Properties

Label 294.5.c.a.97.3
Level $294$
Weight $5$
Character 294.97
Analytic conductor $30.391$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,5,Mod(97,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.97"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 294.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,32,0,0,0,0,-108,0,324,0,0,0,396,256,0,0,0,0,0,-192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3907691467\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.3
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 294.97
Dual form 294.5.c.a.97.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843 q^{2} -5.19615i q^{3} +8.00000 q^{4} +14.1536i q^{5} -14.6969i q^{6} +22.6274 q^{8} -27.0000 q^{9} +40.0324i q^{10} +64.0294 q^{11} -41.5692i q^{12} -228.919i q^{13} +73.5442 q^{15} +64.0000 q^{16} -225.455i q^{17} -76.3675 q^{18} +294.737i q^{19} +113.229i q^{20} +181.103 q^{22} +709.499 q^{23} -117.576i q^{24} +424.676 q^{25} -647.481i q^{26} +140.296i q^{27} +740.397 q^{29} +208.014 q^{30} -666.713i q^{31} +181.019 q^{32} -332.707i q^{33} -637.683i q^{34} -216.000 q^{36} -833.765 q^{37} +833.642i q^{38} -1189.50 q^{39} +320.259i q^{40} -2817.60i q^{41} +3066.41 q^{43} +512.235 q^{44} -382.147i q^{45} +2006.77 q^{46} +613.726i q^{47} -332.554i q^{48} +1201.17 q^{50} -1171.50 q^{51} -1831.35i q^{52} -1152.60 q^{53} +396.817i q^{54} +906.246i q^{55} +1531.50 q^{57} +2094.16 q^{58} -3492.59i q^{59} +588.353 q^{60} -2272.21i q^{61} -1885.75i q^{62} +512.000 q^{64} +3240.03 q^{65} -941.037i q^{66} -8674.62 q^{67} -1803.64i q^{68} -3686.66i q^{69} -353.591 q^{71} -610.940 q^{72} +4069.95i q^{73} -2358.24 q^{74} -2206.68i q^{75} +2357.90i q^{76} -3364.41 q^{78} +6472.83 q^{79} +905.829i q^{80} +729.000 q^{81} -7969.38i q^{82} -8225.83i q^{83} +3191.00 q^{85} +8673.11 q^{86} -3847.22i q^{87} +1448.82 q^{88} +15538.3i q^{89} -1080.87i q^{90} +5675.99 q^{92} -3464.34 q^{93} +1735.88i q^{94} -4171.58 q^{95} -940.604i q^{96} +1558.61i q^{97} -1728.79 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{4} - 108 q^{9} + 324 q^{11} + 396 q^{15} + 256 q^{16} - 192 q^{22} - 624 q^{23} + 952 q^{25} + 2724 q^{29} - 288 q^{30} - 864 q^{36} - 2792 q^{37} - 1296 q^{39} - 632 q^{43} + 2592 q^{44} + 9792 q^{46}+ \cdots - 8748 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843 0.707107
\(3\) − 5.19615i − 0.577350i
\(4\) 8.00000 0.500000
\(5\) 14.1536i 0.566143i 0.959099 + 0.283072i \(0.0913534\pi\)
−0.959099 + 0.283072i \(0.908647\pi\)
\(6\) − 14.6969i − 0.408248i
\(7\) 0 0
\(8\) 22.6274 0.353553
\(9\) −27.0000 −0.333333
\(10\) 40.0324i 0.400324i
\(11\) 64.0294 0.529169 0.264584 0.964363i \(-0.414765\pi\)
0.264584 + 0.964363i \(0.414765\pi\)
\(12\) − 41.5692i − 0.288675i
\(13\) − 228.919i − 1.35455i −0.735729 0.677276i \(-0.763161\pi\)
0.735729 0.677276i \(-0.236839\pi\)
\(14\) 0 0
\(15\) 73.5442 0.326863
\(16\) 64.0000 0.250000
\(17\) − 225.455i − 0.780121i −0.920789 0.390061i \(-0.872454\pi\)
0.920789 0.390061i \(-0.127546\pi\)
\(18\) −76.3675 −0.235702
\(19\) 294.737i 0.816446i 0.912882 + 0.408223i \(0.133851\pi\)
−0.912882 + 0.408223i \(0.866149\pi\)
\(20\) 113.229i 0.283072i
\(21\) 0 0
\(22\) 181.103 0.374179
\(23\) 709.499 1.34121 0.670604 0.741816i \(-0.266035\pi\)
0.670604 + 0.741816i \(0.266035\pi\)
\(24\) − 117.576i − 0.204124i
\(25\) 424.676 0.679482
\(26\) − 647.481i − 0.957812i
\(27\) 140.296i 0.192450i
\(28\) 0 0
\(29\) 740.397 0.880377 0.440188 0.897905i \(-0.354912\pi\)
0.440188 + 0.897905i \(0.354912\pi\)
\(30\) 208.014 0.231127
\(31\) − 666.713i − 0.693770i −0.937908 0.346885i \(-0.887239\pi\)
0.937908 0.346885i \(-0.112761\pi\)
\(32\) 181.019 0.176777
\(33\) − 332.707i − 0.305516i
\(34\) − 637.683i − 0.551629i
\(35\) 0 0
\(36\) −216.000 −0.166667
\(37\) −833.765 −0.609032 −0.304516 0.952507i \(-0.598495\pi\)
−0.304516 + 0.952507i \(0.598495\pi\)
\(38\) 833.642i 0.577315i
\(39\) −1189.50 −0.782050
\(40\) 320.259i 0.200162i
\(41\) − 2817.60i − 1.67615i −0.545558 0.838073i \(-0.683682\pi\)
0.545558 0.838073i \(-0.316318\pi\)
\(42\) 0 0
\(43\) 3066.41 1.65841 0.829207 0.558942i \(-0.188793\pi\)
0.829207 + 0.558942i \(0.188793\pi\)
\(44\) 512.235 0.264584
\(45\) − 382.147i − 0.188714i
\(46\) 2006.77 0.948377
\(47\) 613.726i 0.277830i 0.990304 + 0.138915i \(0.0443614\pi\)
−0.990304 + 0.138915i \(0.955639\pi\)
\(48\) − 332.554i − 0.144338i
\(49\) 0 0
\(50\) 1201.17 0.480466
\(51\) −1171.50 −0.450403
\(52\) − 1831.35i − 0.677276i
\(53\) −1152.60 −0.410324 −0.205162 0.978728i \(-0.565772\pi\)
−0.205162 + 0.978728i \(0.565772\pi\)
\(54\) 396.817i 0.136083i
\(55\) 906.246i 0.299585i
\(56\) 0 0
\(57\) 1531.50 0.471375
\(58\) 2094.16 0.622520
\(59\) − 3492.59i − 1.00333i −0.865062 0.501665i \(-0.832721\pi\)
0.865062 0.501665i \(-0.167279\pi\)
\(60\) 588.353 0.163431
\(61\) − 2272.21i − 0.610645i −0.952249 0.305323i \(-0.901236\pi\)
0.952249 0.305323i \(-0.0987643\pi\)
\(62\) − 1885.75i − 0.490569i
\(63\) 0 0
\(64\) 512.000 0.125000
\(65\) 3240.03 0.766870
\(66\) − 941.037i − 0.216032i
\(67\) −8674.62 −1.93242 −0.966208 0.257764i \(-0.917014\pi\)
