Properties

Label 294.6.a.h.1.1
Level $294$
Weight $6$
Character 294.1
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +54.0000 q^{5} -36.0000 q^{6} -64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +54.0000 q^{5} -36.0000 q^{6} -64.0000 q^{8} +81.0000 q^{9} -216.000 q^{10} +216.000 q^{11} +144.000 q^{12} -998.000 q^{13} +486.000 q^{15} +256.000 q^{16} -1302.00 q^{17} -324.000 q^{18} -884.000 q^{19} +864.000 q^{20} -864.000 q^{22} -2268.00 q^{23} -576.000 q^{24} -209.000 q^{25} +3992.00 q^{26} +729.000 q^{27} -1482.00 q^{29} -1944.00 q^{30} -8360.00 q^{31} -1024.00 q^{32} +1944.00 q^{33} +5208.00 q^{34} +1296.00 q^{36} -4714.00 q^{37} +3536.00 q^{38} -8982.00 q^{39} -3456.00 q^{40} +9786.00 q^{41} +19436.0 q^{43} +3456.00 q^{44} +4374.00 q^{45} +9072.00 q^{46} -22200.0 q^{47} +2304.00 q^{48} +836.000 q^{50} -11718.0 q^{51} -15968.0 q^{52} +26790.0 q^{53} -2916.00 q^{54} +11664.0 q^{55} -7956.00 q^{57} +5928.00 q^{58} -28092.0 q^{59} +7776.00 q^{60} +38866.0 q^{61} +33440.0 q^{62} +4096.00 q^{64} -53892.0 q^{65} -7776.00 q^{66} +23948.0 q^{67} -20832.0 q^{68} -20412.0 q^{69} -20628.0 q^{71} -5184.00 q^{72} -290.000 q^{73} +18856.0 q^{74} -1881.00 q^{75} -14144.0 q^{76} +35928.0 q^{78} -99544.0 q^{79} +13824.0 q^{80} +6561.00 q^{81} -39144.0 q^{82} -19308.0 q^{83} -70308.0 q^{85} -77744.0 q^{86} -13338.0 q^{87} -13824.0 q^{88} -36390.0 q^{89} -17496.0 q^{90} -36288.0 q^{92} -75240.0 q^{93} +88800.0 q^{94} -47736.0 q^{95} -9216.00 q^{96} +79078.0 q^{97} +17496.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) 54.0000 0.965981 0.482991 0.875625i \(-0.339550\pi\)
0.482991 + 0.875625i \(0.339550\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 81.0000 0.333333
\(10\) −216.000 −0.683052
\(11\) 216.000 0.538235 0.269118 0.963107i \(-0.413268\pi\)
0.269118 + 0.963107i \(0.413268\pi\)
\(12\) 144.000 0.288675
\(13\) −998.000 −1.63784 −0.818921 0.573906i \(-0.805428\pi\)
−0.818921 + 0.573906i \(0.805428\pi\)
\(14\) 0 0
\(15\) 486.000 0.557710
\(16\) 256.000 0.250000
\(17\) −1302.00 −1.09267 −0.546335 0.837567i \(-0.683977\pi\)
−0.546335 + 0.837567i \(0.683977\pi\)
\(18\) −324.000 −0.235702
\(19\) −884.000 −0.561783 −0.280891 0.959740i \(-0.590630\pi\)
−0.280891 + 0.959740i \(0.590630\pi\)
\(20\) 864.000 0.482991
\(21\) 0 0
\(22\) −864.000 −0.380590
\(23\) −2268.00 −0.893971 −0.446986 0.894541i \(-0.647502\pi\)
−0.446986 + 0.894541i \(0.647502\pi\)
\(24\) −576.000 −0.204124
\(25\) −209.000 −0.0668800
\(26\) 3992.00 1.15813
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −1482.00 −0.327230 −0.163615 0.986524i \(-0.552315\pi\)
−0.163615 + 0.986524i \(0.552315\pi\)
\(30\) −1944.00 −0.394360
\(31\) −8360.00 −1.56244 −0.781218 0.624259i \(-0.785401\pi\)
−0.781218 + 0.624259i \(0.785401\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1944.00 0.310750
\(34\) 5208.00 0.772634
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −4714.00 −0.566090 −0.283045 0.959107i \(-0.591345\pi\)
−0.283045 + 0.959107i \(0.591345\pi\)
\(38\) 3536.00 0.397240
\(39\) −8982.00 −0.945609
\(40\) −3456.00 −0.341526
\(41\) 9786.00 0.909171 0.454585 0.890703i \(-0.349787\pi\)
0.454585 + 0.890703i \(0.349787\pi\)
\(42\) 0 0
\(43\) 19436.0 1.60301 0.801504 0.597989i \(-0.204033\pi\)
0.801504 + 0.597989i \(0.204033\pi\)
\(44\) 3456.00 0.269118
\(45\) 4374.00 0.321994
\(46\) 9072.00 0.632133
\(47\) −22200.0 −1.46591 −0.732957 0.680275i \(-0.761860\pi\)
−0.732957 + 0.680275i \(0.761860\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 836.000 0.0472913
\(51\) −11718.0 −0.630853
\(52\) −15968.0 −0.818921
\(53\) 26790.0 1.31004 0.655018 0.755614i \(-0.272661\pi\)
0.655018 + 0.755614i \(0.272661\pi\)
\(54\) −2916.00 −0.136083
\(55\) 11664.0 0.519925
\(56\) 0 0
\(57\) −7956.00 −0.324345
\(58\) 5928.00 0.231387
\(59\) −28092.0 −1.05064 −0.525318 0.850906i \(-0.676054\pi\)
−0.525318 + 0.850906i \(0.676054\pi\)
\(60\) 7776.00 0.278855
\(61\) 38866.0 1.33735 0.668675 0.743555i \(-0.266862\pi\)
0.668675 + 0.743555i \(0.266862\pi\)
\(62\) 33440.0 1.10481
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −53892.0 −1.58213
\(66\) −7776.00 −0.219734
\(67\) 23948.0 0.651752 0.325876 0.945413i \(-0.394341\pi\)
0.325876 + 0.945413i \(0.394341\pi\)
\(68\) −20832.0 −0.546335
\(69\) −20412.0 −0.516134
\(70\) 0 0
\(71\) −20628.0 −0.485636 −0.242818 0.970072i \(-0.578072\pi\)
−0.242818 + 0.970072i \(0.578072\pi\)
\(72\) −5184.00 −0.117851
\(73\) −290.000 −0.00636929 −0.00318464 0.999995i \(-0.501014\pi\)
−0.00318464 + 0.999995i \(0.501014\pi\)
\(74\) 18856.0 0.400286
\(75\) −1881.00 −0.0386132
\(76\) −14144.0 −0.280891
\(77\) 0 0
\(78\) 35928.0 0.668646
\(79\) −99544.0 −1.79452 −0.897258 0.441506i \(-0.854444\pi\)
−0.897258 + 0.441506i \(0.854444\pi\)
\(80\) 13824.0 0.241495
\(81\) 6561.00 0.111111
\(82\) −39144.0 −0.642881
\(83\) −19308.0 −0.307639 −0.153820 0.988099i \(-0.549158\pi\)
−0.153820 + 0.988099i \(0.549158\pi\)
\(84\) 0 0
\(85\) −70308.0 −1.05550
\(86\) −77744.0 −1.13350
