 0.995575i \(0.470046\pi\)
\(174\) −121392. −0.303960
\(175\) 0 0
\(176\) −170496. −0.414890
\(177\) 184896. 0.443603
\(178\) 72480.0 0.171462
\(179\) 789366. 1.84139 0.920695 0.390283i \(-0.127623\pi\)
0.920695 + 0.390283i \(0.127623\pi\)
\(180\) 7776.00 0.0178885
\(181\) 477739. 1.08391 0.541956 0.840407i \(-0.317684\pi\)
0.541956 + 0.840407i \(0.317684\pi\)
\(182\) 0 0
\(183\) −41670.0 −0.0919805
\(184\) −221952. −0.483297
\(185\) 18786.0 0.0403557
\(186\) 226548. 0.480151
\(187\) −1.15884e6 −2.42337
\(188\) −36960.0 −0.0762671
\(189\) 0 0
\(190\) −27768.0 −0.0558034
\(191\) 358974. 0.711999 0.356000 0.934486i \(-0.384140\pi\)
0.356000 + 0.934486i \(0.384140\pi\)
\(192\) −36864.0 −0.0721688
\(193\) −181933. −0.351575 −0.175788 0.984428i \(-0.556247\pi\)
−0.175788 + 0.984428i \(0.556247\pi\)
\(194\) −499016. −0.951941
\(195\) −30186.0 −0.0568485
\(196\) 0 0
\(197\) 717924. 1.31799 0.658996 0.752146i \(-0.270981\pi\)
0.658996 + 0.752146i \(0.270981\pi\)
\(198\) −215784. −0.391162
\(199\) −203096. −0.363554 −0.181777 0.983340i \(-0.558185\pi\)
−0.181777 + 0.983340i \(0.558185\pi\)
\(200\) −197696. −0.349480
\(201\) 168705. 0.294536
\(202\) 373560. 0.644142
\(203\) 0 0
\(204\) −250560. −0.421538
\(205\) 29196.0 0.0485220
\(206\) 670924. 1.10155
\(207\) −280908. −0.455657
\(208\) 143104. 0.229347
\(209\) 770562. 1.22023
\(210\) 0 0
\(211\) 1.17098e6 1.81069 0.905343 0.424680i \(-0.139613\pi\)
0.905343 + 0.424680i \(0.139613\pi\)
\(212\) −452736. −0.691840
\(213\) 344034. 0.519580
\(214\) 276720. 0.413053
\(215\) −68442.0 −0.100978
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −878236. −1.25161
\(219\) 635301. 0.895095
\(220\) −63936.0 −0.0890612
\(221\) 972660. 1.33962
\(222\) −112716. −0.153498
\(223\) −1.24635e6 −1.67833 −0.839167 0.543873i \(-0.816957\pi\)
−0.839167 + 0.543873i \(0.816957\pi\)
\(224\) 0 0
\(225\) −250209. −0.329493
\(226\) −157416. −0.205011
\(227\) 918942. 1.18365 0.591825 0.806066i \(-0.298408\pi\)
0.591825 + 0.806066i \(0.298408\pi\)
\(228\) 166608. 0.212255
\(229\) −1.20375e6 −1.51687 −0.758433 0.651751i \(-0.774035\pi\)
−0.758433 + 0.651751i \(0.774035\pi\)
\(230\) −83232.0 −0.103746
\(231\) 0 0
\(232\) 215808. 0.263237
\(233\) −919062. −1.10906 −0.554530 0.832164i \(-0.687102\pi\)
−0.554530 + 0.832164i \(0.687102\pi\)
\(234\) 181116. 0.216231
\(235\) −13860.0 −0.0163717
\(236\) −328704. −0.384171
\(237\) 560637. 0.648352
\(238\) 0 0
\(239\) −625338. −0.708142 −0.354071 0.935219i \(-0.615203\pi\)
−0.354071 + 0.935219i \(0.615203\pi\)
\(240\) −13824.0 −0.0154919
\(241\) −1.25382e6 −1.39057 −0.695286 0.718733i \(-0.744722\pi\)
−0.695286 + 0.718733i \(0.744722\pi\)
\(242\) 1.13002e6 1.24036
\(243\) −59049.0 −0.0641500
\(244\) 74080.0 0.0796575
\(245\) 0 0
\(246\) −175176. −0.184560
\(247\) −646763. −0.674532
\(248\) −402752. −0.415823
\(249\) 718362. 0.734252
\(250\) −149136. −0.150915
\(251\) 1.51333e6 1.51618 0.758089 0.652152i \(-0.226133\pi\)
0.758089 + 0.652152i \(0.226133\pi\)
\(252\) 0 0
\(253\) 2.30969e6 2.26857
\(254\) 1.26837e6 1.23357
\(255\) −93960.0 −0.0904883
\(256\) 65536.0 0.0625000
\(257\) 1.55493e6 1.46851 0.734257 0.678872i \(-0.237531\pi\)
0.734257 + 0.678872i \(0.237531\pi\)
\(258\) 410652. 0.384083
\(259\) 0 0
\(260\) 53664.0 0.0492322
\(261\) 273132. 0.248183
\(262\) 619320. 0.557393
\(263\) −1.11532e6 −0.994280 −0.497140 0.867670i \(-0.665616\pi\)
−0.497140 + 0.867670i \(0.665616\pi\)
\(264\) 383616. 0.338756
\(265\) −169776. −0.148512
\(266\) 0 0
\(267\) −163080. −0.139998
\(268\) −299920. −0.255075
\(269\) −35670.0 −0.0300554 −0.0150277 0.999887i \(-0.504784\pi\)
−0.0150277 + 0.999887i \(0.504784\pi\)
\(270\) −17496.0 −0.0146059
\(271\) 292768. 0.242159 0.121079 0.992643i \(-0.461364\pi\)
0.121079 + 0.992643i \(0.461364\pi\)
\(272\) 445440. 0.365062
\(273\) 0 0
\(274\) 269328. 0.216723
\(275\) 2.05727e6 1.64044
\(276\) 499392. 0.394611
\(277\) 863213. 0.675956 0.337978 0.941154i \(-0.390257\pi\)
