Properties

Label 294.4.e.j
Level $294$
Weight $4$
Character orbit 294.e
Analytic conductor $17.347$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(17.3465615417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + 8 \zeta_{6} q^{5} + 6 q^{6} -8 q^{8} -9 \zeta_{6} q^{9} +O(q^{10})\) \( q + 2 \zeta_{6} q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + 8 \zeta_{6} q^{5} + 6 q^{6} -8 q^{8} -9 \zeta_{6} q^{9} + ( -16 + 16 \zeta_{6} ) q^{10} + ( -40 + 40 \zeta_{6} ) q^{11} + 12 \zeta_{6} q^{12} -4 q^{13} + 24 q^{15} -16 \zeta_{6} q^{16} + ( -84 + 84 \zeta_{6} ) q^{17} + ( 18 - 18 \zeta_{6} ) q^{18} + 148 \zeta_{6} q^{19} -32 q^{20} -80 q^{22} -84 \zeta_{6} q^{23} + ( -24 + 24 \zeta_{6} ) q^{24} + ( 61 - 61 \zeta_{6} ) q^{25} -8 \zeta_{6} q^{26} -27 q^{27} + 58 q^{29} + 48 \zeta_{6} q^{30} + ( -136 + 136 \zeta_{6} ) q^{31} + ( 32 - 32 \zeta_{6} ) q^{32} + 120 \zeta_{6} q^{33} -168 q^{34} + 36 q^{36} + 222 \zeta_{6} q^{37} + ( -296 + 296 \zeta_{6} ) q^{38} + ( -12 + 12 \zeta_{6} ) q^{39} -64 \zeta_{6} q^{40} -420 q^{41} -164 q^{43} -160 \zeta_{6} q^{44} + ( 72 - 72 \zeta_{6} ) q^{45} + ( 168 - 168 \zeta_{6} ) q^{46} + 488 \zeta_{6} q^{47} -48 q^{48} + 122 q^{50} + 252 \zeta_{6} q^{51} + ( 16 - 16 \zeta_{6} ) q^{52} + ( -478 + 478 \zeta_{6} ) q^{53} -54 \zeta_{6} q^{54} -320 q^{55} + 444 q^{57} + 116 \zeta_{6} q^{58} + ( 548 - 548 \zeta_{6} ) q^{59} + ( -96 + 96 \zeta_{6} ) q^{60} + 692 \zeta_{6} q^{61} -272 q^{62} + 64 q^{64} -32 \zeta_{6} q^{65} + ( -240 + 240 \zeta_{6} ) q^{66} + ( 908 - 908 \zeta_{6} ) q^{67} -336 \zeta_{6} q^{68} -252 q^{69} -524 q^{71} + 72 \zeta_{6} q^{72} + ( 440 - 440 \zeta_{6} ) q^{73} + ( -444 + 444 \zeta_{6} ) q^{74} -183 \zeta_{6} q^{75} -592 q^{76} -24 q^{78} -1216 \zeta_{6} q^{79} + ( 128 - 128 \zeta_{6} ) q^{80} + ( -81 + 81 \zeta_{6} ) q^{81} -840 \zeta_{6} q^{82} + 684 q^{83} -672 q^{85} -328 \zeta_{6} q^{86} + ( 174 - 174 \zeta_{6} ) q^{87} + ( 320 - 320 \zeta_{6} ) q^{88} + 604 \zeta_{6} q^{89} + 144 q^{90} + 336 q^{92} + 408 \zeta_{6} q^{93} + ( -976 + 976 \zeta_{6} ) q^{94} + ( -1184 + 1184 \zeta_{6} ) q^{95} -96 \zeta_{6} q^{96} + 832 q^{97} + 360 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 3q^{3} - 4q^{4} + 8q^{5} + 12q^{6} - 16q^{8} - 9q^{9} + O(q^{10}) \) \( 2q + 2q^{2} + 3q^{3} - 4q^{4} + 8q^{5} + 12q^{6} - 16q^{8} - 9q^{9} - 16q^{10} - 40q^{11} + 12q^{12} - 8q^{13} + 48q^{15} - 16q^{16} - 84q^{17} + 18q^{18} + 148q^{19} - 64q^{20} - 160q^{22} - 84q^{23} - 24q^{24} + 61q^{25} - 8q^{26} - 54q^{27} + 116q^{29} + 48q^{30} - 136q^{31} + 32q^{32} + 120q^{33} - 336q^{34} + 72q^{36} + 222q^{37} - 296q^{38} - 12q^{39} - 64q^{40} - 