\(87\) −13338.0 −0.188926
\(88\) −13824.0 −0.190295
\(89\) −36390.0 −0.486975 −0.243488 0.969904i \(-0.578292\pi\)
−0.243488 + 0.969904i \(0.578292\pi\)
\(90\) −17496.0 −0.227684
\(91\) 0 0
\(92\) −36288.0 −0.446986
\(93\) −75240.0 −0.902072
\(94\) 88800.0 1.03656
\(95\) −47736.0 −0.542671
\(96\) −9216.00 −0.102062
\(97\) 79078.0 0.853348 0.426674 0.904405i \(-0.359685\pi\)
0.426674 + 0.904405i \(0.359685\pi\)
\(98\) 0 0
\(99\) 17496.0 0.179412
\(100\) −3344.00 −0.0334400
\(101\) −184626. −1.80090 −0.900450 0.434960i \(-0.856762\pi\)
−0.900450 + 0.434960i \(0.856762\pi\)
\(102\) 46872.0 0.446080
\(103\) −64592.0 −0.599909 −0.299955 0.953953i \(-0.596972\pi\)
−0.299955 + 0.953953i \(0.596972\pi\)
\(104\) 63872.0 0.579065
\(105\) 0 0
\(106\) −107160. −0.926335
\(107\) 149592. 1.26313 0.631566 0.775322i \(-0.282412\pi\)
0.631566 + 0.775322i \(0.282412\pi\)
\(108\) 11664.0 0.0962250
\(109\) −63826.0 −0.514555 −0.257277 0.966338i \(-0.582825\pi\)
−0.257277 + 0.966338i \(0.582825\pi\)
\(110\) −46656.0 −0.367643
\(111\) −42426.0 −0.326832
\(112\) 0 0
\(113\) −71022.0 −0.523235 −0.261618 0.965172i \(-0.584256\pi\)
−0.261618 + 0.965172i \(0.584256\pi\)
\(114\) 31824.0 0.229347
\(115\) −122472. −0.863559
\(116\) −23712.0 −0.163615
\(117\) −80838.0 −0.545948
\(118\) 112368. 0.742912
\(119\) 0 0
\(120\) −31104.0 −0.197180
\(121\) −114395. −0.710303
\(122\) −155464. −0.945650
\(123\) 88074.0 0.524910
\(124\) −133760. −0.781218
\(125\) −180036. −1.03059
\(126\) 0 0
\(127\) 269624. 1.48337 0.741685 0.670749i \(-0.234027\pi\)
0.741685 + 0.670749i \(0.234027\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 174924. 0.925497
\(130\) 215568. 1.11873
\(131\) −81180.0 −0.413305 −0.206653 0.978414i \(-0.566257\pi\)
−0.206653 + 0.978414i \(0.566257\pi\)
\(132\) 31104.0 0.155375
\(133\) 0 0
\(134\) −95792.0 −0.460858
\(135\) 39366.0 0.185903
\(136\) 83328.0 0.386317
\(137\) −260910. −1.18765 −0.593826 0.804593i \(-0.702383\pi\)
−0.593826 + 0.804593i \(0.702383\pi\)
\(138\) 81648.0 0.364962
\(139\) 297964. 1.30806 0.654029 0.756470i \(-0.273078\pi\)
0.654029 + 0.756470i \(0.273078\pi\)
\(140\) 0 0
\(141\) −199800. −0.846346
\(142\) 82512.0 0.343397
\(143\) −215568. −0.881544
\(144\) 20736.0 0.0833333
\(145\) −80028.0 −0.316098
\(146\) 1160.00 0.00450377
\(147\) 0 0
\(148\) −75424.0 −0.283045
\(149\) −398970. −1.47223 −0.736113 0.676859i \(-0.763341\pi\)
−0.736113 + 0.676859i \(0.763341\pi\)
\(150\) 7524.00 0.0273036
\(151\) −224968. −0.802931 −0.401466 0.915874i \(-0.631499\pi\)
−0.401466 + 0.915874i \(0.631499\pi\)
\(152\) 56576.0 0.198620
\(153\) −105462. −0.364223
\(154\) 0 0
\(155\) −451440. −1.50928
\(156\) −143712. −0.472804
\(157\) 233218. 0.755115 0.377557 0.925986i \(-0.376764\pi\)
0.377557 + 0.925986i \(0.376764\pi\)
\(158\) 398176. 1.26891
\(159\) 241110. 0.756349
\(160\) −55296.0 −0.170763
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 466220. 1.37443 0.687214 0.726455i \(-0.258834\pi\)
0.687214 + 0.726455i \(0.258834\pi\)
\(164\) 156576. 0.454585
\(165\) 104976. 0.300179
\(166\) 77232.0 0.217534
\(167\) 100848. 0.279818 0.139909 0.990164i \(-0.455319\pi\)
0.139909 + 0.990164i \(0.455319\pi\)
\(168\) 0 0
\(169\) 624711. 1.68253
\(170\) 281232. 0.746350
\(171\) −71604.0 −0.187261
\(172\) 310976. 0.801504
\(173\) 668838. 1.69905 0.849524 0.527550i \(-0.176889\pi\)
0.849524 + 0.527550i \(0.176889\pi\)
\(174\) 53352.0 0.133591
\(175\) 0 0
\(176\) 55296.0 0.134559
\(177\) −252828. −0.606585
\(178\) 145560. 0.344344
\(179\) −614856. −1.43430 −0.717151 0.696917i \(-0.754554\pi\)
−0.717151 + 0.696917i \(0.754554\pi\)
\(180\) 69984.0 0.160997
\(181\) −540686. −1.22673 −0.613365 0.789800i \(-0.710184\pi\)
−0.613365 + 0.789800i \(0.710184\pi\)
\(182\) 0 0
\(183\) 349794. 0.772120
\(184\) 145152. 0.316066
\(185\) −254556. −0.546832
\(186\) 300960. 0.637862
\(187\) −281232. −0.588113
\(188\) −355200. −0.732957
\(189\) 0 0
\(190\) 190944. 0.383727
\(191\) −41916.0 −0.0831374 −0.0415687 0.999136i \(-0.513236\pi\)
−0.0415687 + 0.999136i \(0.513236\pi\)
\(192\) 36864.0 0.0721688
\(193\) −533998. −1.03192 −0.515960 0.856612i \(-0.672565\pi\)
−0.515960 + 0.856612i \(0.672565\pi\)
\(194\) −316312. −0.603408
\(195\) −485028. −0.913441
\(196\) 0 0
\(197\) 824886. 1.51436 0.757179 0.653208i \(-0.226577\pi\)
0.757179 + 0.653208i \(0.226577\pi\)
\(198\) −69984.0 −0.126863
\(199\) 399544. 0.715207 0.357604 0.933873i \(-0.383594\pi\)
0.357604 + 0.933873i \(0.383594\pi\)
\(200\) 13376.0 0.0236457
\(201\) 215532. 0.376289
\(202\) 738504. 1.27343
\(203\) 0 0
\(204\) −187488. −0.315426
\(205\) 528444. 0.878242
\(206\) 258368. 0.424200
\(207\) −183708. −0.297990
\(208\) −255488. −0.409461
\(209\) −190944. −0.302371
\(210\) 0 0
\(211\) 868868. 1.34353 0.671765 0.740764i \(-0.265536\pi\)
0.671765 + 0.740764i \(0.265536\pi\)
\(212\) 428640. 0.655018
\(213\) −185652. −0.280382
\(214\) −598368. −0.893170
\(215\) 1.04954e6 1.54848
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) 255304. 0.363845