0.337978 + 0.941154i \(0.390257\pi\)
\(278\) 1.46086e6 1.13370
\(279\) −509733. −0.392042
\(280\) 0 0
\(281\) 1.47110e6 1.11142 0.555709 0.831377i \(-0.312447\pi\)
0.555709 + 0.831377i \(0.312447\pi\)
\(282\) 83160.0 0.0622718
\(283\) −688841. −0.511273 −0.255637 0.966773i \(-0.582285\pi\)
−0.255637 + 0.966773i \(0.582285\pi\)
\(284\) −611616. −0.449969
\(285\) 62478.0 0.0455633
\(286\) −1.48918e6 −1.07654
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) 1.60774e6 1.13233
\(290\) 80928.0 0.0565072
\(291\) 1.12279e6 0.777257
\(292\) −1.12942e6 −0.775175
\(293\) −722832. −0.491890 −0.245945 0.969284i \(-0.579098\pi\)
−0.245945 + 0.969284i \(0.579098\pi\)
\(294\) 0 0
\(295\) −123264. −0.0824672
\(296\) 200384. 0.132933
\(297\) 485514. 0.319382
\(298\) −672240. −0.438514
\(299\) −1.93861e6 −1.25404
\(300\) 444816. 0.285350
\(301\) 0 0
\(302\) 614144. 0.387483
\(303\) −840510. −0.525940
\(304\) −296192. −0.183819
\(305\) 27780.0 0.0170995
\(306\) 563760. 0.344184
\(307\) 20125.0 0.0121868 0.00609340 0.999981i \(-0.498060\pi\)
0.00609340 + 0.999981i \(0.498060\pi\)
\(308\) 0 0
\(309\) −1.50958e6 −0.899414
\(310\) −151032. −0.0892616
\(311\) 1.74356e6 1.02220 0.511099 0.859522i \(-0.329238\pi\)
0.511099 + 0.859522i \(0.329238\pi\)
\(312\) −321984. −0.187261
\(313\) −1.80854e6 −1.04344 −0.521721 0.853116i \(-0.674710\pi\)
−0.521721 + 0.853116i \(0.674710\pi\)
\(314\) −809672. −0.463431
\(315\) 0 0
\(316\) −996688. −0.561489
\(317\) 1.02355e6 0.572087 0.286043 0.958217i \(-0.407660\pi\)
0.286043 + 0.958217i \(0.407660\pi\)
\(318\) 1.01866e6 0.564885
\(319\) −2.24575e6 −1.23562
\(320\) 24576.0 0.0134164
\(321\) −622620. −0.337257
\(322\) 0 0
\(323\) −2.01318e6 −1.07368
\(324\) 104976. 0.0555556
\(325\) −1.72675e6 −0.906820
\(326\) −719056. −0.374730
\(327\) 1.97603e6 1.02194
\(328\) 311424. 0.159833
\(329\) 0 0
\(330\) 143856. 0.0727182
\(331\) −1.00753e6 −0.505463 −0.252731 0.967536i \(-0.581329\pi\)
−0.252731 + 0.967536i \(0.581329\pi\)
\(332\) −1.27709e6 −0.635881
\(333\) 253611. 0.125331
\(334\) −869208. −0.426341
\(335\) −112470. −0.0547551
\(336\) 0 0
\(337\) −1.56571e6 −0.750993 −0.375496 0.926824i \(-0.622528\pi\)
−0.375496 + 0.926824i \(0.622528\pi\)
\(338\) −235248. −0.112004
\(339\) 354186. 0.167391
\(340\) 167040. 0.0783652
\(341\) 4.19114e6 1.95185
\(342\) −374868. −0.173306
\(343\) 0 0
\(344\) −730048. −0.332625
\(345\) 187272. 0.0847081
\(346\) 295920. 0.132887
\(347\) 757284. 0.337625 0.168813 0.985648i \(-0.446007\pi\)
0.168813 + 0.985648i \(0.446007\pi\)
\(348\) −485568. −0.214932
\(349\) 455638. 0.200243 0.100121 0.994975i \(-0.468077\pi\)
0.100121 + 0.994975i \(0.468077\pi\)
\(350\) 0 0
\(351\) −407511. −0.176552
\(352\) −681984. −0.293371
\(353\) 3.63139e6 1.55109 0.775543 0.631295i \(-0.217476\pi\)
0.775543 + 0.631295i \(0.217476\pi\)
\(354\) 739584. 0.313675
\(355\) −229356. −0.0965916
\(356\) 289920. 0.121242
\(357\) 0 0
\(358\) 3.15746e6 1.30206
\(359\) −4.02484e6 −1.64821 −0.824104 0.566438i \(-0.808321\pi\)
−0.824104 + 0.566438i \(0.808321\pi\)
\(360\) 31104.0 0.0126491
\(361\) −1.13745e6 −0.459372
\(362\) 1.91096e6 0.766442
\(363\) −2.54254e6 −1.01275
\(364\) 0 0
\(365\) −423534. −0.166401
\(366\) −166680. −0.0650400
\(367\) −2.57787e6 −0.999072 −0.499536 0.866293i \(-0.666496\pi\)
−0.499536 + 0.866293i \(0.666496\pi\)
\(368\) −887808. −0.341743
\(369\) 394146. 0.150692
\(370\) 75144.0 0.0285358
\(371\) 0 0
\(372\) 906192. 0.339518
\(373\) −2.53133e6 −0.942056 −0.471028 0.882118i \(-0.656117\pi\)
−0.471028 + 0.882118i \(0.656117\pi\)
\(374\) −4.63536e6 −1.71358
\(375\) 335556. 0.123222
\(376\) −147840. −0.0539290
\(377\) 1.88495e6 0.683040
\(378\) 0 0
\(379\) −3.06677e6 −1.09669 −0.548344 0.836253i \(-0.684742\pi\)
−0.548344 + 0.836253i \(0.684742\pi\)
\(380\) −111072. −0.0394590
\(381\) −2.85384e6 −1.00720
\(382\) 1.43590e6 0.503460
\(383\) 3.92520e6 1.36730 0.683652 0.729808i \(-0.260391\pi\)