−0.966208 + 0.257764i \(0.917014\pi\)
\(68\) − 1803.64i − 0.390061i
\(69\) − 3686.66i − 0.774346i
\(70\) 0 0
\(71\) −353.591 −0.0701431 −0.0350715 0.999385i \(-0.511166\pi\)
−0.0350715 + 0.999385i \(0.511166\pi\)
\(72\) −610.940 −0.117851
\(73\) 4069.95i 0.763736i 0.924217 + 0.381868i \(0.124719\pi\)
−0.924217 + 0.381868i \(0.875281\pi\)
\(74\) −2358.24 −0.430650
\(75\) − 2206.68i − 0.392299i
\(76\) 2357.90i 0.408223i
\(77\) 0 0
\(78\) −3364.41 −0.552993
\(79\) 6472.83 1.03715 0.518573 0.855033i \(-0.326464\pi\)
0.518573 + 0.855033i \(0.326464\pi\)
\(80\) 905.829i 0.141536i
\(81\) 729.000 0.111111
\(82\) − 7969.38i − 1.18521i
\(83\) − 8225.83i − 1.19405i −0.802222 0.597026i \(-0.796349\pi\)
0.802222 0.597026i \(-0.203651\pi\)
\(84\) 0 0
\(85\) 3191.00 0.441660
\(86\) 8673.11 1.17268
\(87\) − 3847.22i − 0.508286i
\(88\) 1448.82 0.187089
\(89\) 15538.3i 1.96166i 0.194878 + 0.980828i \(0.437569\pi\)
−0.194878 + 0.980828i \(0.562431\pi\)
\(90\) − 1080.87i − 0.133441i
\(91\) 0 0
\(92\) 5675.99 0.670604
\(93\) −3464.34 −0.400548
\(94\) 1735.88i 0.196455i
\(95\) −4171.58 −0.462225
\(96\) − 940.604i − 0.102062i
\(97\) 1558.61i 0.165651i 0.996564 + 0.0828254i \(0.0263944\pi\)
−0.996564 + 0.0828254i \(0.973606\pi\)
\(98\) 0 0
\(99\) −1728.79 −0.176390
\(100\) 3397.41 0.339741
\(101\) 15735.3i 1.54253i 0.636516 + 0.771264i \(0.280375\pi\)
−0.636516 + 0.771264i \(0.719625\pi\)
\(102\) −3313.50 −0.318483
\(103\) − 33.7287i − 0.00317926i −0.999999 0.00158963i \(-0.999494\pi\)
0.999999 0.00158963i \(-0.000505995\pi\)
\(104\) − 5179.85i − 0.478906i
\(105\) 0 0
\(106\) −3260.05 −0.290143
\(107\) −5446.46 −0.475715 −0.237858 0.971300i \(-0.576445\pi\)
−0.237858 + 0.971300i \(0.576445\pi\)
\(108\) 1122.37i 0.0962250i
\(109\) 16697.8 1.40542 0.702709 0.711477i \(-0.251974\pi\)
0.702709 + 0.711477i \(0.251974\pi\)
\(110\) 2563.25i 0.211839i
\(111\) 4332.37i 0.351625i
\(112\) 0 0
\(113\) 9455.64 0.740515 0.370258 0.928929i \(-0.379269\pi\)
0.370258 + 0.928929i \(0.379269\pi\)
\(114\) 4331.73 0.333313
\(115\) 10041.9i 0.759315i
\(116\) 5923.18 0.440188
\(117\) 6180.82i 0.451517i
\(118\) − 9878.54i − 0.709461i
\(119\) 0 0
\(120\) 1664.11 0.115563
\(121\) −10541.2 −0.719980
\(122\) − 6426.79i − 0.431792i
\(123\) −14640.7 −0.967724
\(124\) − 5333.70i − 0.346885i
\(125\) 14856.7i 0.950827i
\(126\) 0 0
\(127\) −2380.07 −0.147564 −0.0737822 0.997274i \(-0.523507\pi\)
−0.0737822 + 0.997274i \(0.523507\pi\)
\(128\) 1448.15 0.0883883
\(129\) − 15933.5i − 0.957486i
\(130\) 9164.17 0.542259
\(131\) 4339.79i 0.252887i 0.991974 + 0.126443i \(0.0403562\pi\)
−0.991974 + 0.126443i \(0.959644\pi\)
\(132\) − 2661.65i − 0.152758i
\(133\) 0 0
\(134\) −24535.5 −1.36642
\(135\) −1985.69 −0.108954
\(136\) − 5101.46i − 0.275814i
\(137\) −30759.2 −1.63883 −0.819414 0.573202i \(-0.805701\pi\)
−0.819414 + 0.573202i \(0.805701\pi\)
\(138\) − 10427.5i − 0.547546i
\(139\) 27186.6i 1.40710i 0.710644 + 0.703551i \(0.248404\pi\)
−0.710644 + 0.703551i \(0.751596\pi\)
\(140\) 0 0
\(141\) 3189.01 0.160405
\(142\) −1000.11 −0.0495987
\(143\) − 14657.6i − 0.716786i
\(144\) −1728.00 −0.0833333
\(145\) 10479.3i 0.498419i
\(146\) 11511.6i 0.540043i
\(147\) 0 0
\(148\) −6670.12 −0.304516
\(149\) −5826.92 −0.262462 −0.131231 0.991352i \(-0.541893\pi\)
−0.131231 + 0.991352i \(0.541893\pi\)
\(150\) − 6241.44i − 0.277397i
\(151\) 25186.8 1.10463 0.552317 0.833634i \(-0.313744\pi\)
0.552317 + 0.833634i \(0.313744\pi\)
\(152\) 6669.14i 0.288657i
\(153\) 6087.29i 0.260040i
\(154\) 0 0
\(155\) 9436.37 0.392773
\(156\) −9515.99 −0.391025
\(157\) 23896.0i 0.969453i 0.874666 + 0.484726i \(0.161081\pi\)
−0.874666 + 0.484726i \(0.838919\pi\)
\(158\) 18307.9 0.733373
\(159\) 5989.09i 0.236901i
\(160\) 2562.07i 0.100081i
\(161\) 0 0
\(162\) 2061.92 0.0785674
\(163\) −42585.9 −1.60284 −0.801422 0.598100i \(-0.795923\pi\)
−0.801422 + 0.598100i \(0.795923\pi\)
\(164\) − 22540.8i − 0.838073i
\(165\) 4708.99 0.172966
\(166\) − 23266.2i − 0.844323i
\(167\) − 26356.3i − 0.945043i −0.881319 0.472521i \(-0.843344\pi\)
0.881319 0.472521i \(-0.156656\pi\)
\(168\) 0 0
\(169\) −23843.0 −0.834809
\(170\) 9025.50 0.312301
\(171\) − 7957.90i − 0.272149i
\(172\) 24531.3 0.829207
\(173\) − 28019.2i − 0.936188i −0.883679 0.468094i \(-0.844941\pi\)
0.883679 0.468094i \(-0.155059\pi\)
\(174\) − 10881.6i − 0.359412i
\(175\) 0 0
\(176\) 4097.88 0.132292
\(177\) −18148.0 −0.579273
\(178\) 43948.9i 1.38710i
\(179\) 25398.5 0.792687 0.396343 0.918102i \(-0.370279\pi\)
0.396343 + 0.918102i \(0.370279\pi\)
\(180\) − 3057.17i − 0.0943572i
\(181\) 44097.2i 1.34603i 0.739630 + 0.673014i \(0.235001\pi\)
−0.739630 + 0.673014i \(0.764999\pi\)
\(182\) 0 0
\(183\) −11806.8 −0.352556
\(184\) 16054.1 0.474188
\(185\) − 11800.8i − 0.344799i
\(186\) −9798.64 −0.283230
\(187\) − 14435.8i − 0.412816i
\(188\) 4909.81i 0.138915i
\(189\) 0 0
\(190\) −11799.0 −0.326843
\(191\) −64559.1 −1.76966 −0.884832 0.465911i \(-0.845727\pi\)
−0.884832 + 0.465911i \(0.845727\pi\)
\(192\) − 2660.43i − 0.0721688i
\(193\) 36674.6 0.984579 0.492290 0.870432i \(-0.336160\pi\)
0.492290 + 0.870432i \(0.336160\pi\)
\(194\) 4408.41i 0.117133i