\(219\) −2610.00 −0.00367731
\(220\) 186624. 0.259963
\(221\) 1.29940e6 1.78962
\(222\) 169704. 0.231105
\(223\) 626656. 0.843853 0.421927 0.906630i \(-0.361354\pi\)
0.421927 + 0.906630i \(0.361354\pi\)
\(224\) 0 0
\(225\) −16929.0 −0.0222933
\(226\) 284088. 0.369983
\(227\) 450396. 0.580136 0.290068 0.957006i \(-0.406322\pi\)
0.290068 + 0.957006i \(0.406322\pi\)
\(228\) −127296. −0.162173
\(229\) 1.06453e6 1.34143 0.670717 0.741714i \(-0.265987\pi\)
0.670717 + 0.741714i \(0.265987\pi\)
\(230\) 489888. 0.610629
\(231\) 0 0
\(232\) 94848.0 0.115693
\(233\) 1.43618e6 1.73308 0.866540 0.499108i \(-0.166339\pi\)
0.866540 + 0.499108i \(0.166339\pi\)
\(234\) 323352. 0.386043
\(235\) −1.19880e6 −1.41605
\(236\) −449472. −0.525318
\(237\) −895896. −1.03606
\(238\) 0 0
\(239\) −997860. −1.12999 −0.564995 0.825094i \(-0.691122\pi\)
−0.564995 + 0.825094i \(0.691122\pi\)
\(240\) 124416. 0.139427
\(241\) 227974. 0.252838 0.126419 0.991977i \(-0.459652\pi\)
0.126419 + 0.991977i \(0.459652\pi\)
\(242\) 457580. 0.502260
\(243\) 59049.0 0.0641500
\(244\) 621856. 0.668675
\(245\) 0 0
\(246\) −352296. −0.371168
\(247\) 882232. 0.920111
\(248\) 535040. 0.552404
\(249\) −173772. −0.177616
\(250\) 720144. 0.728734
\(251\) −1.51657e6 −1.51942 −0.759712 0.650260i \(-0.774660\pi\)
−0.759712 + 0.650260i \(0.774660\pi\)
\(252\) 0 0
\(253\) −489888. −0.481167
\(254\) −1.07850e6 −1.04890
\(255\) −632772. −0.609392
\(256\) 65536.0 0.0625000
\(257\) −455886. −0.430550 −0.215275 0.976553i \(-0.569065\pi\)
−0.215275 + 0.976553i \(0.569065\pi\)
\(258\) −699696. −0.654425
\(259\) 0 0
\(260\) −862272. −0.791063
\(261\) −120042. −0.109077
\(262\) 324720. 0.292251
\(263\) −752652. −0.670973 −0.335486 0.942045i \(-0.608901\pi\)
−0.335486 + 0.942045i \(0.608901\pi\)
\(264\) −124416. −0.109867
\(265\) 1.44666e6 1.26547
\(266\) 0 0
\(267\) −327510. −0.281155
\(268\) 383168. 0.325876
\(269\) −143682. −0.121066 −0.0605329 0.998166i \(-0.519280\pi\)
−0.0605329 + 0.998166i \(0.519280\pi\)
\(270\) −157464. −0.131453
\(271\) −757496. −0.626552 −0.313276 0.949662i \(-0.601426\pi\)
−0.313276 + 0.949662i \(0.601426\pi\)
\(272\) −333312. −0.273167
\(273\) 0 0
\(274\) 1.04364e6 0.839797
\(275\) −45144.0 −0.0359972
\(276\) −326592. −0.258067
\(277\) −1.16214e6 −0.910035 −0.455018 0.890482i \(-0.650367\pi\)
−0.455018 + 0.890482i \(0.650367\pi\)
\(278\) −1.19186e6 −0.924936
\(279\) −677160. −0.520812
\(280\) 0 0
\(281\) −414366. −0.313053 −0.156527 0.987674i \(-0.550030\pi\)
−0.156527 + 0.987674i \(0.550030\pi\)
\(282\) 799200. 0.598457
\(283\) −120428. −0.0893843 −0.0446922 0.999001i \(-0.514231\pi\)
−0.0446922 + 0.999001i \(0.514231\pi\)
\(284\) −330048. −0.242818
\(285\) −429624. −0.313312
\(286\) 862272. 0.623346
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) 275347. 0.193926
\(290\) 320112. 0.223515
\(291\) 711702. 0.492681
\(292\) −4640.00 −0.00318464
\(293\) −2.20159e6 −1.49819 −0.749094 0.662463i \(-0.769511\pi\)
−0.749094 + 0.662463i \(0.769511\pi\)
\(294\) 0 0
\(295\) −1.51697e6 −1.01490
\(296\) 301696. 0.200143
\(297\) 157464. 0.103583
\(298\) 1.59588e6 1.04102
\(299\) 2.26346e6 1.46418
\(300\) −30096.0 −0.0193066
\(301\) 0 0
\(302\) 899872. 0.567758
\(303\) −1.66163e6 −1.03975
\(304\) −226304. −0.140446
\(305\) 2.09876e6 1.29186
\(306\) 421848. 0.257545
\(307\) −110900. −0.0671561 −0.0335781 0.999436i \(-0.510690\pi\)
−0.0335781 + 0.999436i \(0.510690\pi\)
\(308\) 0 0
\(309\) −581328. −0.346358
\(310\) 1.80576e6 1.06722
\(311\) 910608. 0.533864 0.266932 0.963715i \(-0.413990\pi\)
0.266932 + 0.963715i \(0.413990\pi\)
\(312\) 574848. 0.334323
\(313\) −3.12247e6 −1.80152 −0.900758 0.434322i \(-0.856988\pi\)
−0.900758 + 0.434322i \(0.856988\pi\)
\(314\) −932872. −0.533947
\(315\) 0 0
\(316\) −1.59270e6 −0.897258
\(317\) −2.76688e6 −1.54647 −0.773237 0.634117i \(-0.781364\pi\)
−0.773237 + 0.634117i \(0.781364\pi\)
\(318\) −964440. −0.534820
\(319\) −320112. −0.176127
\(320\) 221184. 0.120748
\(321\) 1.34633e6 0.729270
\(322\) 0 0
\(323\) 1.15097e6 0.613842
\(324\) 104976. 0.0555556
\(325\) 208582. 0.109539
\(326\) −1.86488e6 −0.971867
\(327\) −574434. −0.297078
\(328\) −626304. −0.321440
\(329\) 0 0
\(330\) −419904. −0.212259
\(331\) 3.22257e6 1.61671 0.808356 0.588694i \(-0.200358\pi\)
0.808356 + 0.588694i \(0.200358\pi\)
\(332\) −308928. −0.153820
\(333\) −381834. −0.188697
\(334\) −403392. −0.197861
\(335\) 1.29319e6 0.629580
\(336\) 0 0
\(337\) 1.63306e6 0.783298 0.391649 0.920115i \(-0.371905\pi\)
0.391649 + 0.920115i \(0.371905\pi\)
\(338\) −2.49884e6 −1.18973
\(339\) −639198. −0.302090
\(340\) −1.12493e6 −0.527749
\(341\) −1.80576e6 −0.840958
\(342\) 286416. 0.132413
\(343\) 0 0
\(344\) −1.24390e6 −0.566749
\(345\) −1.10225e6 −0.498576
\(346\) −2.67535e6 −1.20141
\(347\) 1.03642e6 0.462073 0.231036 0.972945i \(-0.425788\pi\)
0.231036 + 0.972945i \(0.425788\pi\)
\(348\) −213408. −0.0944632
\(349\) 4.22999e6 1.85898 0.929491 0.368844i \(-0.120246\pi\)