0.683652 + 0.729808i \(0.260391\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −727732. −0.248601
\(387\) −923967. −0.313602
\(388\) −1.99606e6 −0.673124
\(389\) −4.02669e6 −1.34919 −0.674597 0.738187i \(-0.735682\pi\)
−0.674597 + 0.738187i \(0.735682\pi\)
\(390\) −120744. −0.0401980
\(391\) −6.03432e6 −1.99612
\(392\) 0 0
\(393\) −1.39347e6 −0.455110
\(394\) 2.87170e6 0.931961
\(395\) −373758. −0.120531
\(396\) −863136. −0.276593
\(397\) −4.57440e6 −1.45666 −0.728329 0.685227i \(-0.759703\pi\)
−0.728329 + 0.685227i \(0.759703\pi\)
\(398\) −812384. −0.257071
\(399\) 0 0
\(400\) −790784. −0.247120
\(401\) −2.26944e6 −0.704787 −0.352393 0.935852i \(-0.614632\pi\)
−0.352393 + 0.935852i \(0.614632\pi\)
\(402\) 674820. 0.208268
\(403\) −3.51779e6 −1.07896
\(404\) 1.49424e6 0.455478
\(405\) 39366.0 0.0119257
\(406\) 0 0
\(407\) −2.08525e6 −0.623981
\(408\) −1.00224e6 −0.298072
\(409\) 4.04596e6 1.19595 0.597976 0.801514i \(-0.295972\pi\)
0.597976 + 0.801514i \(0.295972\pi\)
\(410\) 116784. 0.0343102
\(411\) −605988. −0.176954
\(412\) 2.68370e6 0.778915
\(413\) 0 0
\(414\) −1.12363e6 −0.322198
\(415\) −478908. −0.136500
\(416\) 572416. 0.162173
\(417\) −3.28694e6 −0.925659
\(418\) 3.08225e6 0.862833
\(419\) 3.91281e6 1.08881 0.544407 0.838821i \(-0.316755\pi\)
0.544407 + 0.838821i \(0.316755\pi\)
\(420\) 0 0
\(421\) −2.78086e6 −0.764671 −0.382335 0.924024i \(-0.624880\pi\)
−0.382335 + 0.924024i \(0.624880\pi\)
\(422\) 4.68392e6 1.28035
\(423\) −187110. −0.0508447
\(424\) −1.81094e6 −0.489204
\(425\) −5.37486e6 −1.44343
\(426\) 1.37614e6 0.367398
\(427\) 0 0
\(428\) 1.10688e6 0.292073
\(429\) 3.35065e6 0.878993
\(430\) −273768. −0.0714022
\(431\) −4.38207e6 −1.13628 −0.568141 0.822931i \(-0.692337\pi\)
−0.568141 + 0.822931i \(0.692337\pi\)
\(432\) −186624. −0.0481125
\(433\) −1.24946e6 −0.320261 −0.160130 0.987096i \(-0.551191\pi\)
−0.160130 + 0.987096i \(0.551191\pi\)
\(434\) 0 0
\(435\) −182088. −0.0461379
\(436\) −3.51294e6 −0.885024
\(437\) 4.01248e6 1.00510
\(438\) 2.54120e6 0.632928
\(439\) 6.74421e6 1.67020 0.835102 0.550095i \(-0.185408\pi\)
0.835102 + 0.550095i \(0.185408\pi\)
\(440\) −255744. −0.0629758
\(441\) 0 0
\(442\) 3.89064e6 0.947252
\(443\) 478896. 0.115940 0.0579698 0.998318i \(-0.481537\pi\)
0.0579698 + 0.998318i \(0.481537\pi\)
\(444\) −450864. −0.108540
\(445\) 108720. 0.0260261
\(446\) −4.98541e6 −1.18676
\(447\) 1.51254e6 0.358045
\(448\) 0 0
\(449\) 724506. 0.169600 0.0848001 0.996398i \(-0.472975\pi\)
0.0848001 + 0.996398i \(0.472975\pi\)
\(450\) −1.00084e6 −0.232987
\(451\) −3.24076e6 −0.750248
\(452\) −629664. −0.144965
\(453\) −1.38182e6 −0.316379
\(454\) 3.67577e6 0.836967
\(455\) 0 0
\(456\) 666432. 0.150087
\(457\) −2.33956e6 −0.524016 −0.262008 0.965066i \(-0.584385\pi\)
−0.262008 + 0.965066i \(0.584385\pi\)
\(458\) −4.81500e6 −1.07259
\(459\) −1.26846e6 −0.281025
\(460\) −332928. −0.0733594
\(461\) −2.98247e6 −0.653617 −0.326809 0.945091i \(-0.605973\pi\)
−0.326809 + 0.945091i \(0.605973\pi\)
\(462\) 0 0
\(463\) 4.28423e6 0.928795 0.464398 0.885627i \(-0.346271\pi\)
0.464398 + 0.885627i \(0.346271\pi\)
\(464\) 863232. 0.186137
\(465\) 339822. 0.0728818
\(466\) −3.67625e6 −0.784224
\(467\) 5.74035e6 1.21800 0.608998 0.793171i \(-0.291572\pi\)
0.608998 + 0.793171i \(0.291572\pi\)
\(468\) 724464. 0.152898
\(469\) 0 0
\(470\) −55440.0 −0.0115765
\(471\) 1.82176e6 0.378390
\(472\) −1.31482e6 −0.271650
\(473\) 7.59706e6 1.56132
\(474\) 2.24255e6 0.458454
\(475\) 3.57397e6 0.726804
\(476\) 0 0
\(477\) −2.29198e6 −0.461226
\(478\) −2.50135e6 −0.500732
\(479\) −2.65051e6 −0.527826 −0.263913 0.964546i \(-0.585013\pi\)
−0.263913 + 0.964546i \(0.585013\pi\)
\(480\) −55296.0 −0.0109545
\(481\) 1.75023e6 0.344931
\(482\) −5.01529e6 −0.983282
\(483\) 0 0
\(484\) 4.52008e6 0.877067
\(485\) −748524. −0.144495
\(486\) −236196. −0.0453609
\(487\) 2.80554e6 0.536036 0.268018 0.963414i \(-0.413631\pi\)