\(195\) − 16835.7i − 0.442753i
\(196\) 0 0
\(197\) −73147.0 −1.88480 −0.942398 0.334494i \(-0.891434\pi\)
−0.942398 + 0.334494i \(0.891434\pi\)
\(198\) −4889.77 −0.124726
\(199\) − 1401.03i − 0.0353786i −0.999844 0.0176893i \(-0.994369\pi\)
0.999844 0.0176893i \(-0.00563097\pi\)
\(200\) 9609.33 0.240233
\(201\) 45074.6i 1.11568i
\(202\) 44506.2i 1.09073i
\(203\) 0 0
\(204\) −9371.99 −0.225202
\(205\) 39879.2 0.948939
\(206\) − 95.3993i − 0.00224807i
\(207\) −19156.5 −0.447069
\(208\) − 14650.8i − 0.338638i
\(209\) 18871.8i 0.432038i
\(210\) 0 0
\(211\) 58231.7 1.30796 0.653980 0.756512i \(-0.273098\pi\)
0.653980 + 0.756512i \(0.273098\pi\)
\(212\) −9220.80 −0.205162
\(213\) 1837.31i 0.0404971i
\(214\) −15404.9 −0.336381
\(215\) 43400.6i 0.938900i
\(216\) 3174.54i 0.0680414i
\(217\) 0 0
\(218\) 47228.4 0.993781
\(219\) 21148.1 0.440943
\(220\) 7249.97i 0.149793i
\(221\) −51611.0 −1.05671
\(222\) 12253.8i 0.248636i
\(223\) 61050.9i 1.22767i 0.789434 + 0.613836i \(0.210374\pi\)
−0.789434 + 0.613836i \(0.789626\pi\)
\(224\) 0 0
\(225\) −11466.3 −0.226494
\(226\) 26744.6 0.523623
\(227\) 24993.7i 0.485041i 0.970146 + 0.242520i \(0.0779742\pi\)
−0.970146 + 0.242520i \(0.922026\pi\)
\(228\) 12252.0 0.235688
\(229\) 18928.9i 0.360956i 0.983579 + 0.180478i \(0.0577644\pi\)
−0.983579 + 0.180478i \(0.942236\pi\)
\(230\) 28402.9i 0.536917i
\(231\) 0 0
\(232\) 16753.3 0.311260
\(233\) 6684.74 0.123132 0.0615662 0.998103i \(-0.480390\pi\)
0.0615662 + 0.998103i \(0.480390\pi\)
\(234\) 17482.0i 0.319271i
\(235\) −8686.42 −0.157291
\(236\) − 27940.7i − 0.501665i
\(237\) − 33633.8i − 0.598796i
\(238\) 0 0
\(239\) −96461.0 −1.68871 −0.844356 0.535782i \(-0.820017\pi\)
−0.844356 + 0.535782i \(0.820017\pi\)
\(240\) 4706.83 0.0817157
\(241\) 54700.2i 0.941792i 0.882189 + 0.470896i \(0.156069\pi\)
−0.882189 + 0.470896i \(0.843931\pi\)
\(242\) −29815.1 −0.509103
\(243\) − 3788.00i − 0.0641500i
\(244\) − 18177.7i − 0.305323i
\(245\) 0 0
\(246\) −41410.1 −0.684284
\(247\) 67471.0 1.10592
\(248\) − 15086.0i − 0.245285i
\(249\) −42742.6 −0.689386
\(250\) 42021.0i 0.672336i
\(251\) − 108137.i − 1.71643i −0.513286 0.858217i \(-0.671572\pi\)
0.513286 0.858217i \(-0.328428\pi\)
\(252\) 0 0
\(253\) 45428.8 0.709725
\(254\) −6731.84 −0.104344
\(255\) − 16580.9i − 0.254993i
\(256\) 4096.00 0.0625000
\(257\) − 35886.1i − 0.543325i −0.962393 0.271663i \(-0.912427\pi\)
0.962393 0.271663i \(-0.0875735\pi\)
\(258\) − 45066.8i − 0.677045i
\(259\) 0 0
\(260\) 25920.2 0.383435
\(261\) −19990.7 −0.293459
\(262\) 12274.8i 0.178818i
\(263\) −65431.6 −0.945967 −0.472984 0.881071i \(-0.656823\pi\)
−0.472984 + 0.881071i \(0.656823\pi\)
\(264\) − 7528.29i − 0.108016i
\(265\) − 16313.4i − 0.232302i
\(266\) 0 0
\(267\) 80739.2 1.13256
\(268\) −69396.9 −0.966208
\(269\) − 69211.3i − 0.956472i −0.878231 0.478236i \(-0.841276\pi\)
0.878231 0.478236i \(-0.158724\pi\)
\(270\) −5616.39 −0.0770423
\(271\) − 6550.55i − 0.0891947i −0.999005 0.0445973i \(-0.985800\pi\)
0.999005 0.0445973i \(-0.0142005\pi\)
\(272\) − 14429.1i − 0.195030i
\(273\) 0 0
\(274\) −87000.1 −1.15883
\(275\) 27191.8 0.359561
\(276\) − 29493.3i − 0.387173i
\(277\) 79103.2 1.03094 0.515471 0.856907i \(-0.327617\pi\)
0.515471 + 0.856907i \(0.327617\pi\)
\(278\) 76895.4i 0.994972i
\(279\) 18001.2i 0.231257i
\(280\) 0 0
\(281\) 34363.1 0.435191 0.217596 0.976039i \(-0.430179\pi\)
0.217596 + 0.976039i \(0.430179\pi\)
\(282\) 9019.89 0.113424
\(283\) 91912.3i 1.14763i 0.818986 + 0.573813i \(0.194537\pi\)
−0.818986 + 0.573813i \(0.805463\pi\)
\(284\) −2828.73 −0.0350715
\(285\) 21676.2i 0.266866i
\(286\) − 41457.8i − 0.506844i
\(287\) 0 0
\(288\) −4887.52 −0.0589256
\(289\) 32691.0 0.391411
\(290\) 29639.8i 0.352436i
\(291\) 8098.77 0.0956385
\(292\) 32559.6i 0.381868i
\(293\) 23218.2i 0.270453i 0.990815 + 0.135227i \(0.0431763\pi\)
−0.990815 + 0.135227i \(0.956824\pi\)
\(294\) 0 0
\(295\) 49432.7 0.568028
\(296\) −18865.9 −0.215325
\(297\) 8983.08i 0.101839i
\(298\) −16481.0 −0.185589
\(299\) − 162418.i − 1.81673i
\(300\) − 17653.5i − 0.196150i
\(301\) 0 0
\(302\) 71239.0 0.781095
\(303\) 81763.1 0.890579
\(304\) 18863.2i 0.204112i
\(305\) 32159.9 0.345713
\(306\) 17217.4i 0.183876i
\(307\) − 66385.9i − 0.704367i −0.935931 0.352183i \(-0.885439\pi\)
0.935931 0.352183i \(-0.114561\pi\)
\(308\) 0 0
\(309\) −175.260 −0.00183555
\(310\) 26690.1 0.277733
\(311\) − 95700.5i − 0.989449i −0.869050 0.494724i \(-0.835269\pi\)
0.869050 0.494724i \(-0.164731\pi\)
\(312\) −26915.3 −0.276497
\(313\) − 47904.0i − 0.488971i −0.969653 0.244486i \(-0.921381\pi\)
0.969653 0.244486i \(-0.0786191\pi\)
\(314\) 67588.2i 0.685507i
\(315\) 0 0
\(316\) 51782.6 0.518573
\(317\) −34128.2 −0.339621 −0.169811 0.985477i \(-0.554316\pi\)
−0.169811 + 0.985477i \(0.554316\pi\)
\(318\) 16939.7i 0.167514i
\(319\) 47407.2 0.465868
\(320\) 7246.63i 0.0707679i
\(321\) 28300.7i 0.274654i
\(322\) 0 0
\(323\) 66450.0 0.636927
\(324\) 5832.00 0.0555556
\(325\) − 97216.5i − 0.920393i
\(326\) −120451. −1.13338
\(327\) − 86764.2i − 0.811418i
\(328\) − 63755.1i − 0.592607i
\(329\) 0 0
\(330\) 13319.0 0.122305
