Defining parameters
| Level: | \( N \) | \(=\) | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 294.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 23 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(294))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 296 | 33 | 263 |
| Cusp forms | 264 | 33 | 231 |
| Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(34\) | \(3\) | \(31\) | \(30\) | \(3\) | \(27\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(39\) | \(5\) | \(34\) | \(35\) | \(5\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(38\) | \(4\) | \(34\) | \(34\) | \(4\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(37\) | \(4\) | \(33\) | \(33\) | \(4\) | \(29\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(38\) | \(4\) | \(34\) | \(34\) | \(4\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(36\) | \(4\) | \(32\) | \(32\) | \(4\) | \(28\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(38\) | \(3\) | \(35\) | \(34\) | \(3\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(36\) | \(6\) | \(30\) | \(32\) | \(6\) | \(26\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(145\) | \(14\) | \(131\) | \(129\) | \(14\) | \(115\) | \(16\) | \(0\) | \(16\) | |||||
| Minus space | \(-\) | \(151\) | \(19\) | \(132\) | \(135\) | \(19\) | \(116\) | \(16\) | \(0\) | \(16\) | |||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(294))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(294))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(294)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 2}\)