0.268018 + 0.963414i \(0.413631\pi\)
\(488\) 296320. 0.0563263
\(489\) 1.61788e6 0.305966
\(490\) 0 0
\(491\) −4.68450e6 −0.876919 −0.438460 0.898751i \(-0.644476\pi\)
−0.438460 + 0.898751i \(0.644476\pi\)
\(492\) −700704. −0.130503
\(493\) 5.86728e6 1.08723
\(494\) −2.58705e6 −0.476966
\(495\) −323676. −0.0593742
\(496\) −1.61101e6 −0.294031
\(497\) 0 0
\(498\) 2.87345e6 0.519194
\(499\) 1.47575e6 0.265315 0.132658 0.991162i \(-0.457649\pi\)
0.132658 + 0.991162i \(0.457649\pi\)
\(500\) −596544. −0.106713
\(501\) 1.95572e6 0.348106
\(502\) 6.05333e6 1.07210
\(503\) −63606.0 −0.0112093 −0.00560465 0.999984i \(-0.501784\pi\)
−0.00560465 + 0.999984i \(0.501784\pi\)
\(504\) 0 0
\(505\) 560340. 0.0977740
\(506\) 9.23875e6 1.60412
\(507\) 529308. 0.0914510
\(508\) 5.07349e6 0.872263
\(509\) −6.21157e6 −1.06269 −0.531345 0.847155i \(-0.678313\pi\)
−0.531345 + 0.847155i \(0.678313\pi\)
\(510\) −375840. −0.0639849
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 843453. 0.141504
\(514\) 6.21972e6 1.03840
\(515\) 1.00639e6 0.167204
\(516\) 1.64261e6 0.271587
\(517\) 1.53846e6 0.253139
\(518\) 0 0
\(519\) −665820. −0.108502
\(520\) 214656. 0.0348125
\(521\) −1.41205e6 −0.227906 −0.113953 0.993486i \(-0.536351\pi\)
−0.113953 + 0.993486i \(0.536351\pi\)
\(522\) 1.09253e6 0.175492
\(523\) −5.22935e6 −0.835975 −0.417987 0.908453i \(-0.637264\pi\)
−0.417987 + 0.908453i \(0.637264\pi\)
\(524\) 2.47728e6 0.394137
\(525\) 0 0
\(526\) −4.46126e6 −0.703062
\(527\) −1.09498e7 −1.71744
\(528\) 1.53446e6 0.239537
\(529\) 5.59068e6 0.868611
\(530\) −679104. −0.105014
\(531\) −1.66406e6 −0.256114
\(532\) 0 0
\(533\) 2.72009e6 0.414730
\(534\) −652320. −0.0989937
\(535\) 415080. 0.0626971
\(536\) −1.19968e6 −0.180365
\(537\) −7.10429e6 −1.06313
\(538\) −142680. −0.0212524
\(539\) 0 0
\(540\) −69984.0 −0.0103280
\(541\) 4.41372e6 0.648354 0.324177 0.945996i \(-0.394913\pi\)
0.324177 + 0.945996i \(0.394913\pi\)
\(542\) 1.17107e6 0.171232
\(543\) −4.29965e6 −0.625797
\(544\) 1.78176e6 0.258138
\(545\) −1.31735e6 −0.189981
\(546\) 0 0
\(547\) −1.19038e7 −1.70105 −0.850523 0.525938i \(-0.823714\pi\)
−0.850523 + 0.525938i \(0.823714\pi\)
\(548\) 1.07731e6 0.153246
\(549\) 375030. 0.0531050
\(550\) 8.22910e6 1.15997
\(551\) −3.90140e6 −0.547447
\(552\) 1.99757e6 0.279032
\(553\) 0 0
\(554\) 3.45285e6 0.477973
\(555\) −169074. −0.0232994
\(556\) 5.84344e6 0.801644
\(557\) 1.29133e7 1.76360 0.881798 0.471626i \(-0.156333\pi\)
0.881798 + 0.471626i \(0.156333\pi\)
\(558\) −2.03893e6 −0.277215
\(559\) −6.37651e6 −0.863085
\(560\) 0 0
\(561\) 1.04296e7 1.39913
\(562\) 5.88442e6 0.785891
\(563\) 1.13698e7 1.51176 0.755881 0.654709i \(-0.227209\pi\)
0.755881 + 0.654709i \(0.227209\pi\)
\(564\) 332640. 0.0440328
\(565\) −236124. −0.0311185
\(566\) −2.75536e6 −0.361525
\(567\) 0 0
\(568\) −2.44646e6 −0.318176
\(569\) −5.69795e6 −0.737799 −0.368900 0.929469i \(-0.620265\pi\)
−0.368900 + 0.929469i \(0.620265\pi\)
\(570\) 249912. 0.0322181
\(571\) −7.04221e6 −0.903896 −0.451948 0.892044i \(-0.649271\pi\)
−0.451948 + 0.892044i \(0.649271\pi\)
\(572\) −5.95670e6 −0.761230
\(573\) −3.23077e6 −0.411073
\(574\) 0 0
\(575\) 1.07127e7 1.35122
\(576\) 331776. 0.0416667
\(577\) 2.58197e6 0.322858 0.161429 0.986884i \(-0.448390\pi\)
0.161429 + 0.986884i \(0.448390\pi\)
\(578\) 6.43097e6 0.800676
\(579\) 1.63740e6 0.202982
\(580\) 323712. 0.0399566
\(581\) 0 0
\(582\) 4.49114e6 0.549604
\(583\) 1.88451e7 2.29630
\(584\) −4.51770e6 −0.548132
\(585\) 271674. 0.0328215
\(586\) −2.89133e6 −0.347819
\(587\) −4.69459e6 −0.562345 −0.281172 0.959657i \(-0.590723\pi\)
−0.281172 + 0.959657i \(0.590723\pi\)
\(588\) 0 0
\(589\) 7.28100e6 0.864774
\(590\) −493056. −0.0583131
\(591\) −6.46132e6 −0.760943
\(592\) 801536. 0.0939980
\(593\) −1.34235e7 −1.56758 −0.783789 0.621027i \(-0.786716\pi\)
−0.783789 + 0.621027i \(0.786716\pi\)
\(594\) 1.94206e6 0.225837
\(595\) 0 0
\(596\) −2.68896e6 −0.310076