\(331\) 133285. 1.21654 0.608270 0.793730i \(-0.291864\pi\)
0.608270 + 0.793730i \(0.291864\pi\)
\(332\) − 65806.6i − 0.597026i
\(333\) 22511.6 0.203011
\(334\) − 74546.9i − 0.668246i
\(335\) − 122777.i − 1.09402i
\(336\) 0 0
\(337\) −49734.4 −0.437922 −0.218961 0.975734i \(-0.570267\pi\)
−0.218961 + 0.975734i \(0.570267\pi\)
\(338\) −67438.1 −0.590299
\(339\) − 49133.0i − 0.427537i
\(340\) 25528.0 0.220830
\(341\) − 42689.2i − 0.367121i
\(342\) − 22508.3i − 0.192438i
\(343\) 0 0
\(344\) 69384.9 0.586338
\(345\) 52179.5 0.438391
\(346\) − 79250.2i − 0.661985i
\(347\) 18769.5 0.155882 0.0779408 0.996958i \(-0.475165\pi\)
0.0779408 + 0.996958i \(0.475165\pi\)
\(348\) − 30777.7i − 0.254143i
\(349\) − 4574.17i − 0.0375545i −0.999824 0.0187772i \(-0.994023\pi\)
0.999824 0.0187772i \(-0.00597733\pi\)
\(350\) 0 0
\(351\) 32116.5 0.260683
\(352\) 11590.6 0.0935447
\(353\) 60893.0i 0.488673i 0.969691 + 0.244336i \(0.0785701\pi\)
−0.969691 + 0.244336i \(0.921430\pi\)
\(354\) −51330.4 −0.409608
\(355\) − 5004.58i − 0.0397110i
\(356\) 124306.i 0.980828i
\(357\) 0 0
\(358\) 71837.7 0.560514
\(359\) 232118. 1.80103 0.900513 0.434830i \(-0.143192\pi\)
0.900513 + 0.434830i \(0.143192\pi\)
\(360\) − 8646.99i − 0.0667206i
\(361\) 43451.1 0.333416
\(362\) 124726.i 0.951786i
\(363\) 54773.8i 0.415681i
\(364\) 0 0
\(365\) −57604.4 −0.432384
\(366\) −33394.6 −0.249295
\(367\) − 144718.i − 1.07446i −0.843436 0.537229i \(-0.819471\pi\)
0.843436 0.537229i \(-0.180529\pi\)
\(368\) 45407.9 0.335302
\(369\) 76075.3i 0.558716i
\(370\) − 33377.6i − 0.243810i
\(371\) 0 0
\(372\) −27714.7 −0.200274
\(373\) −148883. −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(374\) − 40830.5i − 0.291905i
\(375\) 77197.5 0.548960
\(376\) 13887.0i 0.0982276i
\(377\) − 169491.i − 1.19252i
\(378\) 0 0
\(379\) 140667. 0.979299 0.489649 0.871919i \(-0.337125\pi\)
0.489649 + 0.871919i \(0.337125\pi\)
\(380\) −33372.7 −0.231113
\(381\) 12367.2i 0.0851963i
\(382\) −182601. −1.25134
\(383\) − 29322.3i − 0.199895i −0.994993 0.0999473i \(-0.968133\pi\)
0.994993 0.0999473i \(-0.0318674\pi\)
\(384\) − 7524.83i − 0.0510310i
\(385\) 0 0
\(386\) 103731. 0.696202
\(387\) −82793.0 −0.552805
\(388\) 12468.9i 0.0828254i
\(389\) 132420. 0.875092 0.437546 0.899196i \(-0.355848\pi\)
0.437546 + 0.899196i \(0.355848\pi\)
\(390\) − 47618.4i − 0.313073i
\(391\) − 159960.i − 1.04630i
\(392\) 0 0
\(393\) 22550.2 0.146004
\(394\) −206891. −1.33275
\(395\) 91613.7i 0.587173i
\(396\) −13830.4 −0.0881948
\(397\) − 34227.6i − 0.217168i −0.994087 0.108584i \(-0.965368\pi\)
0.994087 0.108584i \(-0.0346316\pi\)
\(398\) − 3962.70i − 0.0250164i
\(399\) 0 0
\(400\) 27179.3 0.169870
\(401\) −179081. −1.11368 −0.556841 0.830619i \(-0.687987\pi\)
−0.556841 + 0.830619i \(0.687987\pi\)
\(402\) 127490.i 0.788906i
\(403\) −152623. −0.939747
\(404\) 125883.i 0.771264i
\(405\) 10318.0i 0.0629048i
\(406\) 0 0
\(407\) −53385.5 −0.322281
\(408\) −26508.0 −0.159242
\(409\) 49766.8i 0.297504i 0.988875 + 0.148752i \(0.0475257\pi\)
−0.988875 + 0.148752i \(0.952474\pi\)
\(410\) 112795. 0.671001
\(411\) 159829.i 0.946178i
\(412\) − 269.830i − 0.00158963i
\(413\) 0 0
\(414\) −54182.7 −0.316126
\(415\) 116425. 0.676005
\(416\) − 41438.8i − 0.239453i
\(417\) 141266. 0.812391
\(418\) 53377.6i 0.305497i
\(419\) − 43951.2i − 0.250347i −0.992135 0.125174i \(-0.960051\pi\)
0.992135 0.125174i \(-0.0399488\pi\)
\(420\) 0 0
\(421\) −218257. −1.23141 −0.615707 0.787975i \(-0.711129\pi\)
−0.615707 + 0.787975i \(0.711129\pi\)
\(422\) 164704. 0.924867
\(423\) − 16570.6i − 0.0926099i
\(424\) −26080.4 −0.145071
\(425\) − 95745.4i − 0.530078i
\(426\) 5196.71i 0.0286358i
\(427\) 0 0
\(428\) −43571.7 −0.237858
\(429\) −76162.9 −0.413837
\(430\) 122756.i 0.663902i
\(431\) −76739.6 −0.413109 −0.206555 0.978435i \(-0.566225\pi\)
−0.206555 + 0.978435i \(0.566225\pi\)
\(432\) 8978.95i 0.0481125i
\(433\) 216713.i 1.15587i 0.816083 + 0.577935i \(0.196141\pi\)
−0.816083 + 0.577935i \(0.803859\pi\)
\(434\) 0 0
\(435\) 54451.9 0.287763
\(436\) 133582. 0.702709
\(437\) 209116.i 1.09502i
\(438\) 59815.8 0.311794
\(439\) − 23762.1i − 0.123298i −0.998098 0.0616489i \(-0.980364\pi\)
0.998098 0.0616489i \(-0.0196359\pi\)
\(440\) 20506.0i 0.105919i
\(441\) 0 0
\(442\) −145978. −0.747210
\(443\) 174865. 0.891035 0.445517 0.895273i \(-0.353020\pi\)
0.445517 + 0.895273i \(0.353020\pi\)
\(444\) 34658.9i 0.175812i
\(445\) −219922. −1.11058
\(446\) 172678.i 0.868095i
\(447\) 30277.6i 0.151532i
\(448\) 0 0
\(449\) −195154. −0.968023 −0.484011 0.875062i \(-0.660821\pi\)
−0.484011 + 0.875062i \(0.660821\pi\)
\(450\) −32431.5 −0.160155
\(451\) − 180409.i − 0.886965i
\(452\) 75645.1 0.370258
\(453\) − 130874.i − 0.637761i
\(454\) 70692.8i 0.342976i
\(455\) 0 0
\(456\) 34653.9 0.166656
\(457\) 58472.2 0.279974 0.139987 0.990153i \(-0.455294\pi\)
0.139987 + 0.990153i \(0.455294\pi\)
\(458\) 53539.0i 0.255234i
\(459\) 31630.5 0.150134
\(460\) 80335.6i 0.379658i
\(461\) 307243.i 1.44571i 0.691002 + 0.722853i \(0.257169\pi\)
−0.691002 + 0.722853i \(0.742831\pi\)
\(462\) 0 0
\(463\) −17772.2 −0.0829049 −0.0414524 0.999140i \(-0.513199\pi\)