0.929491 + 0.368844i \(0.120246\pi\)
\(350\) 0 0
\(351\) −727542. −0.315203
\(352\) −221184. −0.0951474
\(353\) −238806. −0.102002 −0.0510010 0.998699i \(-0.516241\pi\)
−0.0510010 + 0.998699i \(0.516241\pi\)
\(354\) 1.01131e6 0.428921
\(355\) −1.11391e6 −0.469116
\(356\) −582240. −0.243488
\(357\) 0 0
\(358\) 2.45942e6 1.01421
\(359\) −2.66428e6 −1.09105 −0.545523 0.838096i \(-0.683669\pi\)
−0.545523 + 0.838096i \(0.683669\pi\)
\(360\) −279936. −0.113842
\(361\) −1.69464e6 −0.684400
\(362\) 2.16274e6 0.867429
\(363\) −1.02956e6 −0.410094
\(364\) 0 0
\(365\) −15660.0 −0.00615261
\(366\) −1.39918e6 −0.545971
\(367\) 1.71083e6 0.663044 0.331522 0.943448i \(-0.392438\pi\)
0.331522 + 0.943448i \(0.392438\pi\)
\(368\) −580608. −0.223493
\(369\) 792666. 0.303057
\(370\) 1.01822e6 0.386669
\(371\) 0 0
\(372\) −1.20384e6 −0.451036
\(373\) −3.96649e6 −1.47616 −0.738081 0.674712i \(-0.764268\pi\)
−0.738081 + 0.674712i \(0.764268\pi\)
\(374\) 1.12493e6 0.415859
\(375\) −1.62032e6 −0.595009
\(376\) 1.42080e6 0.518279
\(377\) 1.47904e6 0.535951
\(378\) 0 0
\(379\) 828668. 0.296335 0.148167 0.988962i \(-0.452663\pi\)
0.148167 + 0.988962i \(0.452663\pi\)
\(380\) −763776. −0.271336
\(381\) 2.42662e6 0.856424
\(382\) 167664. 0.0587870
\(383\) 2.55686e6 0.890657 0.445329 0.895367i \(-0.353087\pi\)
0.445329 + 0.895367i \(0.353087\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) 2.13599e6 0.729678
\(387\) 1.57432e6 0.534336
\(388\) 1.26525e6 0.426674
\(389\) 2.91785e6 0.977664 0.488832 0.872378i \(-0.337423\pi\)
0.488832 + 0.872378i \(0.337423\pi\)
\(390\) 1.94011e6 0.645900
\(391\) 2.95294e6 0.976815
\(392\) 0 0
\(393\) −730620. −0.238622
\(394\) −3.29954e6 −1.07081
\(395\) −5.37538e6 −1.73347
\(396\) 279936. 0.0897059
\(397\) −2.50715e6 −0.798370 −0.399185 0.916870i \(-0.630707\pi\)
−0.399185 + 0.916870i \(0.630707\pi\)
\(398\) −1.59818e6 −0.505728
\(399\) 0 0
\(400\) −53504.0 −0.0167200
\(401\) 990666. 0.307657 0.153828 0.988098i \(-0.450840\pi\)
0.153828 + 0.988098i \(0.450840\pi\)
\(402\) −862128. −0.266077
\(403\) 8.34328e6 2.55902
\(404\) −2.95402e6 −0.900450
\(405\) 354294. 0.107331
\(406\) 0 0
\(407\) −1.01822e6 −0.304689
\(408\) 749952. 0.223040
\(409\) −4.51824e6 −1.33555 −0.667777 0.744362i \(-0.732754\pi\)
−0.667777 + 0.744362i \(0.732754\pi\)
\(410\) −2.11378e6 −0.621011
\(411\) −2.34819e6 −0.685691
\(412\) −1.03347e6 −0.299955
\(413\) 0 0
\(414\) 734832. 0.210711
\(415\) −1.04263e6 −0.297174
\(416\) 1.02195e6 0.289532
\(417\) 2.68168e6 0.755207
\(418\) 763776. 0.213809
\(419\) −605220. −0.168414 −0.0842070 0.996448i \(-0.526836\pi\)
−0.0842070 + 0.996448i \(0.526836\pi\)
\(420\) 0 0
\(421\) 4.49893e6 1.23710 0.618549 0.785746i \(-0.287721\pi\)
0.618549 + 0.785746i \(0.287721\pi\)
\(422\) −3.47547e6 −0.950020
\(423\) −1.79820e6 −0.488638
\(424\) −1.71456e6 −0.463167
\(425\) 272118. 0.0730777
\(426\) 742608. 0.198260
\(427\) 0 0
\(428\) 2.39347e6 0.631566
\(429\) −1.94011e6 −0.508960
\(430\) −4.19818e6 −1.09494
\(431\) 5.37594e6 1.39400 0.696998 0.717074i \(-0.254519\pi\)
0.696998 + 0.717074i \(0.254519\pi\)
\(432\) 186624. 0.0481125
\(433\) 1.98561e6 0.508950 0.254475 0.967079i \(-0.418097\pi\)
0.254475 + 0.967079i \(0.418097\pi\)
\(434\) 0 0
\(435\) −720252. −0.182499
\(436\) −1.02122e6 −0.257277
\(437\) 2.00491e6 0.502217
\(438\) 10440.0 0.00260025
\(439\) −3.38727e6 −0.838859 −0.419429 0.907788i \(-0.637770\pi\)
−0.419429 + 0.907788i \(0.637770\pi\)
\(440\) −746496. −0.183821
\(441\) 0 0
\(442\) −5.19758e6 −1.26545
\(443\) 2.14094e6 0.518318 0.259159 0.965835i \(-0.416555\pi\)
0.259159 + 0.965835i \(0.416555\pi\)
\(444\) −678816. −0.163416
\(445\) −1.96506e6 −0.470409
\(446\) −2.50662e6 −0.596695
\(447\) −3.59073e6 −0.849990
\(448\) 0 0
\(449\) −6.97808e6 −1.63350 −0.816752 0.576990i \(-0.804227\pi\)
−0.816752 + 0.576990i \(0.804227\pi\)
\(450\) 67716.0 0.0157638
\(451\) 2.11378e6 0.489348
\(452\) −1.13635e6 −0.261618
\(453\) −2.02471e6 −0.463573
\(454\) −1.80158e6 −0.410218
\(455\) 0 0
\(456\) 509184. 0.114673
\(457\) −5.17999e6 −1.16021 −0.580107 0.814540i \(-0.696989\pi\)
−0.580107 + 0.814540i \(0.696989\pi\)
\(458\) −4.25812e6 −0.948537
\(459\) −949158. −0.210284
\(460\) −1.95955e6 −0.431780
\(461\) 7.83001e6 1.71597 0.857985 0.513674i \(-0.171716\pi\)
0.857985 + 0.513674i \(0.171716\pi\)
\(462\) 0 0
\(463\) 165320. 0.0358404 0.0179202 0.999839i \(-0.494296\pi\)
0.0179202 + 0.999839i \(0.494296\pi\)
\(464\) −379392. −0.0818075
\(465\) −4.06296e6 −0.871385
\(466\) −5.74471e6 −1.22547
\(467\) 1.79329e6 0.380504 0.190252 0.981735i \(-0.439070\pi\)
0.190252 + 0.981735i \(0.439070\pi\)
\(468\) −1.29341e6 −0.272974
\(469\) 0 0
\(470\) 4.79520e6 1.00130
\(471\) 2.09896e6 0.435966
\(472\) 1.79789e6 0.371456
\(473\) 4.19818e6 0.862795
\(474\) 3.58358e6 0.732608
\(475\) 184756. 0.0375720
\(476\) 0 0
\(477\) 2.16999e6 0.436678
\(478\) 3.99144e6 0.799024
\(479\) 6.59657e6 1.31365 0.656824 0.754044i \(-0.271899\pi\)
0.656824 + 0.754044i \(0.271899\pi\)