\(597\) 1.82786e6 0.209898
\(598\) −7.75445e6 −0.886743
\(599\) 5.04601e6 0.574621 0.287310 0.957838i \(-0.407239\pi\)
0.287310 + 0.957838i \(0.407239\pi\)
\(600\) 1.77926e6 0.201773
\(601\) 1.06391e7 1.20148 0.600742 0.799443i \(-0.294872\pi\)
0.600742 + 0.799443i \(0.294872\pi\)
\(602\) 0 0
\(603\) −1.51834e6 −0.170050
\(604\) 2.45658e6 0.273992
\(605\) 1.69503e6 0.188273
\(606\) −3.36204e6 −0.371896
\(607\) −1.41608e6 −0.155997 −0.0779986 0.996953i \(-0.524853\pi\)
−0.0779986 + 0.996953i \(0.524853\pi\)
\(608\) −1.18477e6 −0.129979
\(609\) 0 0
\(610\) 111120. 0.0120912
\(611\) −1.29129e6 −0.139933
\(612\) 2.25504e6 0.243375
\(613\) 9.46303e6 1.01714 0.508568 0.861022i \(-0.330175\pi\)
0.508568 + 0.861022i \(0.330175\pi\)
\(614\) 80500.0 0.00861737
\(615\) −262764. −0.0280142
\(616\) 0 0
\(617\) 1.29388e7 1.36830 0.684148 0.729343i \(-0.260174\pi\)
0.684148 + 0.729343i \(0.260174\pi\)
\(618\) −6.03832e6 −0.635982
\(619\) 3.80376e6 0.399013 0.199506 0.979897i \(-0.436066\pi\)
0.199506 + 0.979897i \(0.436066\pi\)
\(620\) −604128. −0.0631175
\(621\) 2.52817e6 0.263074
\(622\) 6.97423e6 0.722804
\(623\) 0 0
\(624\) −1.28794e6 −0.132414
\(625\) 9.42942e6 0.965573
\(626\) −7.23417e6 −0.737824
\(627\) −6.93506e6 −0.704500
\(628\) −3.23869e6 −0.327695
\(629\) 5.44794e6 0.549042
\(630\) 0 0
\(631\) −9.17498e6 −0.917343 −0.458671 0.888606i \(-0.651674\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(632\) −3.98675e6 −0.397033
\(633\) −1.05388e7 −1.04540
\(634\) 4.09421e6 0.404526
\(635\) 1.90256e6 0.187242
\(636\) 4.07462e6 0.399434
\(637\) 0 0
\(638\) −8.98301e6 −0.873716
\(639\) −3.09631e6 −0.299980
\(640\) 98304.0 0.00948683
\(641\) 1.02454e7 0.984879 0.492439 0.870347i \(-0.336105\pi\)
0.492439 + 0.870347i \(0.336105\pi\)
\(642\) −2.49048e6 −0.238476
\(643\) 5.72346e6 0.545922 0.272961 0.962025i \(-0.411997\pi\)
0.272961 + 0.962025i \(0.411997\pi\)
\(644\) 0 0
\(645\) 615978. 0.0582996
\(646\) −8.05272e6 −0.759209
\(647\) 9.98794e6 0.938027 0.469013 0.883191i \(-0.344610\pi\)
0.469013 + 0.883191i \(0.344610\pi\)
\(648\) 419904. 0.0392837
\(649\) 1.36823e7 1.27511
\(650\) −6.90700e6 −0.641219
\(651\) 0 0
\(652\) −2.87622e6 −0.264974
\(653\) −1.19888e6 −0.110025 −0.0550126 0.998486i \(-0.517520\pi\)
−0.0550126 + 0.998486i \(0.517520\pi\)
\(654\) 7.90412e6 0.722619
\(655\) 928980. 0.0846064
\(656\) 1.24570e6 0.113019
\(657\) −5.71771e6 −0.516783
\(658\) 0 0
\(659\) 1.18065e7 1.05903 0.529516 0.848300i \(-0.322374\pi\)
0.529516 + 0.848300i \(0.322374\pi\)
\(660\) 575424. 0.0514195
\(661\) −4.72039e6 −0.420218 −0.210109 0.977678i \(-0.567382\pi\)
−0.210109 + 0.977678i \(0.567382\pi\)
\(662\) −4.03013e6 −0.357416
\(663\) −8.75394e6 −0.773428
\(664\) −5.10835e6 −0.449636
\(665\) 0 0
\(666\) 1.01444e6 0.0886222
\(667\) −1.16941e7 −1.01778
\(668\) −3.47683e6 −0.301469
\(669\) 1.12172e7 0.968987
\(670\) −449880. −0.0387177
\(671\) −3.08358e6 −0.264392
\(672\) 0 0
\(673\) −8.70826e6 −0.741129 −0.370564 0.928807i \(-0.620836\pi\)
−0.370564 + 0.928807i \(0.620836\pi\)
\(674\) −6.26283e6 −0.531032
\(675\) 2.25188e6 0.190233
\(676\) −940992. −0.0791989
\(677\) −5.11105e6 −0.428587 −0.214293 0.976769i \(-0.568745\pi\)
−0.214293 + 0.976769i \(0.568745\pi\)
\(678\) 1.41674e6 0.118363
\(679\) 0 0
\(680\) 668160. 0.0554126
\(681\) −8.27048e6 −0.683381
\(682\) 1.67646e7 1.38017
\(683\) −1.77198e7 −1.45347 −0.726736 0.686917i \(-0.758963\pi\)
−0.726736 + 0.686917i \(0.758963\pi\)
\(684\) −1.49947e6 −0.122546
\(685\) 403992. 0.0328962
\(686\) 0 0
\(687\) 1.08337e7 0.875763
\(688\) −2.92019e6 −0.235202
\(689\) −1.58175e7 −1.26937
\(690\) 749088. 0.0598977
\(691\) 2.25993e7 1.80053 0.900265 0.435341i \(-0.143372\pi\)
0.900265 + 0.435341i \(0.143372\pi\)
\(692\) 1.18368e6 0.0939656
\(693\) 0 0
\(694\) 3.02914e6 0.238737
\(695\) 2.19129e6 0.172083
\(696\) −1.94227e6 −0.151980
\(697\) 8.46684e6 0.660145
\(698\) 1.82255e6 0.141593
\(699\) 8.27156e6 0.640316