−0.0414524 + 0.999140i \(0.513199\pi\)
\(464\) 47385.4 0.220094
\(465\) − 49032.8i − 0.226768i
\(466\) 18907.3 0.0870678
\(467\) − 64965.1i − 0.297883i −0.988846 0.148942i \(-0.952413\pi\)
0.988846 0.148942i \(-0.0475867\pi\)
\(468\) 49446.5i 0.225759i
\(469\) 0 0
\(470\) −24568.9 −0.111222
\(471\) 124167. 0.559714
\(472\) − 79028.3i − 0.354731i
\(473\) 196340. 0.877581
\(474\) − 95130.7i − 0.423413i
\(475\) 125168.i 0.554760i
\(476\) 0 0
\(477\) 31120.2 0.136775
\(478\) −272833. −1.19410
\(479\) 210937.i 0.919351i 0.888087 + 0.459675i \(0.152034\pi\)
−0.888087 + 0.459675i \(0.847966\pi\)
\(480\) 13312.9 0.0577817
\(481\) 190865.i 0.824965i
\(482\) 154716.i 0.665948i
\(483\) 0 0
\(484\) −84329.8 −0.359990
\(485\) −22059.9 −0.0937821
\(486\) − 10714.1i − 0.0453609i
\(487\) −228888. −0.965084 −0.482542 0.875873i \(-0.660286\pi\)
−0.482542 + 0.875873i \(0.660286\pi\)
\(488\) − 51414.3i − 0.215896i
\(489\) 221283.i 0.925402i
\(490\) 0 0
\(491\) 140350. 0.582169 0.291085 0.956697i \(-0.405984\pi\)
0.291085 + 0.956697i \(0.405984\pi\)
\(492\) −117126. −0.483862
\(493\) − 166926.i − 0.686801i
\(494\) 190837. 0.782002
\(495\) − 24468.6i − 0.0998618i
\(496\) − 42669.6i − 0.173442i
\(497\) 0 0
\(498\) −120894. −0.487470
\(499\) −345327. −1.38685 −0.693424 0.720529i \(-0.743899\pi\)
−0.693424 + 0.720529i \(0.743899\pi\)
\(500\) 118853.i 0.475414i
\(501\) −136951. −0.545621
\(502\) − 305858.i − 1.21370i
\(503\) − 58979.0i − 0.233110i −0.993184 0.116555i \(-0.962815\pi\)
0.993184 0.116555i \(-0.0371851\pi\)
\(504\) 0 0
\(505\) −222711. −0.873291
\(506\) 128492. 0.501852
\(507\) 123892.i 0.481977i
\(508\) −19040.5 −0.0737822
\(509\) − 23848.7i − 0.0920511i −0.998940 0.0460255i \(-0.985344\pi\)
0.998940 0.0460255i \(-0.0146556\pi\)
\(510\) − 46897.9i − 0.180307i
\(511\) 0 0
\(512\) 11585.2 0.0441942
\(513\) −41350.5 −0.157125
\(514\) − 101501.i − 0.384189i
\(515\) 477.382 0.00179991
\(516\) − 127468.i − 0.478743i
\(517\) 39296.5i 0.147019i
\(518\) 0 0
\(519\) −145592. −0.540509
\(520\) 73313.4 0.271129
\(521\) 481708.i 1.77463i 0.461163 + 0.887315i \(0.347432\pi\)
−0.461163 + 0.887315i \(0.652568\pi\)
\(522\) −56542.3 −0.207507
\(523\) 461410.i 1.68688i 0.537226 + 0.843438i \(0.319472\pi\)
−0.537226 + 0.843438i \(0.680528\pi\)
\(524\) 34718.3i 0.126443i
\(525\) 0 0
\(526\) −185068. −0.668900
\(527\) −150314. −0.541225
\(528\) − 21293.2i − 0.0763790i
\(529\) 223547. 0.798837
\(530\) − 46141.3i − 0.164262i
\(531\) 94299.9i 0.334443i
\(532\) 0 0
\(533\) −645003. −2.27043
\(534\) 228365. 0.800842
\(535\) − 77086.9i − 0.269323i
\(536\) −196284. −0.683212
\(537\) − 131974.i − 0.457658i
\(538\) − 195759.i − 0.676328i
\(539\) 0 0
\(540\) −15885.5 −0.0544772
\(541\) −508196. −1.73635 −0.868174 0.496260i \(-0.834706\pi\)
−0.868174 + 0.496260i \(0.834706\pi\)
\(542\) − 18527.7i − 0.0630702i
\(543\) 229136. 0.777130
\(544\) − 40811.7i − 0.137907i
\(545\) 236333.i 0.795668i
\(546\) 0 0
\(547\) 40170.8 0.134257 0.0671283 0.997744i \(-0.478616\pi\)
0.0671283 + 0.997744i \(0.478616\pi\)
\(548\) −246073. −0.819414
\(549\) 61349.7i 0.203548i
\(550\) 76910.0 0.254248
\(551\) 218222.i 0.718780i
\(552\) − 83419.7i − 0.273773i
\(553\) 0 0
\(554\) 223738. 0.728987
\(555\) −61318.5 −0.199070
\(556\) 217493.i 0.703551i
\(557\) −78460.4 −0.252895 −0.126447 0.991973i \(-0.540358\pi\)
−0.126447 + 0.991973i \(0.540358\pi\)
\(558\) 50915.2i 0.163523i
\(559\) − 701959.i − 2.24641i
\(560\) 0 0
\(561\) −75010.4 −0.238339
\(562\) 97193.7 0.307727
\(563\) − 410625.i − 1.29547i −0.761864 0.647737i \(-0.775716\pi\)
0.761864 0.647737i \(-0.224284\pi\)
\(564\) 25512.1 0.0802025
\(565\) 133831.i 0.419238i
\(566\) 259967.i 0.811495i
\(567\) 0 0
\(568\) −8000.86 −0.0247993
\(569\) −148809. −0.459625 −0.229812 0.973235i \(-0.573811\pi\)
−0.229812 + 0.973235i \(0.573811\pi\)
\(570\) 61309.5i 0.188703i
\(571\) 72292.6 0.221729 0.110864 0.993836i \(-0.464638\pi\)
0.110864 + 0.993836i \(0.464638\pi\)
\(572\) − 117261.i − 0.358393i
\(573\) 335459.i 1.02172i
\(574\) 0 0
\(575\) 301307. 0.911326
\(576\) −13824.0 −0.0416667
\(577\) − 557335.i − 1.67404i −0.547176 0.837018i \(-0.684297\pi\)
0.547176 0.837018i \(-0.315703\pi\)
\(578\) 92464.2 0.276769
\(579\) − 190567.i − 0.568447i
\(580\) 83834.1i 0.249210i
\(581\) 0 0
\(582\) 22906.8 0.0676267
\(583\) −73800.4 −0.217131
\(584\) 92092.4i 0.270021i
\(585\) −87480.7 −0.255623
\(586\) 65670.9i 0.191239i
\(587\) − 308119.i − 0.894217i −0.894480 0.447109i \(-0.852454\pi\)
0.894480 0.447109i \(-0.147546\pi\)
\(588\) 0 0
\(589\) 196505. 0.566426
\(590\) 139817. 0.401657
\(591\) 380083.i 1.08819i
\(592\) −53360.9 −0.152258
\(593\) 231870.i 0.659378i 0.944090 + 0.329689i \(0.106944\pi\)
−0.944090 + 0.329689i \(0.893056\pi\)
\(594\) 25408.0i 0.0720108i
\(595\) 0 0
\(596\) −46615.3 −0.131231
\(597\) −7279.95 −0.0204258
\(598\) − 459387.i − 1.28462i
\(599\) −334083. −0.931110 −0.465555 0.885019i \(-0.654145\pi\)
−0.465555 + 0.885019i \(0.654145\pi\)
\(600\) − 49931.5i − 0.138699i
\(601\) 645072.i 1.78591i 0.450147 + 0.892955i \(0.351372\pi\)
−0.450147 + 0.892955i \(0.648628\pi\)
\(602\) 0 0