\(480\) −497664. −0.0985901
\(481\) 4.70457e6 0.927166
\(482\) −911896. −0.178784
\(483\) 0 0
\(484\) −1.83032e6 −0.355151
\(485\) 4.27021e6 0.824319
\(486\) −236196. −0.0453609
\(487\) −5.97393e6 −1.14140 −0.570700 0.821159i \(-0.693328\pi\)
−0.570700 + 0.821159i \(0.693328\pi\)
\(488\) −2.48742e6 −0.472825
\(489\) 4.19598e6 0.793526
\(490\) 0 0
\(491\) 381264. 0.0713710 0.0356855 0.999363i \(-0.488639\pi\)
0.0356855 + 0.999363i \(0.488639\pi\)
\(492\) 1.40918e6 0.262455
\(493\) 1.92956e6 0.357554
\(494\) −3.52893e6 −0.650617
\(495\) 944784. 0.173308
\(496\) −2.14016e6 −0.390609
\(497\) 0 0
\(498\) 695088. 0.125593
\(499\) 1.54351e6 0.277497 0.138748 0.990328i \(-0.455692\pi\)
0.138748 + 0.990328i \(0.455692\pi\)
\(500\) −2.88058e6 −0.515293
\(501\) 907632. 0.161553
\(502\) 6.06629e6 1.07439
\(503\) 4.02300e6 0.708974 0.354487 0.935061i \(-0.384656\pi\)
0.354487 + 0.935061i \(0.384656\pi\)
\(504\) 0 0
\(505\) −9.96980e6 −1.73964
\(506\) 1.95955e6 0.340236
\(507\) 5.62240e6 0.971408
\(508\) 4.31398e6 0.741685
\(509\) 1.94715e6 0.333123 0.166562 0.986031i \(-0.446734\pi\)
0.166562 + 0.986031i \(0.446734\pi\)
\(510\) 2.53109e6 0.430905
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −644436. −0.108115
\(514\) 1.82354e6 0.304445
\(515\) −3.48797e6 −0.579501
\(516\) 2.79878e6 0.462749
\(517\) −4.79520e6 −0.789006
\(518\) 0 0
\(519\) 6.01954e6 0.980946
\(520\) 3.44909e6 0.559366
\(521\) −7.38569e6 −1.19206 −0.596028 0.802963i \(-0.703255\pi\)
−0.596028 + 0.802963i \(0.703255\pi\)
\(522\) 480168. 0.0771289
\(523\) 329740. 0.0527130 0.0263565 0.999653i \(-0.491610\pi\)
0.0263565 + 0.999653i \(0.491610\pi\)
\(524\) −1.29888e6 −0.206653
\(525\) 0 0
\(526\) 3.01061e6 0.474449
\(527\) 1.08847e7 1.70722
\(528\) 497664. 0.0776875
\(529\) −1.29252e6 −0.200816
\(530\) −5.78664e6 −0.894822
\(531\) −2.27545e6 −0.350212
\(532\) 0 0
\(533\) −9.76643e6 −1.48908
\(534\) 1.31004e6 0.198807
\(535\) 8.07797e6 1.22016
\(536\) −1.53267e6 −0.230429
\(537\) −5.53370e6 −0.828095
\(538\) 574728. 0.0856065
\(539\) 0 0
\(540\) 629856. 0.0929516
\(541\) 87086.0 0.0127925 0.00639625 0.999980i \(-0.497964\pi\)
0.00639625 + 0.999980i \(0.497964\pi\)
\(542\) 3.02998e6 0.443039
\(543\) −4.86617e6 −0.708252
\(544\) 1.33325e6 0.193158
\(545\) −3.44660e6 −0.497050
\(546\) 0 0
\(547\) 6.91531e6 0.988196 0.494098 0.869406i \(-0.335498\pi\)
0.494098 + 0.869406i \(0.335498\pi\)
\(548\) −4.17456e6 −0.593826
\(549\) 3.14815e6 0.445784
\(550\) 180576. 0.0254538
\(551\) 1.31009e6 0.183832
\(552\) 1.30637e6 0.182481
\(553\) 0 0
\(554\) 4.64855e6 0.643492
\(555\) −2.29100e6 −0.315714
\(556\) 4.76742e6 0.654029
\(557\) −1.52258e6 −0.207942 −0.103971 0.994580i \(-0.533155\pi\)
−0.103971 + 0.994580i \(0.533155\pi\)
\(558\) 2.70864e6 0.368270
\(559\) −1.93971e7 −2.62548
\(560\) 0 0
\(561\) −2.53109e6 −0.339547
\(562\) 1.65746e6 0.221362
\(563\) 7.86462e6 1.04570 0.522850 0.852425i \(-0.324869\pi\)
0.522850 + 0.852425i \(0.324869\pi\)
\(564\) −3.19680e6 −0.423173
\(565\) −3.83519e6 −0.505435
\(566\) 481712. 0.0632043
\(567\) 0 0
\(568\) 1.32019e6 0.171698
\(569\) −1.46321e6 −0.189464 −0.0947321 0.995503i \(-0.530199\pi\)
−0.0947321 + 0.995503i \(0.530199\pi\)
\(570\) 1.71850e6 0.221545
\(571\) 9.19855e6 1.18067 0.590336 0.807158i \(-0.298995\pi\)
0.590336 + 0.807158i \(0.298995\pi\)
\(572\) −3.44909e6 −0.440772
\(573\) −377244. −0.0479994
\(574\) 0 0
\(575\) 474012. 0.0597888
\(576\) 331776. 0.0416667
\(577\) −3.28939e6 −0.411317 −0.205658 0.978624i \(-0.565934\pi\)
−0.205658 + 0.978624i \(0.565934\pi\)
\(578\) −1.10139e6 −0.137126
\(579\) −4.80598e6 −0.595780
\(580\) −1.28045e6 −0.158049
\(581\) 0 0
\(582\) −2.84681e6 −0.348378
\(583\) 5.78664e6 0.705107
\(584\) 18560.0 0.00225188
\(585\) −4.36525e6 −0.527375
\(586\) 8.80634e6 1.05938
\(587\) −5.12929e6 −0.614416 −0.307208 0.951642i \(-0.599395\pi\)
−0.307208 + 0.951642i \(0.599395\pi\)
\(588\) 0 0
\(589\) 7.39024e6 0.877749
\(590\) 6.06787e6 0.717640
\(591\) 7.42397e6 0.874315
\(592\) −1.20678e6 −0.141522
\(593\) 2.75433e6 0.321647 0.160823 0.986983i \(-0.448585\pi\)
0.160823 + 0.986983i \(0.448585\pi\)
\(594\) −629856. −0.0732445
\(595\) 0 0
\(596\) −6.38352e6 −0.736113
\(597\) 3.59590e6 0.412925
\(598\) −9.05386e6 −1.03533
\(599\) −9.88616e6 −1.12580 −0.562899 0.826525i \(-0.690314\pi\)
−0.562899 + 0.826525i \(0.690314\pi\)
\(600\) 120384. 0.0136518
\(601\) −1.37039e7 −1.54760 −0.773798 0.633433i \(-0.781645\pi\)
−0.773798 + 0.633433i \(0.781645\pi\)
\(602\) 0 0
\(603\) 1.93979e6 0.217251
\(604\) −3.59949e6 −0.401466
\(605\) −6.17733e6 −0.686139
\(606\) 6.64654e6 0.735214
\(607\) 7.85310e6 0.865107 0.432553 0.901608i \(-0.357613\pi\)
0.432553 + 0.901608i \(0.357613\pi\)
\(608\) 905216. 0.0993101
\(609\) 0 0
\(610\) −8.39506e6 −0.913480
\(611\) 2.21556e7 2.40094
\(612\) −1.68739e6 −0.182112
\(613\) 1.46977e7 1.57978 0.789892 0.613246i \(-0.210136\pi\)
0.789892 + 0.613246i \(0.210136\pi\)
\(614\) 443600. 0.0474865
\(615\) 4.75600e6 0.507053
\(616\) 0 0