\(700\) 0 0
\(701\) −818148. −0.0628835 −0.0314418 0.999506i \(-0.510010\pi\)
−0.0314418 + 0.999506i \(0.510010\pi\)
\(702\) −1.63004e6 −0.124841
\(703\) −3.62257e6 −0.276457
\(704\) −2.72794e6 −0.207445
\(705\) 124740. 0.00945220
\(706\) 1.45255e7 1.09678
\(707\) 0 0
\(708\) 2.95834e6 0.221801
\(709\) −5.09183e6 −0.380415 −0.190208 0.981744i \(-0.560916\pi\)
−0.190208 + 0.981744i \(0.560916\pi\)
\(710\) −917424. −0.0683006
\(711\) −5.04573e6 −0.374326
\(712\) 1.15968e6 0.0857311
\(713\) 2.18241e7 1.60773
\(714\) 0 0
\(715\) −2.23376e6 −0.163408
\(716\) 1.26299e7 0.920695
\(717\) 5.62804e6 0.408846
\(718\) −1.60993e7 −1.16546
\(719\) 480858. 0.0346892 0.0173446 0.999850i \(-0.494479\pi\)
0.0173446 + 0.999850i \(0.494479\pi\)
\(720\) 124416. 0.00894427
\(721\) 0 0
\(722\) −4.54980e6 −0.324825
\(723\) 1.12844e7 0.802847
\(724\) 7.64382e6 0.541956
\(725\) −1.04161e7 −0.735971
\(726\) −1.01702e7 −0.716122
\(727\) 1.40783e7 0.987905 0.493952 0.869489i \(-0.335552\pi\)
0.493952 + 0.869489i \(0.335552\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −1.69414e6 −0.117663
\(731\) −1.98482e7 −1.37381
\(732\) −666720. −0.0459903
\(733\) −2.03932e6 −0.140193 −0.0700964 0.997540i \(-0.522331\pi\)
−0.0700964 + 0.997540i \(0.522331\pi\)
\(734\) −1.03115e7 −0.706450
\(735\) 0 0
\(736\) −3.55123e6 −0.241649
\(737\) 1.24842e7 0.846625
\(738\) 1.57658e6 0.106556
\(739\) −1.64957e7 −1.11112 −0.555558 0.831478i \(-0.687495\pi\)
−0.555558 + 0.831478i \(0.687495\pi\)
\(740\) 300576. 0.0201779
\(741\) 5.82087e6 0.389441
\(742\) 0 0
\(743\) −2.38121e7 −1.58243 −0.791217 0.611536i \(-0.790552\pi\)
−0.791217 + 0.611536i \(0.790552\pi\)
\(744\) 3.62477e6 0.240076
\(745\) −1.00836e6 −0.0665618
\(746\) −1.01253e7 −0.666134
\(747\) −6.46526e6 −0.423920
\(748\) −1.85414e7 −1.21168
\(749\) 0 0
\(750\) 1.34222e6 0.0871308
\(751\) 1.92496e6 0.124544 0.0622719 0.998059i \(-0.480165\pi\)
0.0622719 + 0.998059i \(0.480165\pi\)
\(752\) −591360. −0.0381336
\(753\) −1.36200e7 −0.875365
\(754\) 7.53979e6 0.482982
\(755\) 921216. 0.0588158
\(756\) 0 0
\(757\) 8.98092e6 0.569615 0.284807 0.958585i \(-0.408070\pi\)
0.284807 + 0.958585i \(0.408070\pi\)
\(758\) −1.22671e7 −0.775475
\(759\) −2.07872e7 −1.30976
\(760\) −444288. −0.0279017
\(761\) −1.45991e7 −0.913827 −0.456914 0.889511i \(-0.651045\pi\)
−0.456914 + 0.889511i \(0.651045\pi\)
\(762\) −1.14153e7 −0.712200
\(763\) 0 0
\(764\) 5.74358e6 0.356000
\(765\) 845640. 0.0522435
\(766\) 1.57008e7 0.966829
\(767\) −1.14841e7 −0.704869
\(768\) −589824. −0.0360844
\(769\) −2.78381e7 −1.69755 −0.848776 0.528753i \(-0.822660\pi\)
−0.848776 + 0.528753i \(0.822660\pi\)
\(770\) 0 0
\(771\) −1.39944e7 −0.847847
\(772\) −2.91093e6 −0.175788
\(773\) 2.82857e7 1.70262 0.851312 0.524660i \(-0.175808\pi\)
0.851312 + 0.524660i \(0.175808\pi\)
\(774\) −3.69587e6 −0.221750
\(775\) 1.94391e7 1.16258
\(776\) −7.98426e6 −0.475971
\(777\) 0 0
\(778\) −1.61068e7 −0.954024
\(779\) −5.62996e6 −0.332401
\(780\) −482976. −0.0284243
\(781\) 2.54585e7 1.49350
\(782\) −2.41373e7 −1.41147
\(783\) −2.45819e6 −0.143288
\(784\) 0 0
\(785\) −1.21451e6 −0.0703439
\(786\) −5.57388e6 −0.321811
\(787\) −9872.00 −0.000568157 0 −0.000284078 1.00000i \(-0.500090\pi\)
−0.000284078 1.00000i \(0.500090\pi\)
\(788\) 1.14868e7 0.658996
\(789\) 1.00378e7 0.574048
\(790\) −1.49503e6 −0.0852281
\(791\) 0 0
\(792\) −3.45254e6 −0.195581
\(793\) 2.58817e6 0.146154
\(794\) −1.82976e7 −1.03001
\(795\) 1.52798e6 0.0857435
\(796\) −3.24954e6 −0.181777
\(797\) 1.08919e7 0.607377 0.303688 0.952771i \(-0.401782\pi\)
0.303688 + 0.952771i \(0.401782\pi\)
\(798\) 0 0
\(799\) −4.01940e6 −0.222738
\(800\) −3.16314e6 −0.174740
\(801\) 1.46772e6 0.0808280
\(802\) −9.07776e6 −0.498360
\(803\) 4.70123e7 2.57290
\(804\) 2.69928e6 0.147268
\(805\) 0 0
\(806\) −1.40711e7 −0.762943
\(807\) 321030. 0.0173525
\(808\) 5.97696e6 0.322071
\(809\) −5.23529e6 −0.281235 −0.140618 0.990064i \(-0.544909\pi\)