\(603\) 234215. 0.644139
\(604\) 201494. 0.552317
\(605\) − 149196.i − 0.407612i
\(606\) 231261. 0.629734
\(607\) − 139306.i − 0.378088i −0.981969 0.189044i \(-0.939461\pi\)
0.981969 0.189044i \(-0.0605388\pi\)
\(608\) 53353.1i 0.144329i
\(609\) 0 0
\(610\) 90962.0 0.244456
\(611\) 140494. 0.376335
\(612\) 48698.3i 0.130020i
\(613\) −407331. −1.08399 −0.541997 0.840381i \(-0.682331\pi\)
−0.541997 + 0.840381i \(0.682331\pi\)
\(614\) − 187768.i − 0.498063i
\(615\) − 207218.i − 0.547870i
\(616\) 0 0
\(617\) 276504. 0.726325 0.363163 0.931726i \(-0.381697\pi\)
0.363163 + 0.931726i \(0.381697\pi\)
\(618\) −495.709 −0.00129793
\(619\) 223901.i 0.584352i 0.956365 + 0.292176i \(0.0943793\pi\)
−0.956365 + 0.292176i \(0.905621\pi\)
\(620\) 75491.0 0.196387
\(621\) 99539.9i 0.258115i
\(622\) − 270682.i − 0.699646i
\(623\) 0 0
\(624\) −76127.9 −0.195513
\(625\) 55147.5 0.141178
\(626\) − 135493.i − 0.345755i
\(627\) 98061.0 0.249437
\(628\) 191168.i 0.484726i
\(629\) 187976.i 0.475119i
\(630\) 0 0
\(631\) 299528. 0.752278 0.376139 0.926563i \(-0.377251\pi\)
0.376139 + 0.926563i \(0.377251\pi\)
\(632\) 146463. 0.366686
\(633\) − 302581.i − 0.755151i
\(634\) −96529.1 −0.240148
\(635\) − 33686.4i − 0.0835425i
\(636\) 47912.7i 0.118450i
\(637\) 0 0
\(638\) 134088. 0.329418
\(639\) 9546.97 0.0233810
\(640\) 20496.6i 0.0500405i
\(641\) 577884. 1.40645 0.703226 0.710967i \(-0.251742\pi\)
0.703226 + 0.710967i \(0.251742\pi\)
\(642\) 80046.3i 0.194210i
\(643\) − 135320.i − 0.327295i −0.986519 0.163647i \(-0.947674\pi\)
0.986519 0.163647i \(-0.0523259\pi\)
\(644\) 0 0
\(645\) 225516. 0.542074
\(646\) 187949. 0.450375
\(647\) 218100.i 0.521011i 0.965472 + 0.260506i \(0.0838892\pi\)
−0.965472 + 0.260506i \(0.916111\pi\)
\(648\) 16495.4 0.0392837
\(649\) − 223629.i − 0.530931i
\(650\) − 274970.i − 0.650816i
\(651\) 0 0
\(652\) −340688. −0.801422
\(653\) 144254. 0.338301 0.169150 0.985590i \(-0.445898\pi\)
0.169150 + 0.985590i \(0.445898\pi\)
\(654\) − 245406.i − 0.573759i
\(655\) −61423.6 −0.143170
\(656\) − 180327.i − 0.419037i
\(657\) − 109889.i − 0.254579i
\(658\) 0 0
\(659\) −159392. −0.367024 −0.183512 0.983017i \(-0.558747\pi\)
−0.183512 + 0.983017i \(0.558747\pi\)
\(660\) 37671.9 0.0864828
\(661\) 352962.i 0.807839i 0.914795 + 0.403919i \(0.132352\pi\)
−0.914795 + 0.403919i \(0.867648\pi\)
\(662\) 376988. 0.860223
\(663\) 268178.i 0.610094i
\(664\) − 186129.i − 0.422161i
\(665\) 0 0
\(666\) 63672.5 0.143550
\(667\) 525311. 1.18077
\(668\) − 210850.i − 0.472521i
\(669\) 317230. 0.708797
\(670\) − 347265.i − 0.773592i
\(671\) − 145488.i − 0.323135i
\(672\) 0 0
\(673\) 504858. 1.11465 0.557326 0.830294i \(-0.311827\pi\)
0.557326 + 0.830294i \(0.311827\pi\)
\(674\) −140670. −0.309658
\(675\) 59580.4i 0.130766i
\(676\) −190744. −0.417404
\(677\) 195706.i 0.426999i 0.976943 + 0.213500i \(0.0684862\pi\)
−0.976943 + 0.213500i \(0.931514\pi\)
\(678\) − 138969.i − 0.302314i
\(679\) 0 0
\(680\) 72204.0 0.156150
\(681\) 129871. 0.280039
\(682\) − 120743.i − 0.259594i
\(683\) −234441. −0.502566 −0.251283 0.967914i \(-0.580852\pi\)
−0.251283 + 0.967914i \(0.580852\pi\)
\(684\) − 63663.2i − 0.136074i
\(685\) − 435352.i − 0.927812i
\(686\) 0 0
\(687\) 98357.4 0.208398
\(688\) 196250. 0.414603
\(689\) 263852.i 0.555805i
\(690\) 147586. 0.309989
\(691\) 89309.2i 0.187042i 0.995617 + 0.0935212i \(0.0298123\pi\)
−0.995617 + 0.0935212i \(0.970188\pi\)
\(692\) − 224153.i − 0.468094i
\(693\) 0 0
\(694\) 53088.3 0.110225
\(695\) −384788. −0.796622
\(696\) − 87052.5i − 0.179706i
\(697\) −635243. −1.30760
\(698\) − 12937.7i − 0.0265550i
\(699\) − 34734.9i − 0.0710905i
\(700\) 0 0
\(701\) 122213. 0.248704 0.124352 0.992238i \(-0.460315\pi\)
0.124352 + 0.992238i \(0.460315\pi\)
\(702\) 90839.1 0.184331
\(703\) − 245741.i − 0.497242i
\(704\) 32783.1 0.0661461
\(705\) 45135.9i 0.0908122i
\(706\) 172231.i 0.345544i
\(707\) 0 0
\(708\) −145184. −0.289636
\(709\) 84019.8 0.167143 0.0835717 0.996502i \(-0.473367\pi\)
0.0835717 + 0.996502i \(0.473367\pi\)
\(710\) − 14155.1i − 0.0280799i
\(711\) −174766. −0.345715
\(712\) 351591.i 0.693550i
\(713\) − 473032.i − 0.930489i
\(714\) 0 0
\(715\) 207457. 0.405804
\(716\) 203188. 0.396343
\(717\) 501226.i 0.974979i
\(718\) 656529. 1.27352
\(719\) − 759119.i − 1.46843i −0.678919 0.734213i \(-0.737551\pi\)
0.678919 0.734213i \(-0.262449\pi\)
\(720\) − 24457.4i − 0.0471786i
\(721\) 0 0
\(722\) 122898. 0.235760
\(723\) 284231. 0.543744
\(724\) 352778.i 0.673014i
\(725\) 314429. 0.598200
\(726\) 154924.i 0.293931i
\(727\) 92384.1i 0.174795i 0.996174 + 0.0873974i \(0.0278550\pi\)
−0.996174 + 0.0873974i \(0.972145\pi\)
\(728\) 0 0
\(729\) −19683.0 −0.0370370
\(730\) −162930. −0.305742
\(731\) − 691337.i − 1.29376i
\(732\) −94454.1 −0.176278
\(733\) − 3352.68i − 0.00623999i −0.999995 0.00312000i \(-0.999007\pi\)
0.999995 0.00312000i \(-0.000993127\pi\)
\(734\) − 409324.i − 0.759757i
\(735\) 0 0
\(736\) 128433. 0.237094
\(737\) −555431. −1.02257
\(738\) 215173.i 0.395072i
\(739\) −27185.6 −0.0497795 −0.0248897 0.999690i \(-0.507923\pi\)
−0.0248897 + 0.999690i \(0.507923\pi\)
\(740\) − 94406.0i − 0.172400i
