Properties

Label 294.6.a.c
Level $294$
Weight $6$
Character orbit 294.a
Self dual yes
Analytic conductor $47.153$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} - 9 q^{3} + 16 q^{4} + 72 q^{5} + 36 q^{6} - 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} - 9 q^{3} + 16 q^{4} + 72 q^{5} + 36 q^{6} - 64 q^{8} + 81 q^{9} - 288 q^{10} - 414 q^{11} - 144 q^{12} + 1054 q^{13} - 648 q^{15} + 256 q^{16} + 1848 q^{17} - 324 q^{18} - 236 q^{19} + 1152 q^{20} + 1656 q^{22} + 2898 q^{23} + 576 q^{24} + 2059 q^{25} - 4216 q^{26} - 729 q^{27} - 6522 q^{29} + 2592 q^{30} - 6200 q^{31} - 1024 q^{32} + 3726 q^{33} - 7392 q^{34} + 1296 q^{36} + 9650 q^{37} + 944 q^{38} - 9486 q^{39} - 4608 q^{40} - 8484 q^{41} - 10804 q^{43} - 6624 q^{44} + 5832 q^{45} - 11592 q^{46} - 60 q^{47} - 2304 q^{48} - 8236 q^{50} - 16632 q^{51} + 16864 q^{52} + 22506 q^{53} + 2916 q^{54} - 29808 q^{55} + 2124 q^{57} + 26088 q^{58} + 28176 q^{59} - 10368 q^{60} + 35194 q^{61} + 24800 q^{62} + 4096 q^{64} + 75888 q^{65} - 14904 q^{66} - 28216 q^{67} + 29568 q^{68} - 26082 q^{69} - 6642 q^{71} - 5184 q^{72} + 52090 q^{73} - 38600 q^{74} - 18531 q^{75} - 3776 q^{76} + 37944 q^{78} + 43340 q^{79} + 18432 q^{80} + 6561 q^{81} + 33936 q^{82} - 25716 q^{83} + 133056 q^{85} + 43216 q^{86} + 58698 q^{87} + 26496 q^{88} - 98724 q^{89} - 23328 q^{90} + 46368 q^{92} + 55800 q^{93} + 240 q^{94} - 16992 q^{95} + 9216 q^{96} + 148954 q^{97} - 33534 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 −9.00000 16.0000 72.0000 36.0000 0 −64.0000 81.0000 −288.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.a.c 1
3.b odd 2 1 882.6.a.n 1
7.b odd 2 1 42.6.a.c 1
7.c even 3 2 294.6.e.n 2
7.d odd 6 2 294.6.e.l 2
21.c even 2 1 126.6.a.l 1
28.d even 2 1 336.6.a.b 1
35.c odd 2 1 1050.6.a.g 1
35.f even 4 2 1050.6.g.b 2
84.h odd 2 1 1008.6.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.c 1 7.b odd 2 1
126.6.a.l 1 21.c even 2 1
294.6.a.c 1 1.a even 1 1 trivial
294.6.e.l 2 7.d odd 6 2
294.6.e.n 2 7.c even 3 2
336.6.a.b 1 28.d even 2 1
882.6.a.n 1 3.b odd 2 1
1008.6.a.ba 1 84.h odd 2 1
1050.6.a.g 1 35.c odd 2 1
1050.6.g.b 2 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5} - 72 \) Copy content Toggle raw display
\( T_{11} + 414 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T - 72 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 414 \) Copy content Toggle raw display
$13$ \( T - 1054 \) Copy content Toggle raw display
$17$ \( T - 1848 \) Copy content Toggle raw display
$19$ \( T + 236 \) Copy content Toggle raw display
$23$ \( T - 2898 \) Copy content Toggle raw display
$29$ \( T + 6522 \) Copy content Toggle raw display
$31$ \( T + 6200 \) Copy content Toggle raw display
$37$ \( T - 9650 \) Copy content Toggle raw display
$41$ \( T + 8484 \) Copy content Toggle raw display
$43$ \( T + 10804 \) Copy content Toggle raw display
$47$ \( T + 60 \) Copy content Toggle raw display
$53$ \( T - 22506 \) Copy content Toggle raw display
$59$ \( T - 28176 \) Copy content Toggle raw display
$61$ \( T - 35194 \) Copy content Toggle raw display
$67$ \( T + 28216 \) Copy content Toggle raw display
$71$ \( T + 6642 \) Copy content Toggle raw display
$73$ \( T - 52090 \) Copy content Toggle raw display
$79$ \( T - 43340 \) Copy content Toggle raw display
$83$ \( T + 25716 \) Copy content Toggle raw display
$89$ \( T + 98724 \) Copy content Toggle raw display
$97$ \( T - 148954 \) Copy content Toggle raw display
show more
show less