Properties

Label 294.6.a.i
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} - 9 q^{3} + 16 q^{4} - 24 q^{5} - 36 q^{6} + 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} - 9 q^{3} + 16 q^{4} - 24 q^{5} - 36 q^{6} + 64 q^{8} + 81 q^{9} - 96 q^{10} + 66 q^{11} - 144 q^{12} - 98 q^{13} + 216 q^{15} + 256 q^{16} + 216 q^{17} + 324 q^{18} + 340 q^{19} - 384 q^{20} + 264 q^{22} - 1038 q^{23} - 576 q^{24} - 2549 q^{25} - 392 q^{26} - 729 q^{27} - 2490 q^{29} + 864 q^{30} + 7048 q^{31} + 1024 q^{32} - 594 q^{33} + 864 q^{34} + 1296 q^{36} - 12238 q^{37} + 1360 q^{38} + 882 q^{39} - 1536 q^{40} - 6468 q^{41} - 15412 q^{43} + 1056 q^{44} - 1944 q^{45} - 4152 q^{46} - 20604 q^{47} - 2304 q^{48} - 10196 q^{50} - 1944 q^{51} - 1568 q^{52} + 32490 q^{53} - 2916 q^{54} - 1584 q^{55} - 3060 q^{57} - 9960 q^{58} - 34224 q^{59} + 3456 q^{60} - 35654 q^{61} + 28192 q^{62} + 4096 q^{64} + 2352 q^{65} - 2376 q^{66} + 12680 q^{67} + 3456 q^{68} + 9342 q^{69} - 42642 q^{71} + 5184 q^{72} - 33734 q^{73} - 48952 q^{74} + 22941 q^{75} + 5440 q^{76} + 3528 q^{78} - 85108 q^{79} - 6144 q^{80} + 6561 q^{81} - 25872 q^{82} + 106764 q^{83} - 5184 q^{85} - 61648 q^{86} + 22410 q^{87} + 4224 q^{88} - 34884 q^{89} - 7776 q^{90} - 16608 q^{92} - 63432 q^{93} - 82416 q^{94} - 8160 q^{95} - 9216 q^{96} - 18662 q^{97} + 5346 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 −9.00000 16.0000 −24.0000 −36.0000 0 64.0000 81.0000 −96.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.i 1
3.b odd 2 1 882.6.a.i 1
7.b odd 2 1 42.6.a.f 1
7.c even 3 2 294.6.e.f 2
7.d odd 6 2 294.6.e.b 2
21.c even 2 1 126.6.a.b 1
28.d even 2 1 336.6.a.g 1
35.c odd 2 1 1050.6.a.a 1
35.f even 4 2 1050.6.g.m 2
84.h odd 2 1 1008.6.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.f 1 7.b odd 2 1
126.6.a.b 1 21.c even 2 1
294.6.a.i 1 1.a even 1 1 trivial
294.6.e.b 2 7.d odd 6 2
294.6.e.f 2 7.c even 3 2
336.6.a.g 1 28.d even 2 1
882.6.a.i 1 3.b odd 2 1
1008.6.a.k 1 84.h odd 2 1
1050.6.a.a 1 35.c odd 2 1
1050.6.g.m 2 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5} + 24 \) Copy content Toggle raw display
\( T_{11} - 66 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T + 24 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 66 \) Copy content Toggle raw display
$13$ \( T + 98 \) Copy content Toggle raw display
$17$ \( T - 216 \) Copy content Toggle raw display
$19$ \( T - 340 \) Copy content Toggle raw display
$23$ \( T + 1038 \) Copy content Toggle raw display
$29$ \( T + 2490 \) Copy content Toggle raw display
$31$ \( T - 7048 \) Copy content Toggle raw display
$37$ \( T + 12238 \) Copy content Toggle raw display
$41$ \( T + 6468 \) Copy content Toggle raw display
$43$ \( T + 15412 \) Copy content Toggle raw display
$47$ \( T + 20604 \) Copy content Toggle raw display
$53$ \( T - 32490 \) Copy content Toggle raw display
$59$ \( T + 34224 \) Copy content Toggle raw display
$61$ \( T + 35654 \) Copy content Toggle raw display
$67$ \( T - 12680 \) Copy content Toggle raw display
$71$ \( T + 42642 \) Copy content Toggle raw display
$73$ \( T + 33734 \) Copy content Toggle raw display
$79$ \( T + 85108 \) Copy content Toggle raw display
$83$ \( T - 106764 \) Copy content Toggle raw display
$89$ \( T + 34884 \) Copy content Toggle raw display
$97$ \( T + 18662 \) Copy content Toggle raw display
show more
show less