\(741\) − 350589.i − 0.638502i
\(742\) 0 0
\(743\) 773801. 1.40169 0.700845 0.713314i \(-0.252807\pi\)
0.700845 + 0.713314i \(0.252807\pi\)
\(744\) −78389.1 −0.141615
\(745\) − 82471.7i − 0.148591i
\(746\) −421105. −0.756681
\(747\) 222097.i 0.398017i
\(748\) − 115486.i − 0.206408i
\(749\) 0 0
\(750\) 218348. 0.388174
\(751\) 197844. 0.350787 0.175394 0.984498i \(-0.443880\pi\)
0.175394 + 0.984498i \(0.443880\pi\)
\(752\) 39278.5i 0.0694574i
\(753\) −561897. −0.990984
\(754\) − 479393.i − 0.843236i
\(755\) 356483.i 0.625381i
\(756\) 0 0
\(757\) −770706. −1.34492 −0.672461 0.740132i \(-0.734763\pi\)
−0.672461 + 0.740132i \(0.734763\pi\)
\(758\) 397868. 0.692469
\(759\) − 236055.i − 0.409760i
\(760\) −94392.2 −0.163421
\(761\) 152140.i 0.262708i 0.991336 + 0.131354i \(0.0419325\pi\)
−0.991336 + 0.131354i \(0.958068\pi\)
\(762\) 34979.7i 0.0602429i
\(763\) 0 0
\(764\) −516473. −0.884832
\(765\) −86156.9 −0.147220
\(766\) − 82936.1i − 0.141347i
\(767\) −799521. −1.35906
\(768\) − 21283.4i − 0.0360844i
\(769\) − 961897.i − 1.62658i −0.581857 0.813291i \(-0.697674\pi\)
0.581857 0.813291i \(-0.302326\pi\)
\(770\) 0 0
\(771\) −186470. −0.313689
\(772\) 293397. 0.492290
\(773\) − 151069.i − 0.252823i −0.991978 0.126411i \(-0.959654\pi\)
0.991978 0.126411i \(-0.0403459\pi\)
\(774\) −234174. −0.390892
\(775\) − 283137.i − 0.471404i
\(776\) 35267.3i 0.0585664i
\(777\) 0 0
\(778\) 374540. 0.618783
\(779\) 830452. 1.36848
\(780\) − 134685.i − 0.221376i
\(781\) −22640.3 −0.0371175
\(782\) − 452435.i − 0.739849i
\(783\) 103875.i 0.169429i
\(784\) 0 0
\(785\) −338215. −0.548849
\(786\) 63781.7 0.103241
\(787\) − 198891.i − 0.321118i −0.987026 0.160559i \(-0.948670\pi\)
0.987026 0.160559i \(-0.0513297\pi\)
\(788\) −585176. −0.942398
\(789\) 339993.i 0.546154i
\(790\) 259123.i 0.415194i
\(791\) 0 0
\(792\) −39118.2 −0.0623632
\(793\) −520153. −0.827150
\(794\) − 96810.3i − 0.153561i
\(795\) −84767.0 −0.134120
\(796\) − 11208.2i − 0.0176893i
\(797\) 990756.i 1.55973i 0.625947 + 0.779866i \(0.284713\pi\)
−0.625947 + 0.779866i \(0.715287\pi\)
\(798\) 0 0
\(799\) 138368. 0.216741
\(800\) 76874.6 0.120117
\(801\) − 419533.i − 0.653885i
\(802\) −506518. −0.787492
\(803\) 260597.i 0.404145i
\(804\) 360597.i 0.557840i
\(805\) 0 0
\(806\) −431684. −0.664501
\(807\) −359632. −0.552219
\(808\) 356050.i 0.545366i
\(809\) −92288.6 −0.141010 −0.0705052 0.997511i \(-0.522461\pi\)
−0.0705052 + 0.997511i \(0.522461\pi\)
\(810\) 29183.6i 0.0444804i
\(811\) 617125.i 0.938277i 0.883125 + 0.469139i \(0.155436\pi\)
−0.883125 + 0.469139i \(0.844564\pi\)
\(812\) 0 0
\(813\) −34037.6 −0.0514966
\(814\) −150997. −0.227887
\(815\) − 602743.i − 0.907439i
\(816\) −74975.9 −0.112601
\(817\) 903784.i 1.35401i
\(818\) 140762.i 0.210367i
\(819\) 0 0
\(820\) 319033. 0.474469
\(821\) 307066. 0.455559 0.227780 0.973713i \(-0.426853\pi\)
0.227780 + 0.973713i \(0.426853\pi\)
\(822\) 452066.i 0.669049i
\(823\) 846858. 1.25029 0.625146 0.780508i \(-0.285040\pi\)
0.625146 + 0.780508i \(0.285040\pi\)
\(824\) − 763.194i − 0.00112404i
\(825\) − 141293.i − 0.207592i
\(826\) 0 0
\(827\) 294059. 0.429956 0.214978 0.976619i \(-0.431032\pi\)
0.214978 + 0.976619i \(0.431032\pi\)
\(828\) −153252. −0.223535
\(829\) 1.03438e6i 1.50513i 0.658520 + 0.752563i \(0.271183\pi\)
−0.658520 + 0.752563i \(0.728817\pi\)
\(830\) 329299. 0.478007
\(831\) − 411032.i − 0.595215i
\(832\) − 117207.i − 0.169319i
\(833\) 0 0
\(834\) 399560. 0.574447
\(835\) 373036. 0.535030
\(836\) 150975.i 0.216019i
\(837\) 93537.2 0.133516
\(838\) − 124313.i − 0.177022i
\(839\) − 307258.i − 0.436495i −0.975893 0.218248i \(-0.929966\pi\)
0.975893 0.218248i \(-0.0700340\pi\)
\(840\) 0 0
\(841\) −159093. −0.224937
\(842\) −617324. −0.870741
\(843\) − 178556.i − 0.251258i
\(844\) 465853. 0.653980
\(845\) − 337463.i − 0.472621i
\(846\) − 46868.7i − 0.0654851i
\(847\) 0 0
\(848\) −73766.4 −0.102581
\(849\) 477590. 0.662583
\(850\) − 270809.i − 0.374822i
\(851\) −591555. −0.816838
\(852\) 14698.5i 0.0202486i
\(853\) − 70737.4i − 0.0972190i −0.998818 0.0486095i \(-0.984521\pi\)
0.998818 0.0486095i \(-0.0154790\pi\)
\(854\) 0 0
\(855\) 112633. 0.154075
\(856\) −123239. −0.168191
\(857\) 329863.i 0.449130i 0.974459 + 0.224565i \(0.0720961\pi\)
−0.974459 + 0.224565i \(0.927904\pi\)
\(858\) −215421. −0.292627
\(859\) 69962.5i 0.0948154i 0.998876 + 0.0474077i \(0.0150960\pi\)
−0.998876 + 0.0474077i \(0.984904\pi\)
\(860\) 347205.i 0.469450i
\(861\) 0 0
\(862\) −217052. −0.292113
\(863\) −772223. −1.03686 −0.518431 0.855119i \(-0.673484\pi\)
−0.518431 + 0.855119i \(0.673484\pi\)
\(864\) 25396.3i 0.0340207i
\(865\) 396572. 0.530017
\(866\) 612957.i 0.817324i
\(867\) − 169868.i − 0.225981i
\(868\) 0 0
\(869\) 414451. 0.548825
\(870\) 154013. 0.203479
\(871\) 1.98579e6i 2.61756i
\(872\) 377827. 0.496890
\(873\) − 42082.4i − 0.0552169i
\(874\) 591468.i 0.774299i
\(875\) 0 0
\(876\) 169185. 0.220472
\(877\) 242520. 0.315317 0.157659 0.987494i \(-0.449605\pi\)
0.157659 + 0.987494i \(0.449605\pi\)
\(878\) − 67209.3i − 0.0871847i
\(879\) 120645. 0.156146
\(880\) 57999.7i 0.0748963i