−0.140618 + 0.990064i \(0.544909\pi\)
\(810\) 157464. 0.00843274
\(811\) −1.26147e7 −0.673482 −0.336741 0.941597i \(-0.609325\pi\)
−0.336741 + 0.941597i \(0.609325\pi\)
\(812\) 0 0
\(813\) −2.63491e6 −0.139810
\(814\) −8.34098e6 −0.441221
\(815\) −1.07858e6 −0.0568800
\(816\) −4.00896e6 −0.210769
\(817\) 1.31979e7 0.691751
\(818\) 1.61839e7 0.845666
\(819\) 0 0
\(820\) 467136. 0.0242610
\(821\) −1.53424e7 −0.794392 −0.397196 0.917734i \(-0.630017\pi\)
−0.397196 + 0.917734i \(0.630017\pi\)
\(822\) −2.42395e6 −0.125125
\(823\) −1.49595e7 −0.769870 −0.384935 0.922944i \(-0.625776\pi\)
−0.384935 + 0.922944i \(0.625776\pi\)
\(824\) 1.07348e7 0.550776
\(825\) −1.85155e7 −0.947109
\(826\) 0 0
\(827\) 2.80498e7 1.42615 0.713076 0.701087i \(-0.247301\pi\)
0.713076 + 0.701087i \(0.247301\pi\)
\(828\) −4.49453e6 −0.227829
\(829\) −1.47311e7 −0.744473 −0.372236 0.928138i \(-0.621409\pi\)
−0.372236 + 0.928138i \(0.621409\pi\)
\(830\) −1.91563e6 −0.0965199
\(831\) −7.76892e6 −0.390263
\(832\) 2.28966e6 0.114674
\(833\) 0 0
\(834\) −1.31477e7 −0.654540
\(835\) −1.30381e6 −0.0647141
\(836\) 1.23290e7 0.610115
\(837\) 4.58760e6 0.226345
\(838\) 1.56512e7 0.769908
\(839\) −2.36347e7 −1.15916 −0.579581 0.814914i \(-0.696784\pi\)
−0.579581 + 0.814914i \(0.696784\pi\)
\(840\) 0 0
\(841\) −9.14076e6 −0.445649
\(842\) −1.11235e7 −0.540704
\(843\) −1.32399e7 −0.641678
\(844\) 1.87357e7 0.905343
\(845\) −352872. −0.0170010
\(846\) −748440. −0.0359527
\(847\) 0 0
\(848\) −7.24378e6 −0.345920
\(849\) 6.19957e6 0.295184
\(850\) −2.14994e7 −1.02066
\(851\) −1.08583e7 −0.513971
\(852\) 5.50454e6 0.259790
\(853\) −1.43965e7 −0.677459 −0.338730 0.940884i \(-0.609997\pi\)
−0.338730 + 0.940884i \(0.609997\pi\)
\(854\) 0 0
\(855\) −562302. −0.0263060
\(856\) 4.42752e6 0.206527
\(857\) −1.24710e7 −0.580027 −0.290014 0.957023i \(-0.593660\pi\)
−0.290014 + 0.957023i \(0.593660\pi\)
\(858\) 1.34026e7 0.621542
\(859\) 1.25059e7 0.578271 0.289136 0.957288i \(-0.406632\pi\)
0.289136 + 0.957288i \(0.406632\pi\)
\(860\) −1.09507e6 −0.0504890
\(861\) 0 0
\(862\) −1.75283e7 −0.803473
\(863\) 2.80289e7 1.28109 0.640545 0.767921i \(-0.278709\pi\)
0.640545 + 0.767921i \(0.278709\pi\)
\(864\) −746496. −0.0340207
\(865\) 443880. 0.0201709
\(866\) −4.99785e6 −0.226459
\(867\) −1.44697e7 −0.653750
\(868\) 0 0
\(869\) 4.14871e7 1.86365
\(870\) −728352. −0.0326244
\(871\) −1.04785e7 −0.468006
\(872\) −1.40518e7 −0.625806
\(873\) −1.01051e7 −0.448749
\(874\) 1.60499e7 0.710712
\(875\) 0 0
\(876\) 1.01648e7 0.447548
\(877\) 2.31173e7 1.01493 0.507467 0.861671i \(-0.330582\pi\)
0.507467 + 0.861671i \(0.330582\pi\)
\(878\) 2.69768e7 1.18101
\(879\) 6.50549e6 0.283993
\(880\) −1.02298e6 −0.0445306
\(881\) 9.59891e6 0.416660 0.208330 0.978059i \(-0.433197\pi\)
0.208330 + 0.978059i \(0.433197\pi\)
\(882\) 0 0
\(883\) 443183. 0.0191285 0.00956426 0.999954i \(-0.496956\pi\)
0.00956426 + 0.999954i \(0.496956\pi\)
\(884\) 1.55626e7 0.669808
\(885\) 1.10938e6 0.0476125
\(886\) 1.91558e6 0.0819817
\(887\) 2.40097e7 1.02465 0.512327 0.858791i \(-0.328784\pi\)
0.512327 + 0.858791i \(0.328784\pi\)
\(888\) −1.80346e6 −0.0767491
\(889\) 0 0
\(890\) 434880. 0.0184032
\(891\) −4.36963e6 −0.184395
\(892\) −1.99416e7 −0.839167
\(893\) 2.67267e6 0.112154
\(894\) 6.05016e6 0.253176
\(895\) 4.73620e6 0.197639
\(896\) 0 0
\(897\) 1.74475e7 0.724023
\(898\) 2.89802e6 0.119925
\(899\) −2.12200e7 −0.875681
\(900\) −4.00334e6 −0.164747
\(901\) −4.92350e7 −2.02052
\(902\) −1.29630e7 −0.530506
\(903\) 0 0
\(904\) −2.51866e6 −0.102506
\(905\) 2.86643e6 0.116338
\(906\) −5.52730e6 −0.223714
\(907\) 1.75854e7 0.709796 0.354898 0.934905i \(-0.384516\pi\)
0.354898 + 0.934905i \(0.384516\pi\)
\(908\) 1.47031e7 0.591825
\(909\) 7.56459e6 0.303652
\(910\) 0 0
\(911\) −2.95599e7 −1.18007 −0.590033 0.807379i \(-0.700885\pi\)
−0.590033 + 0.807379i \(0.700885\pi\)
\(912\) 2.66573e6 0.106128
\(913\) 5.31588e7 2.11056