\(617\) 6.28370e6 0.664511 0.332256 0.943189i \(-0.392190\pi\)
0.332256 + 0.943189i \(0.392190\pi\)
\(618\) 2.32531e6 0.244912
\(619\) 2.26692e6 0.237799 0.118900 0.992906i \(-0.462063\pi\)
0.118900 + 0.992906i \(0.462063\pi\)
\(620\) −7.22304e6 −0.754642
\(621\) −1.65337e6 −0.172045
\(622\) −3.64243e6 −0.377499
\(623\) 0 0
\(624\) −2.29939e6 −0.236402
\(625\) −9.06882e6 −0.928647
\(626\) 1.24899e7 1.27386
\(627\) −1.71850e6 −0.174574
\(628\) 3.73149e6 0.377557
\(629\) 6.13763e6 0.618549
\(630\) 0 0
\(631\) −1.17477e7 −1.17457 −0.587285 0.809380i \(-0.699803\pi\)
−0.587285 + 0.809380i \(0.699803\pi\)
\(632\) 6.37082e6 0.634457
\(633\) 7.81981e6 0.775688
\(634\) 1.10675e7 1.09352
\(635\) 1.45597e7 1.43291
\(636\) 3.85776e6 0.378175
\(637\) 0 0
\(638\) 1.28045e6 0.124540
\(639\) −1.67087e6 −0.161879
\(640\) −884736. −0.0853815
\(641\) 5.93231e6 0.570268 0.285134 0.958488i \(-0.407962\pi\)
0.285134 + 0.958488i \(0.407962\pi\)
\(642\) −5.38531e6 −0.515672
\(643\) 6.94443e6 0.662383 0.331191 0.943564i \(-0.392549\pi\)
0.331191 + 0.943564i \(0.392549\pi\)
\(644\) 0 0
\(645\) 9.44590e6 0.894013
\(646\) −4.60387e6 −0.434052
\(647\) 4.97050e6 0.466809 0.233404 0.972380i \(-0.425013\pi\)
0.233404 + 0.972380i \(0.425013\pi\)
\(648\) −419904. −0.0392837
\(649\) −6.06787e6 −0.565490
\(650\) −834328. −0.0774557
\(651\) 0 0
\(652\) 7.45952e6 0.687214
\(653\) −1.83355e7 −1.68271 −0.841354 0.540484i \(-0.818241\pi\)
−0.841354 + 0.540484i \(0.818241\pi\)
\(654\) 2.29774e6 0.210066
\(655\) −4.38372e6 −0.399245
\(656\) 2.50522e6 0.227293
\(657\) −23490.0 −0.00212310
\(658\) 0 0
\(659\) 9.01402e6 0.808546 0.404273 0.914638i \(-0.367525\pi\)
0.404273 + 0.914638i \(0.367525\pi\)
\(660\) 1.67962e6 0.150089
\(661\) −699398. −0.0622617 −0.0311308 0.999515i \(-0.509911\pi\)
−0.0311308 + 0.999515i \(0.509911\pi\)
\(662\) −1.28903e7 −1.14319
\(663\) 1.16946e7 1.03324
\(664\) 1.23571e6 0.108767
\(665\) 0 0
\(666\) 1.52734e6 0.133429
\(667\) 3.36118e6 0.292534
\(668\) 1.61357e6 0.139909
\(669\) 5.63990e6 0.487199
\(670\) −5.17277e6 −0.445180
\(671\) 8.39506e6 0.719809
\(672\) 0 0
\(673\) −5.80603e6 −0.494130 −0.247065 0.968999i \(-0.579466\pi\)
−0.247065 + 0.968999i \(0.579466\pi\)
\(674\) −6.53223e6 −0.553875
\(675\) −152361. −0.0128711
\(676\) 9.99538e6 0.841264
\(677\) −985074. −0.0826033 −0.0413016 0.999147i \(-0.513150\pi\)
−0.0413016 + 0.999147i \(0.513150\pi\)
\(678\) 2.55679e6 0.213610
\(679\) 0 0
\(680\) 4.49971e6 0.373175
\(681\) 4.05356e6 0.334942
\(682\) 7.22304e6 0.594647
\(683\) −1.88208e7 −1.54379 −0.771894 0.635752i \(-0.780690\pi\)
−0.771894 + 0.635752i \(0.780690\pi\)
\(684\) −1.14566e6 −0.0936304
\(685\) −1.40891e7 −1.14725
\(686\) 0 0
\(687\) 9.58077e6 0.774477
\(688\) 4.97562e6 0.400752
\(689\) −2.67364e7 −2.14563
\(690\) 4.40899e6 0.352547
\(691\) 1.93385e7 1.54073 0.770366 0.637601i \(-0.220073\pi\)
0.770366 + 0.637601i \(0.220073\pi\)
\(692\) 1.07014e7 0.849524
\(693\) 0 0
\(694\) −4.14566e6 −0.326735
\(695\) 1.60901e7 1.26356
\(696\) 853632. 0.0667956
\(697\) −1.27414e7 −0.993423
\(698\) −1.69199e7 −1.31450
\(699\) 1.29256e7 1.00059
\(700\) 0 0
\(701\) −1.41489e6 −0.108750 −0.0543748 0.998521i \(-0.517317\pi\)
−0.0543748 + 0.998521i \(0.517317\pi\)
\(702\) 2.91017e6 0.222882
\(703\) 4.16718e6 0.318019
\(704\) 884736. 0.0672794
\(705\) −1.07892e7 −0.817554
\(706\) 955224. 0.0721263
\(707\) 0 0
\(708\) −4.04525e6 −0.303293
\(709\) −754906. −0.0563998 −0.0281999 0.999602i \(-0.508977\pi\)
−0.0281999 + 0.999602i \(0.508977\pi\)
\(710\) 4.45565e6 0.331715
\(711\) −8.06306e6 −0.598172
\(712\) 2.32896e6 0.172172
\(713\) 1.89605e7 1.39677
\(714\) 0 0
\(715\) −1.16407e7 −0.851555
\(716\) −9.83770e6 −0.717151
\(717\) −8.98074e6 −0.652400
\(718\) 1.06571e7 0.771486
\(719\) −1.08854e6 −0.0785279 −0.0392639 0.999229i \(-0.512501\pi\)
−0.0392639 + 0.999229i \(0.512501\pi\)
\(720\) 1.11974e6 0.0804984
\(721\) 0 0
\(722\) 6.77857e6 0.483944
\(723\) 2.05177e6 0.145976
\(724\) −8.65098e6 −0.613365
\(725\) 309738. 0.0218851
\(726\) 4.11822e6 0.289980
\(727\) 755392. 0.0530074 0.0265037 0.999649i \(-0.491563\pi\)
0.0265037 + 0.999649i \(0.491563\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 62640.0 0.00435055
\(731\) −2.53057e7 −1.75156
\(732\) 5.59670e6 0.386060
\(733\) −1.56369e6 −0.107495 −0.0537477 0.998555i \(-0.517117\pi\)
−0.0537477 + 0.998555i \(0.517117\pi\)
\(734\) −6.84333e6 −0.468843
\(735\) 0 0
\(736\) 2.32243e6 0.158033
\(737\) 5.17277e6 0.350796
\(738\) −3.17066e6 −0.214294
\(739\) −1.05544e7 −0.710922 −0.355461 0.934691i \(-0.615676\pi\)
−0.355461 + 0.934691i \(0.615676\pi\)
\(740\) −4.07290e6 −0.273416
\(741\) 7.94009e6 0.531227
\(742\) 0 0
\(743\) 1.73678e7 1.15418 0.577088 0.816682i \(-0.304189\pi\)
0.577088 + 0.816682i \(0.304189\pi\)
\(744\) 4.81536e6 0.318931
\(745\) −2.15444e7 −1.42214
\(746\) 1.58660e7 1.04380
\(747\) −1.56395e6 −0.102546
\(748\) −4.49971e6 −0.294056
\(749\) 0 0
\(750\) 6.48130e6 0.420735
\(751\) −2.80181e7 −1.81276 −0.906378 0.422467i \(-0.861164\pi\)