840q^{41} - 328q^{43} - 160q^{44} + 72q^{45} + 168q^{46} + 488q^{47} - 96q^{48} + 244q^{50} + 252q^{51} + 16q^{52} - 478q^{53} - 54q^{54} - 640q^{55} + 888q^{57} + 116q^{58} + 548q^{59} - 96q^{60} + 692q^{61} - 544q^{62} + 128q^{64} - 32q^{65} - 240q^{66} + 908q^{67} - 336q^{68} - 504q^{69} - 1048q^{71} + 72q^{72} + 440q^{73} - 444q^{74} - 183q^{75} - 1184q^{76} - 48q^{78} - 1216q^{79} + 128q^{80} - 81q^{81} - 840q^{82} + 1368q^{83} - 1344q^{85} - 328q^{86} + 174q^{87} + 320q^{88} + 604q^{89} + 288q^{90} + 672q^{92} + 408q^{93} - 976q^{94} - 1184q^{95} - 96q^{96} + 1664q^{97} + 720q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 4.00000 + 6.92820i 6.00000 0 −8.00000 −4.50000 7.79423i −8.00000 + 13.8564i
79.1 1.00000 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 4.00000 6.92820i 6.00000 0 −8.00000 −4.50000 + 7.79423i −8.00000 13.8564i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.e.j 2
3.b odd 2 1 882.4.g.c 2
7.b odd 2 1 294.4.e.f 2
7.c even 3 1 294.4.a.b 1
7.c even 3 1 inner 294.4.e.j 2
7.d odd 6 1 294.4.a.f yes 1
7.d odd 6 1 294.4.e.f 2
21.c even 2 1 882.4.g.j 2
21.g even 6 1 882.4.a.j 1
21.g even 6 1 882.4.g.j 2
21.h odd 6 1 882.4.a.q 1
21.h odd 6 1 882.4.g.c 2
28.f even 6 1 2352.4.a.m 1
28.g odd 6 1 2352.4.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.b 1 7.c even 3 1
294.4.a.f yes 1 7.d odd 6 1
294.4.e.f 2 7.b odd 2 1
294.4.e.f 2 7.d odd 6 1
294.4.e.j 2 1.a even 1 1 trivial
294.4.e.j 2 7.c even 3 1 inner
882.4.a.j 1 21.g even 6 1
882.4.a.q 1 21.h odd 6 1
882.4.g.c 2 3.b odd 2 1
882.4.g.c 2 21.h odd 6 1
882.4.g.j 2 21.c even 2 1
882.4.g.j 2 21.g even 6 1
2352.4.a.m 1 28.f even 6 1
2352.4.a.z 1 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(294, [\chi])\):

\( T_{5}^{2} - 8 T_{5} + 64 \)
\( T_{11}^{2} + 40 T_{11} + 1600 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 - 2 T + T^{2} \)
$3$ \( 9 - 3 T + T^{2} \)
$5$ \( 64 - 8 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1600 + 40 T + T^{2} \)
$13$ \( ( 4 + T )^{2} \)
$17$ \( 7056 + 84 T + T^{2} \)
$19$ \( 21904 - 148 T + T^{2} \)
$23$ \( 7056 + 84 T + T^{2} \)
$29$ \( ( -58 + T )^{2} \)
$31$ \( 18496 + 136 T + T^{2} \)
$37$ \( 49284 - 222 T + T^{2} \)
$41$ \( ( 420 + T )^{2} \)
$43$ \( ( 164 + T )^{2} \)
$47$ \( 238144 - 488 T + T^{2} \)
$53$ \( 228484 + 478 T + T^{2} \)
$59$ \( 300304 - 548 T + T^{2} \)
$61$ \( 478864 - 692 T + T^{2} \)
$67$ \( 824464 - 908 T + T^{2} \)
$71$ \( ( 524 + T )^{2} \)
$73$ \( 193600 - 440 T + T^{2} \)
$79$ \( 1478656 + 1216 T + T^{2} \)
$83$ \( ( -684 + T )^{2} \)
$89$ \( 364816 - 604 T + T^{2} \)
$97$ \( ( -832 + T )^{2} \)
show more
show less