\(881\) − 646528.i − 0.832982i −0.909140 0.416491i \(-0.863260\pi\)
0.909140 0.416491i \(-0.136740\pi\)
\(882\) 0 0
\(883\) −461877. −0.592387 −0.296193 0.955128i \(-0.595717\pi\)
−0.296193 + 0.955128i \(0.595717\pi\)
\(884\) −412888. −0.528357
\(885\) − 256860.i − 0.327951i
\(886\) 494592. 0.630057
\(887\) 215226.i 0.273557i 0.990602 + 0.136778i \(0.0436748\pi\)
−0.990602 + 0.136778i \(0.956325\pi\)
\(888\) 98030.3i 0.124318i
\(889\) 0 0
\(890\) −622034. −0.785297
\(891\) 46677.5 0.0587965
\(892\) 488407.i 0.613836i
\(893\) −180888. −0.226833
\(894\) 85637.9i 0.107150i
\(895\) 359479.i 0.448774i
\(896\) 0 0
\(897\) −843948. −1.04889
\(898\) −551980. −0.684496
\(899\) − 493632.i − 0.610779i
\(900\) −91730.1 −0.113247
\(901\) 259860.i 0.320103i
\(902\) − 510275.i − 0.627179i
\(903\) 0 0
\(904\) 213957. 0.261812
\(905\) −624134. −0.762045
\(906\) − 370168.i − 0.450965i
\(907\) 1.09827e6 1.33504 0.667519 0.744592i \(-0.267356\pi\)
0.667519 + 0.744592i \(0.267356\pi\)
\(908\) 199949.i 0.242520i
\(909\) − 424854.i − 0.514176i
\(910\) 0 0
\(911\) −1.32312e6 −1.59427 −0.797133 0.603803i \(-0.793651\pi\)
−0.797133 + 0.603803i \(0.793651\pi\)
\(912\) 98015.9 0.117844
\(913\) − 526695.i − 0.631855i
\(914\) 165384. 0.197971
\(915\) − 167108.i − 0.199597i
\(916\) 151431.i 0.180478i
\(917\) 0 0
\(918\) 89464.5 0.106161
\(919\) 516528. 0.611594 0.305797 0.952097i \(-0.401077\pi\)
0.305797 + 0.952097i \(0.401077\pi\)
\(920\) 227223.i 0.268459i
\(921\) −344951. −0.406666
\(922\) 869014.i 1.02227i
\(923\) 80943.8i 0.0950124i
\(924\) 0 0
\(925\) −354080. −0.413826
\(926\) −50267.5 −0.0586226
\(927\) 910.676i 0.00105975i
\(928\) 134026. 0.155630
\(929\) − 1.23939e6i − 1.43608i −0.696003 0.718039i \(-0.745040\pi\)
0.696003 0.718039i \(-0.254960\pi\)
\(930\) − 138686.i − 0.160349i
\(931\) 0 0
\(932\) 53477.9 0.0615662
\(933\) −497274. −0.571259
\(934\) − 183749.i − 0.210635i
\(935\) 204318. 0.233713
\(936\) 139856.i 0.159635i
\(937\) 1.15260e6i 1.31281i 0.754411 + 0.656403i \(0.227923\pi\)
−0.754411 + 0.656403i \(0.772077\pi\)
\(938\) 0 0
\(939\) −248917. −0.282308
\(940\) −69491.3 −0.0786457
\(941\) 107507.i 0.121411i 0.998156 + 0.0607057i \(0.0193351\pi\)
−0.998156 + 0.0607057i \(0.980665\pi\)
\(942\) 351199. 0.395777
\(943\) − 1.99909e6i − 2.24806i
\(944\) − 223526.i − 0.250832i
\(945\) 0 0
\(946\) 555334. 0.620543
\(947\) −412614. −0.460092 −0.230046 0.973180i \(-0.573888\pi\)
−0.230046 + 0.973180i \(0.573888\pi\)
\(948\) − 269070.i − 0.299398i
\(949\) 931689. 1.03452
\(950\) 354028.i 0.392275i
\(951\) 177335.i 0.196080i
\(952\) 0 0
\(953\) 1.43052e6 1.57510 0.787550 0.616251i \(-0.211349\pi\)
0.787550 + 0.616251i \(0.211349\pi\)
\(954\) 88021.3 0.0967143
\(955\) − 913742.i − 1.00188i
\(956\) −771688. −0.844356
\(957\) − 246335.i − 0.268969i
\(958\) 596619.i 0.650079i
\(959\) 0 0
\(960\) 37654.6 0.0408579
\(961\) 479015. 0.518683
\(962\) 539847.i 0.583338i
\(963\) 147055. 0.158572
\(964\) 437602.i 0.470896i
\(965\) 519077.i 0.557413i
\(966\) 0 0
\(967\) −344533. −0.368449 −0.184225 0.982884i \(-0.558977\pi\)
−0.184225 + 0.982884i \(0.558977\pi\)
\(968\) −238521. −0.254551
\(969\) − 345284.i − 0.367730i
\(970\) −62394.8 −0.0663139
\(971\) 1.45316e6i 1.54126i 0.637283 + 0.770630i \(0.280058\pi\)
−0.637283 + 0.770630i \(0.719942\pi\)
\(972\) − 30304.0i − 0.0320750i
\(973\) 0 0
\(974\) −647393. −0.682417
\(975\) −505152. −0.531389
\(976\) − 145422.i − 0.152661i
\(977\) 1.54571e6 1.61934 0.809669 0.586887i \(-0.199647\pi\)
0.809669 + 0.586887i \(0.199647\pi\)
\(978\) 625883.i 0.654358i
\(979\) 994907.i 1.03805i
\(980\) 0 0
\(981\) −450840. −0.468473
\(982\) 396970. 0.411656
\(983\) 134268.i 0.138952i 0.997584 + 0.0694761i \(0.0221328\pi\)
−0.997584 + 0.0694761i \(0.977867\pi\)
\(984\) −331281. −0.342142
\(985\) − 1.03529e6i − 1.06706i
\(986\) − 472139.i − 0.485641i
\(987\) 0 0
\(988\) 539768. 0.552959
\(989\) 2.17561e6 2.22428
\(990\) − 69207.7i − 0.0706129i
\(991\) −791191. −0.805627 −0.402814 0.915282i \(-0.631968\pi\)
−0.402814 + 0.915282i \(0.631968\pi\)
\(992\) − 120688.i − 0.122642i
\(993\) − 692571.i − 0.702369i
\(994\) 0 0
\(995\) 19829.5 0.0200293
\(996\) −341941. −0.344693
\(997\) 672757.i 0.676811i 0.941000 + 0.338406i \(0.109888\pi\)
−0.941000 + 0.338406i \(0.890112\pi\)
\(998\) −976732. −0.980650
\(999\) − 116974.i − 0.117208i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.5.c.a.97.3 4
3.2 odd 2 882.5.c.a.685.1 4
7.2 even 3 294.5.g.c.31.1 4
7.3 odd 6 294.5.g.c.19.1 4
7.4 even 3 42.5.g.a.19.1 4
7.5 odd 6 42.5.g.a.31.1 yes 4
7.6 odd 2 inner 294.5.c.a.97.4 4
21.5 even 6 126.5.n.b.73.2 4
21.11 odd 6 126.5.n.b.19.2 4
21.20 even 2 882.5.c.a.685.2 4
28.11 odd 6 336.5.bh.d.145.2 4
28.19 even 6 336.5.bh.d.241.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.5.g.a.19.1 4 7.4 even 3
42.5.g.a.31.1 yes 4 7.5 odd 6
126.5.n.b.19.2 4 21.11 odd 6
126.5.n.b.73.2 4 21.5 even 6
294.5.c.a.97.3 4 1.1 even 1 trivial
294.5.c.a.97.4 4 7.6 odd 2 inner
294.5.g.c.19.1 4 7.3 odd 6
294.5.g.c.31.1 4 7.2 even 3
336.5.bh.d.145.2 4 28.11 odd 6
336.5.bh.d.241.2 4 28.19 even 6
882.5.c.a.685.1 4 3.2 odd 2
882.5.c.a.685.2 4 21.20 even 2