\(914\) −9.35825e6 −0.370535
\(915\) −250020. −0.00987238
\(916\) −1.92600e7 −0.758433
\(917\) 0 0
\(918\) −5.07384e6 −0.198715
\(919\) −3.91482e6 −0.152906 −0.0764528 0.997073i \(-0.524359\pi\)
−0.0764528 + 0.997073i \(0.524359\pi\)
\(920\) −1.33171e6 −0.0518729
\(921\) −181125. −0.00703606
\(922\) −1.19299e7 −0.462177
\(923\) −2.13683e7 −0.825594
\(924\) 0 0
\(925\) −9.67166e6 −0.371661
\(926\) 1.71369e7 0.656757
\(927\) 1.35862e7 0.519277
\(928\) 3.45293e6 0.131619
\(929\) 3.22009e6 0.122413 0.0612066 0.998125i \(-0.480505\pi\)
0.0612066 + 0.998125i \(0.480505\pi\)
\(930\) 1.35929e6 0.0515352
\(931\) 0 0
\(932\) −1.47050e7 −0.554530
\(933\) −1.56920e7 −0.590167
\(934\) 2.29614e7 0.861254
\(935\) −6.95304e6 −0.260103
\(936\) 2.89786e6 0.108115
\(937\) 5.16504e7 1.92187 0.960936 0.276772i \(-0.0892646\pi\)
0.960936 + 0.276772i \(0.0892646\pi\)
\(938\) 0 0
\(939\) 1.62769e7 0.602431
\(940\) −221760. −0.00818585
\(941\) 7.28698e6 0.268271 0.134135 0.990963i \(-0.457174\pi\)
0.134135 + 0.990963i \(0.457174\pi\)
\(942\) 7.28705e6 0.267562
\(943\) −1.68753e7 −0.617977
\(944\) −5.25926e6 −0.192086
\(945\) 0 0
\(946\) 3.03882e7 1.10402
\(947\) −3.12448e7 −1.13215 −0.566073 0.824355i \(-0.691538\pi\)
−0.566073 + 0.824355i \(0.691538\pi\)
\(948\) 8.97019e6 0.324176
\(949\) −3.94593e7 −1.42227
\(950\) 1.42959e7 0.513928
\(951\) −9.21197e6 −0.330294
\(952\) 0 0
\(953\) −2.68273e7 −0.956853 −0.478426 0.878128i \(-0.658793\pi\)
−0.478426 + 0.878128i \(0.658793\pi\)
\(954\) −9.16790e6 −0.326136
\(955\) 2.15384e6 0.0764198
\(956\) −1.00054e7 −0.354071
\(957\) 2.02118e7 0.713386
\(958\) −1.06020e7 −0.373230
\(959\) 0 0
\(960\) −221184. −0.00774597
\(961\) 1.09727e7 0.383270
\(962\) 7.00092e6 0.243903
\(963\) 5.60358e6 0.194715
\(964\) −2.00612e7 −0.695286
\(965\) −1.09160e6 −0.0377350
\(966\) 0 0
\(967\) −1.00257e7 −0.344784 −0.172392 0.985028i \(-0.555150\pi\)
−0.172392 + 0.985028i \(0.555150\pi\)
\(968\) 1.80803e7 0.620180
\(969\) 1.81186e7 0.619891
\(970\) −2.99410e6 −0.102173
\(971\) −115800. −0.00394149 −0.00197075 0.999998i \(-0.500627\pi\)
−0.00197075 + 0.999998i \(0.500627\pi\)
\(972\) −944784. −0.0320750
\(973\) 0 0
\(974\) 1.12222e7 0.379035
\(975\) 1.55408e7 0.523553
\(976\) 1.18528e6 0.0398287
\(977\) 8.73809e6 0.292874 0.146437 0.989220i \(-0.453219\pi\)
0.146437 + 0.989220i \(0.453219\pi\)
\(978\) 6.47150e6 0.216351
\(979\) −1.20679e7 −0.402416
\(980\) 0 0
\(981\) −1.77843e7 −0.590016
\(982\) −1.87380e7 −0.620075
\(983\) −2.38413e7 −0.786947 −0.393473 0.919336i \(-0.628727\pi\)
−0.393473 + 0.919336i \(0.628727\pi\)
\(984\) −2.80282e6 −0.0922798
\(985\) 4.30754e6 0.141462
\(986\) 2.34691e7 0.768784
\(987\) 0 0
\(988\) −1.03482e7 −0.337266
\(989\) 3.95595e7 1.28606
\(990\) −1.29470e6 −0.0419839
\(991\) −3.33719e7 −1.07944 −0.539718 0.841846i \(-0.681469\pi\)
−0.539718 + 0.841846i \(0.681469\pi\)
\(992\) −6.44403e6 −0.207911
\(993\) 9.06780e6 0.291829
\(994\) 0 0
\(995\) −1.21858e6 −0.0390207
\(996\) 1.14938e7 0.367126
\(997\) −5.44687e7 −1.73544 −0.867718 0.497056i \(-0.834414\pi\)
−0.867718 + 0.497056i \(0.834414\pi\)
\(998\) 5.90301e6 0.187606
\(999\) −2.28250e6 −0.0723597
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.j.1.1 1
3.2 odd 2 882.6.a.e.1.1 1
7.2 even 3 294.6.e.e.67.1 2
7.3 odd 6 42.6.e.a.37.1 yes 2
7.4 even 3 294.6.e.e.79.1 2
7.5 odd 6 42.6.e.a.25.1 2
7.6 odd 2 294.6.a.l.1.1 1
21.5 even 6 126.6.g.c.109.1 2
21.17 even 6 126.6.g.c.37.1 2
21.20 even 2 882.6.a.f.1.1 1
28.3 even 6 336.6.q.c.289.1 2
28.19 even 6 336.6.q.c.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.e.a.25.1 2 7.5 odd 6
42.6.e.a.37.1 yes 2 7.3 odd 6
126.6.g.c.37.1 2 21.17 even 6
126.6.g.c.109.1 2 21.5 even 6
294.6.a.j.1.1 1 1.1 even 1 trivial
294.6.a.l.1.1 1 7.6 odd 2
294.6.e.e.67.1 2 7.2 even 3
294.6.e.e.79.1 2 7.4 even 3
336.6.q.c.193.1 2 28.19 even 6
336.6.q.c.289.1 2 28.3 even 6
882.6.a.e.1.1 1 3.2 odd 2
882.6.a.f.1.1 1 21.20 even 2