−0.906378 + 0.422467i \(0.861164\pi\)
\(752\) −5.68320e6 −0.366478
\(753\) −1.36491e7 −0.877239
\(754\) −5.91614e6 −0.378975
\(755\) −1.21483e7 −0.775617
\(756\) 0 0
\(757\) −1.01979e7 −0.646801 −0.323401 0.946262i \(-0.604826\pi\)
−0.323401 + 0.946262i \(0.604826\pi\)
\(758\) −3.31467e6 −0.209540
\(759\) −4.40899e6 −0.277802
\(760\) 3.05510e6 0.191863
\(761\) −2.57535e6 −0.161204 −0.0806018 0.996746i \(-0.525684\pi\)
−0.0806018 + 0.996746i \(0.525684\pi\)
\(762\) −9.70646e6 −0.605583
\(763\) 0 0
\(764\) −670656. −0.0415687
\(765\) −5.69495e6 −0.351833
\(766\) −1.02275e7 −0.629790
\(767\) 2.80358e7 1.72078
\(768\) 589824. 0.0360844
\(769\) −971234. −0.0592254 −0.0296127 0.999561i \(-0.509427\pi\)
−0.0296127 + 0.999561i \(0.509427\pi\)
\(770\) 0 0
\(771\) −4.10297e6 −0.248578
\(772\) −8.54397e6 −0.515960
\(773\) 1.72921e7 1.04088 0.520439 0.853899i \(-0.325768\pi\)
0.520439 + 0.853899i \(0.325768\pi\)
\(774\) −6.29726e6 −0.377833
\(775\) 1.74724e6 0.104496
\(776\) −5.06099e6 −0.301704
\(777\) 0 0
\(778\) −1.16714e7 −0.691313
\(779\) −8.65082e6 −0.510756
\(780\) −7.76045e6 −0.456720
\(781\) −4.45565e6 −0.261387
\(782\) −1.18117e7 −0.690712
\(783\) −1.08038e6 −0.0629755
\(784\) 0 0
\(785\) 1.25938e7 0.729427
\(786\) 2.92248e6 0.168731
\(787\) 1.65515e7 0.952576 0.476288 0.879289i \(-0.341982\pi\)
0.476288 + 0.879289i \(0.341982\pi\)
\(788\) 1.31982e7 0.757179
\(789\) −6.77387e6 −0.387386
\(790\) 2.15015e7 1.22575
\(791\) 0 0
\(792\) −1.11974e6 −0.0634316
\(793\) −3.87883e7 −2.19037
\(794\) 1.00286e7 0.564533
\(795\) 1.30199e7 0.730619
\(796\) 6.39270e6 0.357604
\(797\) −2.91057e6 −0.162305 −0.0811526 0.996702i \(-0.525860\pi\)
−0.0811526 + 0.996702i \(0.525860\pi\)
\(798\) 0 0
\(799\) 2.89044e7 1.60176
\(800\) 214016. 0.0118228
\(801\) −2.94759e6 −0.162325
\(802\) −3.96266e6 −0.217546
\(803\) −62640.0 −0.00342817
\(804\) 3.44851e6 0.188145
\(805\) 0 0
\(806\) −3.33731e7 −1.80950
\(807\) −1.29314e6 −0.0698974
\(808\) 1.18161e7 0.636714
\(809\) −1.16252e7 −0.624496 −0.312248 0.950001i \(-0.601082\pi\)
−0.312248 + 0.950001i \(0.601082\pi\)
\(810\) −1.41718e6 −0.0758947
\(811\) −3.09020e7 −1.64981 −0.824906 0.565270i \(-0.808772\pi\)
−0.824906 + 0.565270i \(0.808772\pi\)
\(812\) 0 0
\(813\) −6.81746e6 −0.361740
\(814\) 4.07290e6 0.215448
\(815\) 2.51759e7 1.32767
\(816\) −2.99981e6 −0.157713
\(817\) −1.71814e7 −0.900542
\(818\) 1.80730e7 0.944379
\(819\) 0 0
\(820\) 8.45510e6 0.439121
\(821\) −2.22870e7 −1.15397 −0.576984 0.816755i \(-0.695771\pi\)
−0.576984 + 0.816755i \(0.695771\pi\)
\(822\) 9.39276e6 0.484857
\(823\) −1.64895e7 −0.848610 −0.424305 0.905519i \(-0.639482\pi\)
−0.424305 + 0.905519i \(0.639482\pi\)
\(824\) 4.13389e6 0.212100
\(825\) −406296. −0.0207830
\(826\) 0 0
\(827\) −2.37457e7 −1.20732 −0.603658 0.797244i \(-0.706291\pi\)
−0.603658 + 0.797244i \(0.706291\pi\)
\(828\) −2.93933e6 −0.148995
\(829\) −2.60865e7 −1.31835 −0.659173 0.751991i \(-0.729094\pi\)
−0.659173 + 0.751991i \(0.729094\pi\)
\(830\) 4.17053e6 0.210134
\(831\) −1.04592e7 −0.525409
\(832\) −4.08781e6 −0.204730
\(833\) 0 0
\(834\) −1.07267e7 −0.534012
\(835\) 5.44579e6 0.270299
\(836\) −3.05510e6 −0.151186
\(837\) −6.09444e6 −0.300691
\(838\) 2.42088e6 0.119087
\(839\) −1.00872e7 −0.494729 −0.247365 0.968922i \(-0.579565\pi\)
−0.247365 + 0.968922i \(0.579565\pi\)
\(840\) 0 0
\(841\) −1.83148e7 −0.892920
\(842\) −1.79957e7 −0.874761
\(843\) −3.72929e6 −0.180741
\(844\) 1.39019e7 0.671765
\(845\) 3.37344e7 1.62529
\(846\) 7.19280e6 0.345519
\(847\) 0 0
\(848\) 6.85824e6 0.327509
\(849\) −1.08385e6 −0.0516061
\(850\) −1.08847e6 −0.0516737
\(851\) 1.06914e7 0.506068
\(852\) −2.97043e6 −0.140191
\(853\) 2.43630e7 1.14646 0.573229 0.819395i \(-0.305691\pi\)
0.573229 + 0.819395i \(0.305691\pi\)
\(854\) 0 0
\(855\) −3.86662e6 −0.180890
\(856\) −9.57389e6 −0.446585
\(857\) −2.45612e6 −0.114234 −0.0571172 0.998367i \(-0.518191\pi\)
−0.0571172 + 0.998367i \(0.518191\pi\)
\(858\) 7.76045e6 0.359889
\(859\) −8.62982e6 −0.399042 −0.199521 0.979894i \(-0.563939\pi\)
−0.199521 + 0.979894i \(0.563939\pi\)
\(860\) 1.67927e7 0.774238
\(861\) 0 0
\(862\) −2.15038e7 −0.985703
\(863\) 1.05199e7 0.480824 0.240412 0.970671i \(-0.422717\pi\)
0.240412 + 0.970671i \(0.422717\pi\)
\(864\) −746496. −0.0340207
\(865\) 3.61173e7 1.64125
\(866\) −7.94246e6 −0.359882
\(867\) 2.47812e6 0.111963
\(868\) 0 0
\(869\) −2.15015e7 −0.965872
\(870\) 2.88101e6 0.129047
\(871\) −2.39001e7 −1.06747
\(872\) 4.08486e6 0.181922
\(873\) 6.40532e6 0.284449
\(874\) −8.01965e6 −0.355121
\(875\) 0 0
\(876\) −41760.0 −0.00183865
\(877\) −1.14540e7 −0.502872 −0.251436 0.967874i \(-0.580903\pi\)
−0.251436 + 0.967874i \(0.580903\pi\)
\(878\) 1.35491e7 0.593163
\(879\) −1.98143e7 −0.864980
\(880\) 2.98598e6 0.129981
\(881\) 1.18134e7 0.512786 0.256393 0.966573i \(-0.417466\pi\)
0.256393 + 0.966573i \(0.417466\pi\)
\(882\) 0 0
\(883\) 4.63221e6 0.199934 0.0999670 0.994991i \(-0.468126\pi\)
