Properties

Label 294.6.a.h
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} + 9 q^{3} + 16 q^{4} + 54 q^{5} - 36 q^{6} - 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} + 9 q^{3} + 16 q^{4} + 54 q^{5} - 36 q^{6} - 64 q^{8} + 81 q^{9} - 216 q^{10} + 216 q^{11} + 144 q^{12} - 998 q^{13} + 486 q^{15} + 256 q^{16} - 1302 q^{17} - 324 q^{18} - 884 q^{19} + 864 q^{20} - 864 q^{22} - 2268 q^{23} - 576 q^{24} - 209 q^{25} + 3992 q^{26} + 729 q^{27} - 1482 q^{29} - 1944 q^{30} - 8360 q^{31} - 1024 q^{32} + 1944 q^{33} + 5208 q^{34} + 1296 q^{36} - 4714 q^{37} + 3536 q^{38} - 8982 q^{39} - 3456 q^{40} + 9786 q^{41} + 19436 q^{43} + 3456 q^{44} + 4374 q^{45} + 9072 q^{46} - 22200 q^{47} + 2304 q^{48} + 836 q^{50} - 11718 q^{51} - 15968 q^{52} + 26790 q^{53} - 2916 q^{54} + 11664 q^{55} - 7956 q^{57} + 5928 q^{58} - 28092 q^{59} + 7776 q^{60} + 38866 q^{61} + 33440 q^{62} + 4096 q^{64} - 53892 q^{65} - 7776 q^{66} + 23948 q^{67} - 20832 q^{68} - 20412 q^{69} - 20628 q^{71} - 5184 q^{72} - 290 q^{73} + 18856 q^{74} - 1881 q^{75} - 14144 q^{76} + 35928 q^{78} - 99544 q^{79} + 13824 q^{80} + 6561 q^{81} - 39144 q^{82} - 19308 q^{83} - 70308 q^{85} - 77744 q^{86} - 13338 q^{87} - 13824 q^{88} - 36390 q^{89} - 17496 q^{90} - 36288 q^{92} - 75240 q^{93} + 88800 q^{94} - 47736 q^{95} - 9216 q^{96} + 79078 q^{97} + 17496 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 9.00000 16.0000 54.0000 −36.0000 0 −64.0000 81.0000 −216.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.h 1
3.b odd 2 1 882.6.a.o 1
7.b odd 2 1 42.6.a.a 1
7.c even 3 2 294.6.e.h 2
7.d odd 6 2 294.6.e.r 2
21.c even 2 1 126.6.a.k 1
28.d even 2 1 336.6.a.j 1
35.c odd 2 1 1050.6.a.n 1
35.f even 4 2 1050.6.g.o 2
84.h odd 2 1 1008.6.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.a 1 7.b odd 2 1
126.6.a.k 1 21.c even 2 1
294.6.a.h 1 1.a even 1 1 trivial
294.6.e.h 2 7.c even 3 2
294.6.e.r 2 7.d odd 6 2
336.6.a.j 1 28.d even 2 1
882.6.a.o 1 3.b odd 2 1
1008.6.a.x 1 84.h odd 2 1
1050.6.a.n 1 35.c odd 2 1
1050.6.g.o 2 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5} - 54 \) Copy content Toggle raw display
\( T_{11} - 216 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T - 9 \) Copy content Toggle raw display
$5$ \( T - 54 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 216 \) Copy content Toggle raw display
$13$ \( T + 998 \) Copy content Toggle raw display
$17$ \( T + 1302 \) Copy content Toggle raw display
$19$ \( T + 884 \) Copy content Toggle raw display
$23$ \( T + 2268 \) Copy content Toggle raw display
$29$ \( T + 1482 \) Copy content Toggle raw display
$31$ \( T + 8360 \) Copy content Toggle raw display
$37$ \( T + 4714 \) Copy content Toggle raw display
$41$ \( T - 9786 \) Copy content Toggle raw display
$43$ \( T - 19436 \) Copy content Toggle raw display
$47$ \( T + 22200 \) Copy content Toggle raw display
$53$ \( T - 26790 \) Copy content Toggle raw display
$59$ \( T + 28092 \) Copy content Toggle raw display
$61$ \( T - 38866 \) Copy content Toggle raw display
$67$ \( T - 23948 \) Copy content Toggle raw display
$71$ \( T + 20628 \) Copy content Toggle raw display
$73$ \( T + 290 \) Copy content Toggle raw display
$79$ \( T + 99544 \) Copy content Toggle raw display
$83$ \( T + 19308 \) Copy content Toggle raw display
$89$ \( T + 36390 \) Copy content Toggle raw display
$97$ \( T - 79078 \) Copy content Toggle raw display
show more
show less