0.0999670 + 0.994991i \(0.468126\pi\)
\(884\) 2.07903e7 0.894810
\(885\) −1.36527e7 −0.585950
\(886\) −8.56378e6 −0.366506
\(887\) −4.47728e7 −1.91075 −0.955377 0.295388i \(-0.904551\pi\)
−0.955377 + 0.295388i \(0.904551\pi\)
\(888\) 2.71526e6 0.115553
\(889\) 0 0
\(890\) 7.86024e6 0.332630
\(891\) 1.41718e6 0.0598039
\(892\) 1.00265e7 0.421927
\(893\) 1.96248e7 0.823525
\(894\) 1.43629e7 0.601034
\(895\) −3.32022e7 −1.38551
\(896\) 0 0
\(897\) 2.03712e7 0.845347
\(898\) 2.79123e7 1.15506
\(899\) 1.23895e7 0.511276
\(900\) −270864. −0.0111467
\(901\) −3.48806e7 −1.43144
\(902\) −8.45510e6 −0.346021
\(903\) 0 0
\(904\) 4.54541e6 0.184992
\(905\) −2.91970e7 −1.18500
\(906\) 8.09885e6 0.327795
\(907\) −2.08357e7 −0.840986 −0.420493 0.907296i \(-0.638143\pi\)
−0.420493 + 0.907296i \(0.638143\pi\)
\(908\) 7.20634e6 0.290068
\(909\) −1.49547e7 −0.600300
\(910\) 0 0
\(911\) 5.27869e6 0.210732 0.105366 0.994434i \(-0.466399\pi\)
0.105366 + 0.994434i \(0.466399\pi\)
\(912\) −2.03674e6 −0.0810863
\(913\) −4.17053e6 −0.165582
\(914\) 2.07200e7 0.820396
\(915\) 1.88889e7 0.745853
\(916\) 1.70325e7 0.670717
\(917\) 0 0
\(918\) 3.79663e6 0.148693
\(919\) 2.51286e7 0.981477 0.490738 0.871307i \(-0.336727\pi\)
0.490738 + 0.871307i \(0.336727\pi\)
\(920\) 7.83821e6 0.305314
\(921\) −998100. −0.0387726
\(922\) −3.13200e7 −1.21337
\(923\) 2.05867e7 0.795396
\(924\) 0 0
\(925\) 985226. 0.0378601
\(926\) −661280. −0.0253430
\(927\) −5.23195e6 −0.199970
\(928\) 1.51757e6 0.0578467
\(929\) −1.38042e7 −0.524774 −0.262387 0.964963i \(-0.584510\pi\)
−0.262387 + 0.964963i \(0.584510\pi\)
\(930\) 1.62518e7 0.616162
\(931\) 0 0
\(932\) 2.29788e7 0.866540
\(933\) 8.19547e6 0.308226
\(934\) −7.17317e6 −0.269057
\(935\) −1.51865e7 −0.568106
\(936\) 5.17363e6 0.193022
\(937\) 4.73307e7 1.76114 0.880570 0.473915i \(-0.157160\pi\)
0.880570 + 0.473915i \(0.157160\pi\)
\(938\) 0 0
\(939\) −2.81023e7 −1.04011
\(940\) −1.91808e7 −0.708023
\(941\) 3.25570e7 1.19859 0.599295 0.800528i \(-0.295448\pi\)
0.599295 + 0.800528i \(0.295448\pi\)
\(942\) −8.39585e6 −0.308274
\(943\) −2.21946e7 −0.812773
\(944\) −7.19155e6 −0.262659
\(945\) 0 0
\(946\) −1.67927e7 −0.610088
\(947\) −5.27117e6 −0.190999 −0.0954997 0.995429i \(-0.530445\pi\)
−0.0954997 + 0.995429i \(0.530445\pi\)
\(948\) −1.43343e7 −0.518032
\(949\) 289420. 0.0104319
\(950\) −739024. −0.0265674
\(951\) −2.49019e7 −0.892857
\(952\) 0 0
\(953\) 8.20579e6 0.292677 0.146338 0.989235i \(-0.453251\pi\)
0.146338 + 0.989235i \(0.453251\pi\)
\(954\) −8.67996e6 −0.308778
\(955\) −2.26346e6 −0.0803092
\(956\) −1.59658e7 −0.564995
\(957\) −2.88101e6 −0.101687
\(958\) −2.63863e7 −0.928890
\(959\) 0 0
\(960\) 1.99066e6 0.0697137
\(961\) 4.12604e7 1.44120
\(962\) −1.88183e7 −0.655605
\(963\) 1.21170e7 0.421044
\(964\) 3.64758e6 0.126419
\(965\) −2.88359e7 −0.996816
\(966\) 0 0
\(967\) −1.18118e7 −0.406210 −0.203105 0.979157i \(-0.565103\pi\)
−0.203105 + 0.979157i \(0.565103\pi\)
\(968\) 7.32128e6 0.251130
\(969\) 1.03587e7 0.354402
\(970\) −1.70808e7 −0.582881
\(971\) 3.67702e7 1.25155 0.625774 0.780004i \(-0.284783\pi\)
0.625774 + 0.780004i \(0.284783\pi\)
\(972\) 944784. 0.0320750
\(973\) 0 0
\(974\) 2.38957e7 0.807091
\(975\) 1.87724e6 0.0632423
\(976\) 9.94970e6 0.334338
\(977\) −1.85183e7 −0.620674 −0.310337 0.950627i \(-0.600442\pi\)
−0.310337 + 0.950627i \(0.600442\pi\)
\(978\) −1.67839e7 −0.561108
\(979\) −7.86024e6 −0.262107
\(980\) 0 0
\(981\) −5.16991e6 −0.171518
\(982\) −1.52506e6 −0.0504670
\(983\) −2.72169e7 −0.898370 −0.449185 0.893439i \(-0.648286\pi\)
−0.449185 + 0.893439i \(0.648286\pi\)
\(984\) −5.63674e6 −0.185584
\(985\) 4.45438e7 1.46284
\(986\) −7.71826e6 −0.252829
\(987\) 0 0
\(988\) 1.41157e7 0.460056
\(989\) −4.40808e7 −1.43304
\(990\) −3.77914e6 −0.122548
\(991\) 1.63398e7 0.528522 0.264261 0.964451i \(-0.414872\pi\)
0.264261 + 0.964451i \(0.414872\pi\)
\(992\) 8.56064e6 0.276202
\(993\) 2.90031e7 0.933409
\(994\) 0 0
\(995\) 2.15754e7 0.690877
\(996\) −2.78035e6 −0.0888079
\(997\) 3.02062e7 0.962406 0.481203 0.876609i \(-0.340200\pi\)
0.481203 + 0.876609i \(0.340200\pi\)
\(998\) −6.17403e6 −0.196220
\(999\) −3.43651e6 −0.108944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.a.h.1.1 1
3.2 odd 2 882.6.a.o.1.1 1
7.2 even 3 294.6.e.h.67.1 2
7.3 odd 6 294.6.e.r.79.1 2
7.4 even 3 294.6.e.h.79.1 2
7.5 odd 6 294.6.e.r.67.1 2
7.6 odd 2 42.6.a.a.1.1 1
21.20 even 2 126.6.a.k.1.1 1
28.27 even 2 336.6.a.j.1.1 1
35.13 even 4 1050.6.g.o.799.2 2
35.27 even 4 1050.6.g.o.799.1 2
35.34 odd 2 1050.6.a.n.1.1 1
84.83 odd 2 1008.6.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.a.1.1 1 7.6 odd 2
126.6.a.k.1.1 1 21.20 even 2
294.6.a.h.1.1 1 1.1 even 1 trivial
294.6.e.h.67.1 2 7.2 even 3
294.6.e.h.79.1 2 7.4 even 3
294.6.e.r.67.1 2 7.5 odd 6
294.6.e.r.79.1 2 7.3 odd 6
336.6.a.j.1.1 1 28.27 even 2
882.6.a.o.1.1 1 3.2 odd 2
1008.6.a.x.1.1 1 84.83 odd 2
1050.6.a.n.1.1 1 35.34 odd 2
1050.6.g.o.799.1 2 35.27 even 4
1050.6.g.o.799.2 2 35.13 even 4